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Abstract 

Three factors as isotopic composition, the temperature and pH value of water were analyzed in experiments with 

prognosis of primary hydrosphere and possible conditions for origin of first organic forms in hot mineral water 

with HDO. For this aim the authors performed experiments with hot mineral and seawater from Bulgaria, and 

water with varying content of deuterium using IR-, and DNES-spectroscopy. As model systems were used cactus 

juice of Echinopsis pachanoi and Mediterranean jellyfish Cotylorhiza tuberculata. There were discussed the 

reactions of condensation and dehydration occurring in alkaline aqueous solutions at 65–95 0C and рН = 9–10, 

resulting in synthesis from separate molecules larger organic molecules as polymers and short polipeptides, as 

well as were predicted the possible mechanisms of the deuterium accumulation in form of HDO in hot water. It 

was shown that hot alkaline mineral water with temperature from +65 0C to +95 0C and pH value from 9 to 11 is 

more suitable for the origination of life and living matter than other analyzed water samples. The pH value of 

seawater on contrary is limited to the range of 7.5 to 8.4 units. Two common local maximums were observed in 

the IR-spectra of jellyfish and seawater, which were more pronouncedly expressed in IR-spectra of jellyfish. In 

hot mineral waters the local maximums in IR-spectra are more manifested compared to the local maximums 

obtained in IR-spectra of the same water at a lower temperature. The difference in the local maximums from +20 
0C to +95 0C at each 5 0C according to Student t-criterion – p < 0.05. These data indicate that the origination of 

life and living matter depends on the structure and physical chemical properties of water, as well as its 

temperature and pH value.  
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1. Introduction 

Previous biological experiments with D2O and structural-conformational studies with deuterium substituted 

molecules, performed by us, enable to modeling conditions under which the first living forms of life might be 

evolved (Ignatov & Mosin, 2013a; Ignatov & Mosin, 2013b; Ignatov & Mosin, 2013c). The content of deuterium 

in hot mineral water may be increased due to the physical chemical processes of the deuterium accumulation. It 

can be presumed that primary water might contain more deuterium at early stages of evolution of first living 

structures, and deuterium was distributed non-uniformly in the hydrosphere and atmosphere (Ignatov & Mosin, 

2012). The primary reductive atmosphere of the Earth consisted basically of gas mixture CO, H2, N2, NH3, CH4, 

lacked O2–O3 layer protecting the Earth surface from rigid short-wave solar radiation carrying huge energy 

capable to cause radiolysis and photolysis of water. The processes accompanying accumulation of deuterium in 

the hydrosphere are solar radiation, volcanic geothermal processes and electric discharges in the atmosphere. 

These natural processes could lead to the enrichment of the hydrosphere by deuterium in the form of HDO which 

evaporates more slowly than H2O, and condenses faster. If this is true, this is a significant fact regarding thermal 

stability of deuterated macromolecules in the preservation of life under thermal conditions, because chemical 

bonds with participation of deuterium are somewhat stronger than those ones formed of hydrogen. 

Natural prevalence of deuterium makes up approximately 0.015–0.020 at.%, and depends strongly on 

the uniformity of substance and the total amount of matter formed in the course of early Galaxy evolution 

(Linsky, 2007). Constant sources of deuterium are explosions of nova stars and thermonuclear processes 

frequently occurring inside the stars. Perhaps this explains the fact that the total amount of deuterium is slightly 

increased in the period of global warming. 

The gravitational field of the Earth is insufficiently strong for the retaining of lighter hydrogen, and our 

planet is gradually losing hydrogen as a result of its dissociation into interplanetary space. Hydrogen evaporates 

faster than heavy deuterium, which can be collected by the hydrosphere. Therefore, as a result of this natural 

process of fractionation of H/D isotopes throughout the process of Earth evolution there should be an 

accumulation of deuterium in the hydrosphere and surface waters, while in the atmosphere and in water vapour 

deuterium content tends to be low. Thus, on the planet there occurs a natural process of separation of H and D 
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isotopes, playing an essential role in the maintenance of life on the planet.  

The second point regards the influence of temperature on the life processes. Recent studies have shown 

that the most favorable for the origin of life and living matter seem to be hot alkaline mineral waters interacting 

with CaCO3 (Ignatov, 2010; Ignatov & Mosin, 2013d). According to the law for conservation of energy the 

process of self-organization of primary organic forms in water solutions may be supported by thermal energy of 

magma, volcanic activity and solar radiation. According to J. Szostak, the accumulation of organic compounds in 

open lakes is more possible compared to the ocean (Szostak, 2011). Life began near a hydrothermal vent: an 

underwater spout of hot water. Geothermal activity gives more opportunities for the origination of life. In 2009 

A. Mulkidjanian and M. Galperin demonstrate that the cell cytoplasm contains potassium, zinc, manganese and 

phosphate ions, which are not particularly widespread in the sea aquatorium (Mulkidjanian & Galperin, 2009). J. 

Trevors and G. Pollack proposed in 2005 that the first cells on the Earth assembled in a hydrogel environment 

(Trevors & Pollack , 2005). Gel environments are capable of retaining water, oily hydrocarbons, solutes, and gas 

bubbles, and are capable of carrying out many functions, even in the absence of a membrane. Hydrocarbons are 

an organic compounds consisting entirely of hydrogen and carbon. The previous data showed that the origination 

of living matter most probably occurred in hot mineral water (Ignatov, 2012). This might occurre in ponds and 

hydrothermal vents in seawater or hot mineral water. An indisputable proof of this is the presence of 

stromatolites fossils. They lived in warm and hot water in zones of volcanic activity, which could be heated by 

magma and seem to be more stable than other first marine organisms.  

The purpose of the research was studying the conditions of primary hydrosphere (temperature, рН, 

isotopic composition) for possible processes for origin of life and living matter in hot mineral water. Various 

samples of water from Bulgaria were studied within the frames of the research.  

 

2. Material and Methods 

2.1. Objects of Studying 

2.1.1. Biological Objects  

The objects of the study were various microorganisms, realizing methylotrophic, chemoheterotrophic, photo-

organotrophic, and photosynthetic ways of assimilation of carbon substrates. The initial strains were obtained 

from the State Research Institute of Genetics and Selection of Industrial Microorganisms (Moscow, Russia):  

1. Brevibacterium methylicum B-5652, a leucine auxotroph Gram-positive strain of facultative methylotrophic 

bacterium, L-phenylalanine producer, assimilating methanol via the NAD+ dependent methanol dehydrogenase 

variant of ribulose-5-monophosphate cycle (RuMP) of carbon fixation. 

2. Bacillus subtilis B-3157, a polyauxotrophic for histidine, tyrosine, adenine, and uracil spore-forming aerobic 

Gram-positive chemoheterotrophic bacterium, inosine producer, realizing hexose-6-mono-phosphate (GMP) 

cycle of carbohydrates assimilation.  

3. Halobacterium halobium ET-1001, photo-organotrophic carotenoid-containing strain of extreme halobacteria, 

synthesizing the photochrome transmembrane protein bacteriorhodopsin. 

4. Chlorella vulgaris B-8765, photosynthesizing single-cell green algae. 

5. Mediterranean jellyfish Cotylorhiza tuberculata (Chalkida (Greece), Aegean Sea). 

2.1.2. Water Samples  

The research by the IR-spectrometry (DNES-method) was carried out with samples of water taken from various 

water springs of Bulgaria: 

1 – Mineral water (Rupite, Bulgaria);  

2 – Seawater (Varna resort, Bulgaria); 

3 – Mountain water (Teteven, Bulgaria);  

5 – Deionized water (the control). 

6 – Water with varrying deuterium content (HDO). 

As model systems were used cactus juice of Echinopsis pachanoi and Mediterranean jellyfish Cotylorhiza 

tuberculata (Chalkida (Greece), Aegean Sea). 

 

2.2. Chemicals  

For preparation of growth media was used D2O (99.9 atom.%), 2HСl (95.5 аtom.%) and CD3OD (97.5 atom% 
2H),  purchased from the “Isotope” Russian Research Centre (St. Petersburg, Russian Federation). Inorganic salts 

and D- and L-glucose (“Reanal”, Hungary) were preliminary crystallized in D2O and dried in vacuum before 

using. D2O was distilled over KMnO4 with the subsequent control of isotope enrichment by 1H-NMR-

spectroscopy on a Brucker WM-250 device (“Brucker”, Germany) (working frequency: 70 MHz, internal 

standard: Me4Si). According to 1H-NMR, the level of isotopic purity of growth media usually was by ∼8–10 

atom% lower than the isotope purity of the initial D2О. 
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2.3. Adaptation Studies 

The initial microorganisms were modified by adaptation to deuterium by plating individual colonies onto 2% 

(w/v) agarose growth media with stepwise increasing gradient of D2О concentration and subsequent selection of 

individual cell colonies stable to the action of D2О. As a source of deuterated growth substrates for the growth of 

chemoheterotrophic bacteria and chemoorganoheterotrophic bacteria was used the deuterated biomass of 

facultative methylotrophic bacterium B. methylicum, obtained via a multi-stage adaptation on solid 2% (w/v) 

agarose M9 media with an increasing gradient of D2О (from 0, 24.5, 49.0, 73.5 up to 98% (v/v) D2О). Raw 

deuterated biomass (output, 100 gram of wet weight per 1 liter of liquid culture) was suspended in 100 ml of 0.5 

N DCl (in D2O) and autoclaved for 30–40 min at 0.8 atm. The suspension was neutralized with 0.2 N KOH (in 

D2O) to pH = 7.0 and used as a source of growth substrates while adaptation and growing the 

chemoheterotrophic bacterium B. sublilis and the photo-organotrophic halobacterium H. halobium. 

 

2.4. Growth Media 

The following growth media were used (concentratioin of components are given in g/l): 

1. Minimal salt medium M9 for growth of the facultative methanol assimilating methylotrophic bacterium B. 

methylicum B-5662, supplemented with 2% (v/v) CD3OD and increasing gradient of D2О concentration from 0; 

24.5; 49.0; 73.5 up to 98 % (v/v) D2О: KH2PO4 – 3; Na2HPO4 – 6; NaCl – 0.5; NH4Cl – 1; L-leucine – 0.01.  

2. Hydrolysated medium HM1 for growth of the aerobic Gram-positive chemoheterotrophic bacterium B. subtilis 

B-3157, based on D2О (89–90 atom% D) and 2% (w/v) hydrolysate of deuterated biomass of B. methylicum  B-

5662 as a source of deuterium-labeled growth substrates: L-glucose –120; hydrolysate of deuterated biomass of 

B. methylicum – 20, NH4NO3 – 20; MgSO4
.7H2O – 10; СаСО3 – 20; adenine, and uracil – 0.01. As a control was 

used protonated medium containing 2% (w/v) yeast protein–vitamin concentrate (PVC).  

3. Hydrolysated medium HM2 for the growth of the extreme aerobic halobacterium Halobacterium halobium 

ET-1001 (based on 99.9 atom% D2O): NaCl - 250; MgSO4
.7H2O - 20; KCl - 2; CaCl2

.
 6H2O – 0.065; sodium 

citrate - 0.5; hydrolyzate of deuterated biomass of B. methylicum B-5662 – 20; biotin – 1.10-4; folic acid – 1.5.10-

4, vitamin B12 – 2.10-5). 

4. Tamiya medium for the growth of the photosynthetic green microalgae C. vulgaris B-8765 (based on 99.9 

atom% D2O): KNO3 – 5.0; MgSO4
.7H2O – 2.5; KH2PO4 – 1.25; FeSO4 – 0.003; MnSO4

.2H2O – 3.10-4; 

CaCl2
.6H2O – 0.065; ZnSO4

.7H2O – 4.10-5; CuSO4
.5H2O – 5.10-5, CoCl2

.6H2O – 5.10-6). 

 

2.5. Growth Conditions 

The cells were grown in 500 ml Erlenmeyer flasks containing 100 ml of the growth medium at 32–34 0С and 

vigorously aerated on an orbital shaker Biorad (“Biorad Labs”, Poland). Photo-organotrophic bacteria and green 

algae were grown at illumination by fluorescent monochromatic lamps LDS-40-2 (40 W) ("Alfa-Electro", 

Russia). Growing of microalgae C. vulgaris was carried out at 32 0C in a photoreactor with CO2 bubbling. The 

bacterial growth was monitored on the ability to form individual colonies on the surface of solid 2 % (w/v) 

agarose media, as well as on the optical density of the cell suspension measured on a Beckman DU-6 

spectrophotometer (“Beckman Coulter”, USA) at λ = 620 nm. After 6−7 days the cells were harvested and 

separated by centrifugation (10000 g, 20 min) on T-24 centrifuge ("Heracules", Germany). The biomass was 

washed with D2O and extracted with a mixure of organic solvents: chloroform−methanol−acetone = 2:1:1, % 

(v/v) for isolating lipids and pigments. The resulting precipitate (10−12 mg) was dried in vacuum and used as a 

protein fraction, while the liquid extract − as a lipid fraction.  

 

2.6. IR-Spectroscopy 

IR-spectra of water samples were registered on Brucker Vertex (“Brucker”, Germany) Fourier-IR spectrometer 

(spectral range: average IR – 370–7800 cm-1; visible – 2500–8000 cm-1; permission – 0.5 cm-1; accuracy of wave 

number – 0.1 cm-1 on 2000 cm-1) and on Thermo Nicolet Avatar 360 Fourier-transform IR (M. Chakarova) 

 

2.7. DNES-Spectroscopy 

The research was made with the method of differential non-equilibrium spectrum (DNES). The device measures 

the angle of evaporation of water drops from 72 0 to 0 0. As the main estimation criterion was used the average 

energy (∆EH...O) of hydrogen O...H-bonds between H2O molecules in water’s samples. The spectra of water were 

measured in the range of energy of hydrogen bonds 0,08–0,1387 eV with using a specially designed computer 

program.  

 

2.8. High-Frequency Coronal Electric Discharge Experiments 

A device for high-frequency coronal electric discharge was used in this study, constructed by I. Ignatov and Ch. 

Stoyanov (Ignatov & Mosin, 2013e). The frequency of the applied saw-tooth electric voltage was 15 kHz, and 

the electric voltage – 15 кV. The electric discharge was obtained using a transparent firm polymer electrode on 
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which a liquid sample of water (2–3 mm) was placed. The spectral range of the photons released upon electric 

discharge was from λ = 400 to λ = 490 nm and from λ = 560 to λ = 700 nm. 

 

2.9. Amino Acid Analysis 

The amino acids of the hydrolyzed biomass were analyzed on a Biotronic LC-5001 (230×3.2) column 

(“Eppendorf–Nethleler–Hinz”, Germany) with a UR-30 sulfonated styrene resin (“Beckman–Spinco”, USA) as a 

stationary phase; the temperature – 20±25 0C;  the mobile phase – 0.2 N sodium–citrate buffer (pH = 2.5); the 

granule diameter – 25 µm; working pressure – 50–60 atm; the eluent input rate – 18.5 ml/h; the ninhydrin input 

rate – 9.25 ml/h; detection at λ = 570 and λ =  440 nm (for proline). 

 

2.10. Analysis of Carbohydrates 

Carbohydrates were analyzed on a Knauer Smartline chromatograph (“Knauer”, Germany) equipped with a 

Gilson pump (“Gilson Inc.”, USA) and a Waters K 401 refractometer (”Water Associates”, USA) using 

Ultrasorb CN column (250×10 mm) as a stationary phase; the temperature – 20±25 0C; the mobile phase – 

acetonitrile–water (75:25, % (w/w); the granule diameter – 10 µm; the input rate – 0.6 ml/min. 

 

2.11. Analysis of Fatty Acids 

Fatty acids were analyzed on a Beckman Gold System (USA) chromatograph (250×4.6 mm), equiped with 

Model 126 UV-Detector (USA), 20±25 0C . Stationary phase – Ultrasphere ODS 5 µm; mobile phase – linear 

gradient of 5 mM KH2PO4–acetonitrile; elution rate – 0.5 ml/min, detection at λ = 210 nm. 

 

2.12. Mass Spectrometry 

For evaluation of deuterium enrichment levels EI and FAB mass spectrometry was used. EI mass spectra were 

recorded on MB-80A device (“Hitachi”, Japan) with double focusing (the energy of ionizing electrons – 70 eV; 

the accelerating voltage – 8 kV; the cathode temperature – 180–200 0С) after amino acid modification into 

methyl esters of N-5-dimethylamino(naphthalene)-1-sulfonyl (dansyl) amino acid derivatives according to an 

earlier elaborated protocol (Mosin et al., 1998). FAB-mass spectra were recorded on a VG-70 SEQ 

chromatograph (“Fisons VG Analytical”, USA) equipped with a cesium Cs+ source on a glycerol matrix with 

accelerating voltage 5 kV and ion current 0.6–0.8 mA. Calculation of deuterium enrichment of the molecules 

was carried out using the ratio of contributions of molecular ion peaks  of deuterated compounds extracted on 

D2O-media relative to the control obtained on H2O. 

 

2.13. Scanning Electrom Microscopy (SEM) 

SEM was carried out on JSM 35 CF (JEOL Ltd., Korea) device, equiped with SE detector, thermomolecular 

pump, and tungsten electron gun (Harpin type W filament, DC heating); working pressure – 10-4 Pa (10-6 Torr); 

magnification – ×150.000, resolution – 3.0 nm, accelerating voltage – 1–30 kV; sample size – 60–130 mm. 

 

3. Results and Discussion 

3.1. Isotopic Effects of Deuterium  

The most interesting biological phenomenon is the ability of some microorganisms to grow on heavy water (D2O) 

media in which all hydrogen atoms are replaced with deuterium (Ignatov & Mosin, 2013a; Ignatov & Mosin, 2013b; 

Kushner et al., 1999). 

The average ratio of D/1H in nature makes up approximately 1:5700 (Lis et al., 2008). In natural waters, 

the deuterium is distributed irregularly: from 0.02–0.03 mol.% for river water and sea water, to 0.015 mol.% for 

water of Antarctic ice – the most purified from deuterium natural water containing in 1.5 times less deuterium 

than that of seawater. According to the international SMOW standard isotopic shifts for D and 18O in sea water: 

D/1H = (155.76±0.05).10-6 (155.76 ppm) and 18O/16O = (2005.20±0.45).10-6 (2005 ppm). For SLAP standard 

isotopic shifts for D and 18O in seawater make up D/1H = 89.10-6 (89 ppm) and for a pair of 18O/16O = 1894.10-6 

(1894 ppm). In surface waters, the ratio D/1H = ∼(1.32–1.51).10-4, while in the coastal seawater – ∼(1.55–

1.56).10-4. The natural waters of CIS countries are characterized by negative deviations from SMOW standard to 

(1.0–1.5).10-5, in some places up to (6.0–6.7).10-5, but however there are also observed positive deviations at 

2.0.10-5. 

The chemical structure of D2O molecule is analogous to that one for Н2O, with small differences in the 

length of the covalent H–O-bonds and the angles between them. The molecular mass of D2O exceeds on 10% 

that one for Н2O. The difference in nuclear masses stipulates the isotopic effects, which may be sufficiently 

essential for the 1H/D pair (Lobishev & Kalinichenko, 1978). As a result, physical-chemical properties of D2O 

differ from H2O: D2O boils at 101.44 0С, freezes at 3.82 0С, has maximal density at 11.2 0С (1.106 g/cm3) 

(Vertes, 2004). In mixtures of 2H2O with Н2O the isotopic exchange occurs with high speed with the formation 
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of semi-heavy water (1HDO): D2O + H2O = 1HDO. For this reason deuterium presents in smaller content in 

aqueous solutions in form of 1НDO, while in the higher content – in form of D2O. The chemical reactions in D2O 

are somehow slower compared to Н2O. D2O is less ionized, the dissociation constant of D2O is smaller, and the 

solubility of the organic and inorganic substances in D2O is smaller compared to these ones in Н2О (Mosin, 

1996). Due to isotopic effects the hydrogen bonds with the participation of deuterium are slightly stronger than 

those ones formed of hydrogen. 

Numerous studies carried out by us with various biological objects in D2O, proved that when biological 

objects being exposed to water with different deuterium content, their reaction varies depending on the isotopic 

composition of water (the content of deuterium in water) and magnitude of isotope effects determined by the 

difference of constants of chemical reactions rates kH/kD in H2O and D2O. The maximum kinetic isotopic effect 

observed at ordinary temperatures in chemical reactions leading to rupture of bonds involving hydrogen and 

deuterium atoms lies in the range kH/kD = 5–8 for C–H versus C–D, N–D versus N–D, and O–D versus bonds 

(Mosin et al., 2012; Mosin & Ignatov, 2012a; Mosin & Ignatov, 2012b). Isotopic effects have an impact not only 

on the physical and chemical properties of deuterated macromolecules in which H atoms are substituted with D 

atoms, but also on the biological behavior of biological objects in D2O. Experiments with D2O have shown, that 

green-blue algae is capable to grow on 70 % (v/v) D2O, methylotrophic bacteria – 75 % (v/v) D2O, 

chemoheterotrophic bacteria – 82 % (v/v) D2O, and photo-organotrophic halobacteria – 95 % (v/v) D2O. 

In the course of the experiment were obtained adapted to the maximum concentration of D2O cells 

belonging to different taxonomic groups of microorganisms, realizing methylotrophic, chemoheterotrophic, 

photo-organotrophic and photosynthetic pathways of assimilation of carbon substrata, as facultative 

methylotrophic bacterium B. methylicum, chemoheterotrophic bacterium B. subtilis, halobacterium H. halobium 

and green algae C. vulgaris. 

Our studies indicated that the ability of adaptation to D2О for different taxonomic groups of 

microorganisms is different, and stipulated by taxonomic affiliation, metabolic characteristics, pathways of 

assimilation of substrates, as well as by evolutionary niche occupied by the object. Thus, the lower the level of 

evolutionary organization of the organism, the easier it adapted to the presence of deuterium in growth media. 

Thus, most primitive in evolutionary terms (cell membrane structure, cell organization, resistance to 

environmental factors) of the studied objects are photo-organotrophic halobacteria related to archaebacteria, 

standing apart from both prokaryotic and eukaryotic microorganisms, exhibiting increased resistance to D2О and 

practically needed no adaptation to D2О, contrary to green algae, which, being eukaryotes, are the more difficult 

adapted to D2О and, therefore, exhibit inhibition of growth at 70–75 % (v/v) D2О. 

The composition of growth media evidently also plays an important role in process of adaptation to 

D2О, because the reason of inhibition of cell growth and cell death can be changes of the parity ratio of 

synthesized metabolites in D2О-media: amino acids, proteins and carbohydrates. It is noted that adaptation to 

D2О occures easier on complex growth media than on the minimal growth media with full substrates at a gradual 

increasing of deuterium content in the growth media, as the sensitivity to D2О of different vital systems is 

different. As a rule, even highly deuterated growth media contain remaining protons ∼0,2–10 atom.%. These 

remaining protons facilitate the restructuring to the changed conditions during the adaptation to D2О, presumably 

integrating into those sites, which are the most sensitive to the replacement of hydrogen by deuterium. The 

evidence has been obtained that cells evidently are able to regulate the D/1H ratios, while its changes trigger 

distinct molecular processes. One possibility to modify intracellular D/1H ratios is the activation of the H+-

transport system, which preferentially eliminates H+, resulting in increased D/1H ratios within cells (Somlyai et 

al., 2012). Furthermore deuterium induces physiological, morphological and cytological alterations on the cell. 

There were marked the significant differences in the morphology of the protonated and deuterated cells of blue-

green algae C. vulgaris. Cells grown on D2О-media were ∼2–3 times larger in size and had thicker cell walls, 

than the control cells grown on a conventional protonated growth media with ordinary water, the distribution of 

DNA in them was non-uniform. In some cases on on the surface of cell membranes may be observed areas 

consisting of tightly packed pleats of a cytoplasmic membrane resembling mezosoms – intracytoplasmic 

bacterial membrane of vesicular structure and tubular form formed by the invasion of cytoplasmic membrane 

into the cytoplasm (Figure 1). It is assumed that mezosoms involved in the formation of cell walls, replication 

and segregation of DNA, nucleotides and other processes. There is also evidence that the majority number of 

mezosoms being absent in normal cells is formed by a chemical action of some external factors – low and high 

temperatures, fluctuation of pH and and other factors. Furthermore, deuterated cells of C. vulgaris were also 

characterized by a drastic change in cell form and direction of their division. The observed cell division 

cytodieresis did not end by the usual divergence of the daughter cells, but led to the formation of abnormal cells, 

as described by other authors (Eryomin et al., 1978). The observed morphological changes associated with the 

inhibition of growth of deuterated cells were stipulated by the cell restructuring during the process of adaptation 

to D2О. The fact that the deuterated cells are larger in size (apparent size was of ∼2–4 times larger than the size 

of the protonated cells), apparently is a general biological phenomenn proved by growing a number of other 
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adapted to D2О prokaryotic and eukaryotic cells (Mosin & Ignatov, 2013; Mosin & Ignatov, 2014a; Mosin & 

Ignatov, 2014b). 

 
Figure 1: Electron micrographs of Micrococcus lysodeikticus cells obtained by SEM method: a) – protonated 

cells obtained on H2O-medium; b) – deuterated cells obtained on D2О-medium. The arrows indicate the tightly-

packed portions of the membranes 

Our data generally confirm a stable notion that adaptation to D2О is a phenotypic phenomenon as the 

adapted cells eventually return back to the normal growth after some lag-period after their replacement back onto 

H2O-medium. However, the effect of reversion of growth on H2O/D2О media does not exclude an opportunity 

that a certain genotype determines the manifistation of the same phenotypic attribute in D2О-media with high 

deuterium content. At placing a cell onto D2О-media lacking protons, not only D2О is removed from a cell due 

to isotopic (1H–D) exchange, but also there are occurred a rapid isotopic (1H–D) exchange in hydroxyl (-OH), 

sulfohydryl (-SH) and amino (-NH2) groups in all molecules of organic substances, including proteins, nucleic 

acids, carbohydrates and lipids. It is known, that in these conditions only covalent C–H bond is not exposed to 

isotopic (1H–D) exchange and, thereof only molecules with bonds such as C–D can be synthesized de novo 

(Mosin et al., 1996a; Mosin & Ignatov, 2012a). Depending on the position of the deuterium atom in the 

molecule, there are distinguished primary and secondary isotopic effects mediated by intermolecular 

interactions. In this aspect, the most important for the structure of macromolecules are dynamic short-lived 

hydrogen (deuterium) bonds formed between the electron deficient 1H(D) atoms and adjacent electronegative O, 

C, N, S- heteroatoms in the molecules, acting as acceptors of H-bond (Ignatov & Mosin, 2013c). The hydrogen 

bond, based on weak electrostatic forces, donor-acceptor interactions with charge-transfer and intermolecular 

van der Waals forces, is of the vital importance in the chemistry of intermolecular interactions and maintaining 

the spatial structure of macromolecules in aqueous solutions (Ignatov & Mosin, 2013d). Another important 

property is defined by the three-dimensional structure of D2О molecule having the tendency to pull together 

hydrophobic groups of macromolecules to minimize their disruptive effect on the hydrogen (deuterium)-bonded 
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network in D2О. This leads to stabilization of the structure of protein and nucleic acid macromolecules in the 

presence of D2О. That is why, the structure of macromolecules of proteins and nucleic acids in the presence of 

D2О is somehow stabilized (Cioni & Strambini, 2002). 

Evidently the cell implements special adaptive mechanisms promoting the functional reorganization of 

vital systems in 2Н2О. Thus, for the normal synthesis and function in D2О of such vital compounds as nucleic 

acids and proteins contributes to the maintenance of their structure by forming hydrogen (deuterium) bonds in 

the molecules. The bonds formed by deuterium atoms are differed in strength and energy from similar bonds 

formed by hydrogen. Somewhat greater strength of D–O bond compared to D–O bond causes the differences in 

the kinetics of reactions in H2O and D2О. Thus, according to the theory of a chemical bond the breaking up of 

сovalent 1H–C bonds can occur faster than C–D bonds, the mobility of D3O+ ion is lower on 28.5 % than Н3O+ 

ion, and ОD- ion is lower on 39.8 % than OH- ion, the constant of ionization of D2О is less than that of H2O 

(Ignatov & Mosin, 2013d). These chemical-physical factors lead to slowing down in the rates of enzymatic 

reactions in D2О (Cleland, 1976). However, there are also such reactions which rates in D2О are higher than in 

H2O. In general these reactions are catalyzed by D3O+ or H3O+ ions or OD- and OH- ions. The substitution of 1H 

with D affects the stability and geometry of hydrogen bonds in an apparently rather complex way and may, 

through the changes in the hydrogen bond zero-point vibration energies, alter the conformational dynamics of 

hydrogen (deuterium)-bonded structures of DNA and proteins in D2О. It may cause disturbances in the DNA-

synthesis during mitosis, leading to permanent changes on DNA structure and consequently on cell genotype 

(Lamprecht et al., 1989). Isotopic effects of deuterium, which would occur in macromolecules of even a small 

difference between hydrogen and deuterium, would certainly have the effect upon the structure. The sensitivity 

of enzyme function to the structure and the sensitivity of nucleic acid function (genetic and mitotic) would lead 

to a noticeable effect on the metabolic pathways and reproductive behavior of an organism in the presence of 

D2О (Török et al., 2010). And next, the changes in dissociation constants of DNA and protein ionizable groups 

when transferring the macromolecule from H2O into D2О may perturb the charge state of the DNA and protein 

molecules. All this can cause variations in nucleic acid synthesis, which can lead to structural changes and 

functional differences in the cell and its organelles. Hence, the structural and dynamic properties of the cell 

membrane, which depends on qualitative and quantitative composition of membrane’s fatty acids, can also be 

modified in the presence of D2О. The cellular membrane is one of the most important organelles in the bacteria 

for metabolic regulation, combining apparatus of biosynthesis of polysaccharides, transformation of energy, 

supplying cells with nutrients and involvement in the biosynthesis of proteins, nucleic acids and fatty acids. 

Obviously, the cell membrane plays an important role in the adaptation to D2О. But it has been not clearly 

known what occurs with the membranes − how they react to the replacement of H+ with D+ and how it concerns 

the survival of cells in D2О-media devoid of protons. 
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Figure 2: HPLC-chromatograms of fatty acids obtained from protonated (a) and deuterated (b) cells of B. subtilis 

on the maximally deuterated D2О-medium: Beckman Gold System (Beckman, USA) chromatograph (4.6×250 

mm); stationary phase: Ultrasphere ODS, 5 µm; mobile phase: linear gradient 5 mM KH2PO4–acetonitrile 

(shown in phantom), elution rate: 0.5 ml/min, detection at λ = 210 nm. The peaks with retention time 3.75 min 

(instead of 3.74 minutes in the control), 4.10; 4.27; 4.60 (instead of 4.08; 4.12; 4.28 in the control), 5.07 (instead 

of 4.98 in control) 12.57; 12.97 (instead of 12.79; 13.11; 13.17 in control) 14.00 (instead of 14.59 in the control), 

31.87 (instead of 31.83 in the control); 33.38; 33.74; 33.26; 36.03; 50.78; 50.99 (instead of 51.03; 51.25 for 

control) correspond to individual intracellular fatty acids 

Comparative analysis of the fatty acid composition of deuterated cells of chemoheterotrophic bacteria 

B. subtilis, obtained on the maximum deuterated medium with 99.9 atom.% D2О (Figure 2b), carried out by 

HPLC method, revealed significant quantitative differences in the fatty acid composition compared to the control 

obtained in ordinary water (Figure 2a). Characteristically, in deuterated sample fatty acids having retention times 

at 33.38; 33.74; 33.26 and 36.03 min are not detected in HPLC-chromatogram (Fig. 2b). This result is apparently 

due to the fact that the cell membrane is one of the first cell organelles, sensitive to the effects of D2О, and thus 

compensates the changes in rheological properties of a membrane (viscosity, fluidity, structuredness) not only by 

quantitative but also by qualitative composition of membrane fatty acids. Similar situation was observed with the 

separation of other natural compounds (proteins, amino acids, carbohydrates) extracted from deutero-biomass 

obtained from maximally deuterated D2О-medium. 
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Figure 3: Ion-exchange chromatograms of amino acids obtained from hydrolizates of protonated (a) and 

deuterated (b) cells of B. subtilis on the maximally deuterated D2O-medium: Biotronic LC-5001 (230×3.2 mm) 

column (“Eppendorf–Nethleler–Hinz”, Germany); stationary phase: UR-30 sulfonated styrene resin (“Beckman–

Spinco”, USA); 25 µm; 50–60 atm; mobile phase: 0.2 N sodium–citrate buffer (pH = 2.5); the eluent input rate: 

18.5 ml/h; the ninhydrin input rate: 9.25 ml/h; detection at λ = 570 and λ = 440 nm (for proline). 
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Table 1: Amino acid composition of the protein hydrolysates of B. subtilis, obtained on the maximum deuterated 

medium and levels of deuterium enrichment of molecules* 

Amino acid Yield, % (w/w) dry weight per 1 gram of 

biomass 

 

Number of 

deuterium 

atoms 

incorporated into 

the carbon 

backbone of a 

molecule** 

Level of deuterium 

enrichment of 

molecules, % of the total 

number of hydrogen 

atoms*** 

 

Protonated sample 

(control) 

The sample 

obtained in 99.9 

atom.% D2О  

Glycine 8.03 9.69 2 90.0 

Alanine 12.95 13.98 4 97.5 

Valine 3.54 3.74 4 50.0 

Leucine 8.62 7.33 5 50.0 

Isoleucine 4.14 3.64 5 50.0 

Phenylalanine 3.88 3.94 8 95.0 

Tyrosine 1.56 1.83 7 92.8 

Serine 4.18 4.90 3 86.6 

Threonine 4.81 5.51 − − 

Methionine 4.94 2.25 − − 

Asparagine 7.88 9.59 2 66.6 

Glutamic acid 11.68 10.38 4 70.0 

Lysine 4.34 3.98 5 58.9 

Arginine 4.63 5.28 − − 

Histidine 3.43 3.73 − − 

Notes: 

* The data obtained by mass spectrometry for the methyl esters of N-5-(dimethylamino) naphthalene-1-sulfonyl 

chloride (dansyl) amino acid derivatives. 

** While calculating the level of deuterium enrichment protons (deuterons) at the carboxyl (COOH-) and NH2-

groups of amino acid molecules are not taken into account because of their easy dissociation in H2O/D2О 

*** A dash means absence of data. 

Amino acid analysis of protein hydrolysates isolated from deuterated cells of B. subtilis, also revealed 

the differences in quantitative composition of amino acids synthesized in D2О-medium (Figure 3). Protein 

hydrolysate contains fifteen identified amino acids (except proline, which was detected at λ = 440 nm) (Table 1). 

An indicator that determines a high efficiency of deuterium inclusion into amino acid molecules of protein 

hydrolyzates are high levels of deuterium enrichment of amino acid molecules, which are varied from 50 atom.% 

for leucine/isoleucine to 97.5 atom.% for alanine. 

Qualitative and quantitative composition of the intracellular carbohydrates of B. subtilis obtained on 

maximally deuterated D2О-medium is shown in Table 2 (the numbering is given to the sequence of their elution 

from the column) contained monosaccharides (glucose, fructose, rhamnose, arabinose), disaccharides (maltose, 

sucrose), and four other unidentified carbohydrates with retention time 3.08 min (15.63 %); 4.26 min (7.46 %); 

7.23 min (11.72 %) and 9.14 min (7.95 %) (not shown) (Figure 4). Yield of glucose in deuterated sample makes 

up 21.4 % by dry weight, i.e. higher than for fructose (6.82 %), rhamnose (3.47 %), arabinose (3.69 %), and 

maltose (11.62 %). Their outputs are not significantly different from the control in H2O except for sucrose in 

deuterated sample that was not detected (Table 2). The deuterium enrichment levels of carbohydrates were 

varied from 90.7 atom.% for arabinose to 80.6 atom.% for glucose. 
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Table 2: Qualitative and quantitative composition of intracellular carbohydrates of B. subtilis obtained on the 

maximally deuterated medium and levels of deuterium enrichment of molecules* 

Carbohydrate Content in the biomass, % of the dry weight of 1 g 

biomass 

Level of deuterium 

enrichment, % of the total 

number of hydrogen 

atoms*** 
Protonated sample 

(control) 

The sample obtained in 

99.9 atom.% D2О** 

Glucose 20.01 21.40 80.6 

Fructose 6.12 6.82 85.5 

Rhamnose 2.91 3.47 90.3 

Arabinose 3.26 3.69 90.7 

Maltose 15.30 11.62 − 

Sucrose 8.62 ND − 

Notes:  

* The data were obtained by IR-spectroscopy. 

** ND − not detected 

** A dash means the absence of data. 

 

 
Figure 4: HPLC-chromatograms of intracellular carbohydrates obtained from protonated (a) and deuterated (b) 

cells of B. subtilis on the maximally deuterated D2О-medium: Knauer Smartline chromatograph (250×10 mm) 

(“Knauer”, Germany); stationary phase: Ultrasorb CN; 10 µm; mobile phase: acetonitrile–water (75:25, % 

(w/w); the input rate: 0.6 ml/min 

Electrophoregrams of proteins isolated from hydrolysates of total proteins of microbial biomass of B. 

subtilis grown on D2O also showed differences in the qualitative composition of total protein obtained on D2O 

(Figure 5). 
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Figure 5: Electrophoregrams of proteins isolated from hydrolysates of total biomass of B. subtilis: 1 – a standard 

set of proteins; 2 – a sample obtained from protonated medium; 3 –- a sample obtained from D2O-medium 

The experimental data demonstrated that the effects observed at the cellular growth on D2О-media 

possess a complex multifactor character stipulated by changes of morpholodical, cytological and physiological 

parameters – magnitude of the lag-period, time of cellular generation, outputs of biomass, a ratio of amino acids, 

protein, carbohydrates and fatty acids synthesized in D2О, and with an evolutionary level of organization of 

investigated object as well. The cell evidently implements the special adaptive mechanisms promoting functional 

reorganization of work of the vital systems in the presence of D2О. Thus, the most sensitive to replacement of 1Н 

on D are the apparatus of biosynthesis of macromolecules and a respiratory chain, i.e., those cellular systems 

using high mobility of protons and high speed of breaking up of hydrogen bonds. Last fact allows the 

consideration of adaptation to D2О as adaptation to the nonspecific factor affecting simultaneously the functional 

condition of several numbers of cellular systems: metabolism, ways of assimilation of carbon substrates, 

biosynthetic processes, and transport function, structure and functions of deuterated macromolecules. It seems to 

be reasonable to choose as biomodels in these studies microorganisms, as they are very well adapted to the 

environmental conditions and able to withstand high concentrations of D2О in growth media. 

 

3.2. The Research of Various Water Samples on the Feasibility for Origin of Life  

Further we carried out the research of various samples of mineral water obtained from mineral springs and 

seawater from Bulgaria (Fig. 6, curves 1–5). For this aim we employed the IR-spectrometry and DNES method 

relative to the control – deionized water. 

For calculation of the function f(E) represented the energy spectrum of water, the experimental dependence 

between the wetting angle (θ) and the energy of hydrogen bonds (E) is established: 

22])1(1[
)(33,14

)(
bE
f

Ef
+−

=
θ

,                      (1) 

where b = 14,33 eV-1 

The relation between the wetting angle (θ) and the energy (E) of the hydrogen bonds between H2O molecules is 

calculated by the formula: 

θ = arcos (-1 – 14,33E)                            (2) 

 

Cactus juice was also investigated by the DNES method (Fig. 6, curve 1). The cactus was selected as a model 

system because this plant contains approximately 90 % of water. The closest to the spectrum of cactus juice was 
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the spectrum of mineral water contacting Ca2+ and HCO3
- ions (Fig. 6, curve 2). DNES-spectra of cactus juice 

and mineral water have magnitudes of local maximums at –0.1112; -0.1187; -0.1262; -0.1287 and –0.1387 eV. 

Similar local maximums in the DNES-spectrum between cactus juice and seawater were detected at -0,1362 eV. 

The spectrum of the control sample of deionized water (Fig. 6, curve 5) was substantially different from the 

spectra of seawater and mineral water.  

Another important parameter was measured by the DNES method – the average energy (∆EH... O) of hydrogen 

Н…O-bonds among individual molecules H2O, which makes up -0,1067±0,0011 eV. When the water 

temperature is changed, the average energy of hydrogen H...O-bonds alternates. This testified about the 

restructuring of average energies among individual H2O molecules with a statistically reliable increase of local 

maximums in DNES-spectra. 

 
Figure 6: DNES-spectra of water samples of various origin: 1 – cactus juice; 2 – mineral water from Rupite 

village (Bulgaria); 3 – seawater (Varna, Bulgaria); 4 – mountain water (Teteven, Bulgaria); 5 – deionized water 

(the control) 

As shown from these data, the closest to the IR-spectrum of cactus juice was mineral water from Rupite 

Village (Bulgaria), which DNES and IR spectrum is shown in Fig. 7 and Fig. 8 (Thermo Nicolet Avatar 360 

Fourier-transform IR). IR-spectra of cactus juice and mineral water with HCO3
- (1320–1488 mg/l), Ca2+ (29–36 

mg/l), pH (6.85–7.19), have local maximums at 8.95; 9.67; 9.81; 10.47 and 11.12 µm (Fourier-IR spectrometer 

Brucker Vertex). Common local maximums in the IR-spectrum between cactus juice and seawater are detected 

at 9.10 µm. The local maximums obtained with IR method at 9.81 µm (1019 cm-1) and 8.95 µm (1117 cm-1) 

(Thermo Nicolet Avatar 360 Fourier-transform IR) are located on the spectral curve of the local maximum at 9.7 

µm (1031 cm-1) (Fig. 3). With the DNES method were obtained the following results – 8.95; 9.10; 9.64; 9.83; 

10.45 and 11.15 µm, or 897; 957; 1017; 1037; 1099 and 1117 wave numbers. 
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Figure 7: IR-spectrum of water obtained from Rupite Village (Bulgaria) 

 

Table 3: Characteristics of spectra of water of various origin obtained by DNES-method* 

-E, eV λ, 

µm 

k, 

cm-1 Cactus juice   Mineral water from 

Rupite Village 

(Bulgaria) 

Seawater 

0.1112 0.1112 – 11.15 897 

0.1187 0.1187 – 10.45 957 

0.1262 0.1262 – 9.83 1017 

0.1287 0.1287 – 9.64 1037 

0.1362 –       0,1362 9.10 1099 

0.1387 0.1387 – 8.95 1117 

The note:  

*The function of the distribution of energies ∆f among individual H2O molecules was measured in reciprocal 

electron volts (eV-1). It is shown at which values of the spectrum -E (eV) are observed the biggest local 

maximums of this function; λ – wave length; κ – wave number.  

 

The results with Mediterranean jellyfish Cotylorhiza tuberculata indicated that jellyfish has local 

maximums in IR-spectra at 8.98 and 10.18 µm (Fig. 8). Before measurements the jellyfish was kept in seawater 

for several days. On comparison seawater has a local maximum at 8.93 µm in IR-spectra. These results were 

obtained with Thermo Nicolet Avatar 360 Fourier-transform IR. With DNES method the local maximums in 

spectra for jellyfish are at 8.95 and 10.21 µm, and for seawater at 9.10 µm. A differential spectrum was recorded 

between jellyfish and seawater by using the Thermo Nicolet Avatar 360 Fourier-transform IR method. In IR-

spectrum of jellyfish are observed more pronouncedly expressed local maximums, detected by Thermo Nicolet 

Avatar 360 Fourier-transform IR and DNES method. Measurements demonstrate that two common local 

maximums are observed in IR-spectra of jellyfish and seawater. These maximums are not observed in the IR-

spectrum of cactus juice and mineral water from Rupite (Bulgaria). Jellyfish contains approximately 97 (w/w) % 

of water and is more unstable living organism compared to those ones formed stromatolites. The explanation for 

this is the smaller concentration of salts and, therefore, the smaller number of local maximums in the IR-

spectrum in relation to seawater. 
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Figure 8: IR-spectrum of seawater obtained from Varna (Bulgaria) and jellyfish Cotylorhiza tuberculata, 

Chalkida (Greece), Aegean Sea 

Such a character of IR- and DNES-spectra and distribution of local maximums may prove that hot 

mineral alkaline water is preferable for origin and maintenance of life compared to other types of water analyzed 

by these methods. Thus, in hot mineral waters the local maximums in the IR-spectrum are more manifested 

compared to the local maximums obtained in IR-spectrum of the same water at a lower temperature. The 

difference in the local maximums from +20 0C to +95 0C at each 5 0C according to the Student t-criterion makes 

up – p < 0.05. These data indicate that the origination of life and living matter depends on the structure and 

physical chemical properties of water, as well as its temperature and pH value. The most closed to the IR- and 

DNES-spectrum of water, which contains bicarbonates and calcium ions typical for the formation of 

stromatolites is the IR-spectrum of cactus juice. For this reason cactus juice was applied as a model system. The 

most closed to local maximums in IR-spectrum of cactus juice are local maximums in IR-spectra of alkaline 

mineral water interacting with CaCO3 and then seawater. In connection with these data the following reactions 

participating with CaCO3 in aqueous solutions are important:  

CO2 + 4H2S + O2 = CH2O + 4S + 3H2O,    (3) 

СаСО3 + H2O + СО2 = Ca(HCО3)2,             (4) 

CO2 + ОН- = HCО3
-                                                                (5) 

2HCO3
- + Ca2+ = CaCO3 + CO2 + H2O      (6) 

The equation (3) shows how some chemosynthetic bacteria use energy from the oxidation of H2S and 

CO2 to S and formaldehyde (CH2O). The equation (4) is related to one of the most common processes in nature: 

in the presence of H2O and СО2, СаСО3 transforms into Ca(HCО3)2. In the presence of hydroxyl OH- ions, СО2 

transforms into HCО3
- (equation (5). Equation (6) is valid for the process of formation of the stromatolites – the 

dolomite layered acretionary structures formed in shallow seawater by colonies of cyanobacteria. In 2010 D. 

Ward described fossilized stromatolites in the Glacier National Park (USA) (Schirber, 2010). Stromatolites aged 

3.5 billion years had lived in warm and hot water in zones of volcanic activity, which could be heated by magma. 

This suggests that the first living forms evidently evolved in hot geysers (Ponsa  et al., 2011). It is known that 

water in geysers is rich in carbonates, while the temperature is ranged from +100 0C to +150 0C. In 2011 a team 

of Japanese scientists under the leadership of T. Sugawara showed that life originated in warm or, more likely, 

hot water (Kurihara et al., 2011). From aqueous solution of organic molecules, DNA and synthetic enzymes 

were created proto cells. For this the initial solution was heated to a temperature close to water’s boiling point 

+95 0C. Then its temperature was lowered to +65 0C with formation of proto cells with primitive membrane. 

This laboratory experiment is an excellent confirmation of the possibility that life originated in hot water.  
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3.3. IR-Spectroscopy of Water with Varying Content of Deuterium 

The comparative analysis of IR-spectra of H2O solutions and its deuterated analogues (D2О, HDO) is of 

considerable interest for biophysical studies, because at changing of the atomic mass of hydrogen by deuterium 

atoms in H2O molecule their interaction will also change, although the electronic structure of the molecule and 

its ability to form H-bonds, however, remains the same.  The IR spectra of water usually contain three absorption 

bands, which can be identified as 1 – absorption band of the stretching vibration of OH- group; 2 – absorption 

band of the first overtone of the bending vibration of the molecule HDO; 3 – absorption band of stretching 

vibration of OD- group. OH- group is able to absorb much infrared radiation in the infrared region of the IR-

spectrum. Because of its polarity, these groups typically react with each other or with other polar groups to form 

intra-and intermolecular hydrogen bonds. The hydroxyl groups not involved in formation of hydrogen bonds are 

usually given the narrow bands in IR spectrum and the associated groups – broad intense absorption bands at 

lower frequencies. The magnitude of the frequency shift is determined by the strength of the hydrogen bond. 

Complication of the IR spectrum in the area of OH- stretching vibrations can be explained by the existence of 

different types of associations, a manifestation of overtones and combination frequencies of OH- groups in 

hydrogen bonding, as well as the proton tunneling effect (on the relay mechanism. Such complexity makes it 

difficult to interpret the IR spectrum and partly explains the discrepancy in the literature available on this subject. 

The local maximums in IR-spectra reflect vibrational-rotational transitions in the ground electronic state; the 

substitution with deuterium changes the vibrational-rotational transitions in H2O molecule, that is why it appear 

other local maximums in IR-spectra. In the water vapor state, the vibrations involve combinations of symmetric 

stretch (v1), asymmetric stretch (v3) and bending (v2) of the covalent bonds with absorption intensity (H2O) 

v1;v2;v3 = 2671; 1178.4; 2787.7 cm-1. For liquid water absorption bands are observed in other regions of the IR-

spectrum, the most intense of which are located at 2100, cm-1 and 710–645 cm-1. For  D2О molecule these ratio 

compiles 2723.7, 1403.5 and 3707.5 cm-1, while for HDО molecule – 2671.6, 1178.4 and 2787.7 cm-1. HDO (50 

mole% H2O + 50 mole% 2Н2О; ~50 % HDO, ~25 % H2O, ~25 % D2О) has local maxima in IR-spectra at 3415 

cm-1, 2495 cm-1 1850 cm-1 and 1450 cm-1 assigned to OH- -stretch, OD- -stretch, as well as combination of 

bending and libration and HDO bending respectively. 

In the IR-spectrum of liquid water absorbance band considerably broadened and shifted relative to the 

corresponding bands in the spectrum of water vapor. Their position depends on the temperature (Ignatov & 

Mosin, 2013b). The temperature dependence of individual spectral bands of liquid water is very complex 

(Zelsmann, 1995). Furthermore, the complexity of the IR-spectrum in the area of OH- stretching vibration can be 

explained by the existence of different types of H2O associations, manifestation of overtones and composite 

frequencies of OH- groups in the hydrogen bonds, and the tunneling effect of the proton (for relay mechanism) 

(Yukhnevitch, 1973). Such complexity makes it difficult to interpret the spectrum and partly explains the 

discrepancy in the literature available on this subject. 

In liquid water and ice the IR-spectra are far more complex than those ones of the vapor due to 

vibrational overtones and combinations with librations (restricted rotations, e.g. rocking motions). These 

librations are due to the restrictions imposed by hydrogen bonding (minor L1 band at 395.5 cm-1; major L2 band 

at 686.3 cm-1; for liquid water at 0 0C, the absorbance of L1 increasing with increasing temperature, while L2 

absorbance decreases but broadens with reduced wave number with increasing temperature (Brubach et al., 

2005). The IR spectra of liquid water usually contain three absorbance bands, which can be identified on 

absorption band of the stretching vibration of OH- group; absorption band of the first overtone of the bending 

vibration of the molecule HDO and absorption band of stretching vibration of OD- group (Max & Chapados, 

2009). Hydroxyl group OH- is able to absorb much infrared radiation in the infrared region of the IR-spectrum. 

Because of its polarity, these groups typically react with each other or with other polar groups to form intra-and 

intermolecular hydrogen bonds. The hydroxyl groups, which are not involved in formation of hydrogen bonds, 

usually produce the narrow bands in IR spectrum, while the associated groups – broad intense absorbance bands 

at lower frequencies. The magnitude of the frequency shift is determined by the strength of the hydrogen bond. 

Complication of the IR spectrum in the area of OH- stretching vibrations can be explained by the existence of 

different types of associations of H2O molecules, a manifestation of overtones and combination frequencies of 

OH- groups in hydrogen bonding, as well as the proton tunneling effect (on the relay mechanism). 

Assignment of main absorbtion bands in the IR-spectrum of liquid water is given in Table 4. The IR 

spectrum of H2O molecule was examined in detail from the microwave till the middle (4–17500 cm-1) visible 

region and the ultraviolet region – from 200 nm-1 to ionization limit at 98 nm-1 (Walrafen, 1972). In the middle 

visible region at 4–7500 cm-1 are located rotational spectrum and the bands corresponding to the vibrational-

rotational transitions in the ground electronic state. In the ultraviolet region (200 to 98 nm-1) are located bands 

corresponding to transitions from the excited electronic states close to the ionization limit in the electronic 

ground state. The intermediate region of the IR-spectrum – from 570 nm to 200 nm corresponds to transitions to 

higher vibrational levels of the ground electronic state.  
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Table 4: The assignment of main frequencies in IR-spectra of liquid water H2O and D2О 

 Main vibrations of liquid H2O and 2Н2О 

Vibration(s) H2O (t = 25 0C) D2О (t = 25 0C) 

v, cm-1 E0, M-1 cm-1 v, cm-1 E0, M-1 cm-1 

Spinning ν1 + deformation 

ν 2 

780-1645 21.65 1210 17.10 

Composite ν1 + ν2 2150 3.46 1555 1.88 

Valence symmetrical ν1, 

valence asymmetrical ν3, 

and overtone 2ν2 

3290-3450 100.65 2510 69.70 

Results of IR-spectroscopy with device Infra Spec VFA-IR show that at 4.1 µm, even at low 

concentrations of deuterium of 0.35 and 0.71%, there is observed a decline in the local maximums relative to the 

local maximum of 100% pure water (the local maximums in IR-spectra reflect vibrational-rotational transitions 

in the ground electronic state because at changing the atomic mass of hydrogen and deuterium atoms in the water 

molecule their interaction will also change, although the electronic structure of the molecule and its ability to 

form H-bonds, however, remains the same; with the substitution with deuterium the vibrational-rotational 

transitions are changed, that is why it appears other local maximums in IR-spectra.  These results are shown in 

Figure 9. The result is reliable regarding the content of deuterium in natural waters from 0.015–0.03%.  

 
Figure 9: The typical IR-spectra of water with varying content of deuterium 

At further transition from H2O monomers to H4O2 dimer and H6O3 trimer absorption maximum of 

valent stretching vibrations of the O-H bond is shifted toward lower frequencies (v3 = 3490 cm-1 and v1 = 3280 

cm-1) (Eisenberg & Kauzmann, 1969) and the bending frequency increased (v2 = 1644 cm-1) because of hydrogen 

bonding. The increased strength of hydrogen bonding typically shifts the stretch vibration to lower frequencies 

(red-shift) with greatly increased intensity in the infrared due to the increased dipoles. In contrast, for the 

deformation vibrations of the H–O–H, it is observed a shift towards higher frequencies. Absorption bands at 

3546 and 3691 cm-1 were attributed to the stretching modes of the dimer [(H2O)2]. These frequencies are 

significantly lower than the valence modes of ν1 and ν3 vibrations of isolated H2O molecules at 3657 and 3756 

cm-1 respectively). The absorbtion band at 3250 cm-1 represents overtones of deformation vibrations. Among 

frequencies between 3250 and 3420 cm-1 is possible Fermi resonance (this resonance is a single substitution of 

intensity of one fluctuation by another fluctuation when they accidentally overlap each other). The absorption 

band at 1620 cm-1 is attributed to the deformation mode of the dimer. This frequency is slightly higher than the 

deformation mode of the isolated H2O molecule (1596 cm-1). A shift of the band of deformation vibration of 

water in the direction of high frequencies at the transition from a liquid to a solid state is attributed by the 

appearance of additional force, preventing O-H bond bending. Deformation absorption band in IR-spectrum of 

water has a frequency at 1645 cm-1 and a very weak temperature dependence. It changes little in the transition to 

the individual H2O molecule at a frequency of 1595 cm-1. This frequency is found to be sufficiently stable, while 

all other frequencies are greatly affected by temperature changes, the dissolution of the salts and phase 

transitions. It is believed that the persistence of deformation oscillations is stipulated by processes of 
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intermolecular interactions, e.g. by the change in bond angle as a result of interaction of H2O molecules with 

each other, as well as with cations and anions.  

Thus the study of the characteristics of the IR spectrum of water allows to answer the question not only 

on the physical parameters of the molecule and the covalent bonds at isotopic substitution with deuterium, but 

also to make a certain conclusion on associative environment in water. The latter fact is important in the study of 

structural and functional properties of water associates and its isotopomers at the isotopic substitution with 

deuterium. The substitution of H with D affects the stability and geometry of hydrogen bonds in an apparently 

rather complex way and may, through the changes in the hydrogen bond zero-point vibration energies, alter the 

conformational dynamics of hydrogen (deuterium)-bonded structures of macromolecules as DNA and proteins in 

D2O (Cleland, 1976). 

 

3.4. The Reactions of Condensation-Dehydration in Hot Water 

The prognosis was made to predict a possible transition from synthesis of small organic molecules under high 

temperatures to more complex organic molecules as proteins. There are reactions of condensation-dehydration of 

amino acids into separate blocks of peptides that occur under alkaline conditions, with pH = 9−11. The important 

factor in reaction of condensation of two amino acid molecules into the dipeptide is allocation of H2O molecule 

when a peptide chain is formed, as the reaction of polycondensation of amino acids is accompanied by 

dehydration, the H2O removal from reaction mixture speeds up the reaction rates. This testifies that formation of 

early organic forms may have occured nearby active volcanoes, because at early periods of geological history 

volcanic activity occurred more actively than during subsequent geological times. However, dehydratation 

accompanies not only amino acid polymerization, but also association of other small blocks into larger organic 

molecules, and also polymerization of nucleotides into nucleic acids. Such association is connected with the 

reaction of condensation, at which from one block a proton is removed, and from another – a hydroxyl group 

with the formation of H2O molecule. 

 
Figure 10: Reactions of condensation and dehydration in alkaline conditions with рН = 9–10 catalyzed by HCN 

and its derivatives, resulting in synthesis from separate molecules larger organic molecules of polymers. The top 

three equations: condensation and the subsequent polymerization of amino acids in proteins; carbohydrates – in 

polycarboxydrates and acids and ethers – into lipids. The bottom equation – condensation of adenine with ribose 

and Н3РО4, leading to formation of dinucleotide 
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In 1969 the possibility of existence of condensation-dehydration reactions under conditions of primary 

hydrosphere was proven by M. Calvin (Calvin, 1969). From most chemical substances hydrocyanic acid (HCN) 

and its derivatives – cyanoamid (CH2N2) and dicyanoamid (HN(CN)2) possess dehydration ability and the ability 

to catalyze the process of linkage of H2O from primary hydrosphere (Mathews & Moser, 1968). The presence of 

HCN in primary hydrosphere was proven by S. Miller's early experiments (Miller, 1953). Chemical reactions 

with HCN and its derivatives are complex with a chemical point of view; in the presence of HCN, CH2N2 and 

HN(CN)2 the condensation of separate blocks of amino acids accompanied by dehydration, can proceed at 

normal temperatures in strongly diluted H2O-solutions. These reactions show the results of synthesis from 

separate smaller molecules to larger organic molecules of polymers, e.g. proteins, polycarboxydrates, lipids, and 

nucleic asids (Fig. 10). Furthermore, polycondensation reactions catalyzed by HCN and its derivatives depend on 

acidity of water solutions in which they proceed (Abelson, 1966). In acid aqueous solutions with рН = 4–6 these 

reactions do not occur, whereas alkaline conditions with рН = 9–10 promote their course. There has not been 

unequivocal opinion, whether primary water was alkaline, but it is probable that such рН value possessed 

mineral waters adjoining with basalts, i.e. these reactions could occur at the contact of water with basalt rocks, 

that testifies our hypothesis. 

It should be noted, that geothermal sources might be used for synthesis of various organic molecules. 

Thus, amino acids were detected in solutions of formaldehyde CH2O with hydroxylamine NH2OH, 

formaldehyde with hydrazine (N2H4) in water solutions with НCN, after heating of a reactionary mixture to +95 
0С (Harada & Fox, 1964). In model experiments reaction products were polymerized into peptide chains that is 

the important stage towards inorganic synthesis of protein. In a reactionary mixture with a HCN–NH3 solution in 

water were formed purines and pyrimidines (Fig. 11). In other experiments amino acid mixtures were subjected 

to influence of temperatures from +60 0C up to +170 0С with formation of short protein-like molecules 

resembling early evolutionary forms of proteins subsequently designated as thermal proteinoids. They consisted 

of 18 amino acids usually occurring in protein hydrolyzates. The synthesized proteinoids are similar to natural 

proteins on a number of other important properties, e. g. on linkage by nucleobases and ability to cause the 

reactions similar to those catalyzed by enzymes in living organisms as decarboxylation, amination, deamination, 

and oxidoreduction. Proteinoids are capable to catalytically decompose glucose (Fox & Krampitz, 1964) and to 

have an effect similar to the action of α-melanocyte-stimulating hormone (Fox & Wang, 1968). The best results 

on polycondensation were achieved with the mixes of amino acids containing aspartic and glutamic acids, which 

are essential amino acids occurring in all modern living organisms.  
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a) 

 
 b) 

Figure 11: Prospective mechanisms of thermal (+95 0С) synthesis of purines in aqueous solutions: a)  – synthesis 

of hypoxanthine, adenine, guanine and xanthine from 4-aminoimidazole-5-carboxamidine, 4-aminoimidazole-5-

carboxamide, water, NH3, formamidine and urea; b) – synthesis of adenine from NH3 and HCN (total reaction: 

5HCN = adenine) 

Under certain conditions in hot mixture of proteinoids in water solutions are formed elementary 

structures like proteinoid microspheres with diameter 5–10 µm (Nakashima, 1987). Gas electric discharge with 

color coronal spectral analyses was applied in this type of experiment analogous to S. Miller’s experiments 

(Ignatov & Tsvetkova, 2011). In S. Miller’s experiments one of the basic conditions is electric gas discharge. 

The analogous experiment was conducted by the authors under laboratory conditions. The first living structures 

were most probably formed in warm and hot mineral water with more bicarbonate and metal ions (Na, Ca, Mg, 
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Zn, К, etc.). There occurred gas electric discharge (lightning) in the primordial atmosphere close to the water 

surface. In the course of experiment was used the similar gas coronal electric discharge on water drops placed on 

the electrode of the device for gas coronal electric discharge formation. Water drops were heated to the boiling 

point in an electric field of high frequency and voltage and an electric discharge was applied, analogous as in the 

primordial atmosphere. As a result, an organized structure with a size of ∼1.2–1.3 mm was formed in 

interelectrode space (Fig. 12). It was formed as a result of the accretion of elementary structures sized of ∼5–10 

µm in the biggest structure with size 1.2–1.4 mm and concentrated in a large structure where the basic electric 

voltage is applied.  

 
Figure 12: The organized structure in water sample subjected to the temperature +100 0C in the electric field of 

high voltage and frequency. The material of the electrode – hostafan; electric voltage – 15 kV, electric impulse 

duration – 10 µs; electric current frequency – 15 kHz. 

It should be noted that no structure was organized in a control sample of water placed on the electrode. 

Before its placement on the electrode, the water was heated to the boiling point and then cooled. The structure 

organization increased with the increase of the duration of the gas electric discharge. Moreover, in experiments 

was observed formation of small structures and their further “adjoining” to the larger structure. The large 

structure was preserved with the original size for some time in the absence of electric discharge. 

This experiment shows that the organization of structures in water under certain external conditions 

may take place. In natural conditions water is heated up to +100 0C by the magma. The structure formed from 

heated water was evidently a result of self-organization. Living organisms are complex self-organizing systems. 

Thermodynamically they belong to the open systems because they constantly exchange substances and energy 

with the environment. The changes in the open systems are relatively stable in time. The stable correlation 

between components in an open system is called a dissipative structure. According to I. Prigozhin, the formation 

of dissipative structures and the elaboration to living cells is related to changes in entropy (Nikolis & Prigozhin, 

1979). 

Taking into account these views it may be concluded that the initial stage of evolution, apparently, was 

connected with formation at high temperature of the mixtures of amino acids and nitrogenous substances – 

analogues of nucleic acids. Such synthesis is possible in aqueous solutions under thermal conditions in the 

presence of H3PO4. The next stage is the polycondensation of amino acids into thermal proteinoids at 

temperatures 65–95 0С.  After that stage in a mix of thermal proteinoids in hot water solutions were formed the 

membrane like structures.  

Our data are confirmed by experiments of T. Sugawara (Japan), who in 2011 created the membrane like 

proto cells from aqueous solution of organic molecules, DNA and synthetic enzymes under temperature close to 

water’s boiling point +95 0С (Sugawara, 2011). This data confirm the possibility that first organic forms of life 

originated in hot water. 

 

4. Conclusion  

The data obtained testify that origination of life and living matter depends on physical-chemical properties of 

water and external factors – temperatures, рН, electric discharges and isotopic composition. Hot mineral alkaline 
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water interacting with CaCO3 is most closed to these conditions. Next in line with regard to its quality is 

seawater. For chemical reaction of dehydration-condensation to occur in hot mineral water, water is required to 

be alkaline with pH range 9−11. In warm and hot mineral waters the local maximums in IR-spectra from 8 to 14 

µm were more expressed in comparison with the local maximums measured in the same water samples with 

lower temperature. The content of deuterium in hot mineral water may be increased due to the physical chemical 

processes of the deuterium accumulation as solar radiation, volcanic geothermal processes and electric 

discharges in the atmosphere. These natural processes could lead to the enrichment of the hydrosphere by 

deuterium in the form of HDO which evaporates more slowly than H2O, and condenses faster. If the primary 

hydrosphere really contained HDO, that this may explain the thermal stability of the first organic life forms in 

the hot mineral water, as the thermal stability of deuterated macromolecules like DNA and proteins in D2O 

solutions is somewhat higher than their protonated forms due to the isotopic effects of deuterium.  
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