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Abstract 
Molecular dynamics simulation was employed to deduce the dynamics property distribution function of Argon 

and Neon liquid. With the use of a Lennnard-Jones pair potential model, an inter-atomic interaction function was 

observed between pair of particles in a system of many particles, which indicates that the pair distribution 

function determines the structures of liquid Argon. This distribution effect regarding the liquid structure of 

Lennard-Jones potential was strongly affected such that its viscosity depends on density distribution of the model. 

The radial distribution function, g(r) agrees well with the experimental data used. Our results regarding Argon 

and Neon show that their signatures are quite different at each temperature, such that their corresponding 

viscosity is not consistent. Two sharps turning points are more prominent in Argon, one at temperature of 83.88 

Kelvin (K) with viscosity of -0.548 Pascal second (Pa-s) and the other at temperature of 215.64 K with viscosity 

of -0.228 Pa-s.  

In Argon and Neon liquid, temperature and density are inversely and directly proportional to diffusion 

coefficient, in that order. This characteristic suggests that the observed non linearity could result from the non 

uniform thermal expansion in liquid Argon and Neon, which are between the temperature range of 21.98 K and 

239.52 K.  

 

INTRODUCTION 
One of the methods of computer experimentation is simulation. This simulation is deterministic in nature such 

that it relies on a set of initial values or condition in the estimation of intended parameter in the computation 

process.  In classical many-body system, Frenkel and Smit (1996) reported that computation of transport 

properties strongly rely on simulation techniques. Several scientists like Verlet, 1962; Alder et al., 1970; 

Levesque et al., 1972 to mention a few have worked on the properties of matter using computational simulation. 

For example, Verlet (1962) used Leonard Jones model to calculate ties of liquid Argon interacting in pair-wise. 

Levesque (1972) studied 864 samples of Argon interacting in pair-wise; their potentials (��) were cut between 

the range of 2.5σ and 3.3σ. He then suggested that there is an overall agreement between the result obtained and 

the thermodynamic study of real Argon. He concluded and recommended that those results can be improved 

such that a two-body potential could fit into the experimental data with larger degree of interaction. Alder et al., 

1970 used molecular dynamic (MD) model to investigate transparent coefficient for a hard sphere fluid. They 

focus their interest on the compatibility of diffusion coefficient (D), shear and thermal conductivity, which is 

varying. Using classical fluid, Levesque et al., 1972 investigated time auto correction function of Lennard-Jones 

(LJ) potential model near its triple point. They suggested that the existence of a tail extending at large times in 

the Kubo function defines the shear viscosity. 

The MD model used by Alder et al., 1970 is one of the promising models that have revealed stronger correlation 

coefficients with the real experiment. As a result of this characteristic, it stands as one of the reliable numerical 

methods that could be used to investigate various properties of matter. One of the main reasons is that in many 

test-runs, its results are very similar to real experiment, that is, a sample of material that one intends to study. 

This can be done by connecting it to a measuring instrument, then measure the property of interest during a 

certain time interval, while a set of interacting atoms is followed by integrating their equations. Following the 

law of classical mechanics in MD simulation, where Newton’s law of motion is  

 
F  = m                                                                                 (1)        i i ia

 
For each atom i, it is assumed that all atoms have equal mass in the system constituted by N atoms. Where m is 

the atomic mass, such that; 

ai = d
2
r/dt

2
        (2) 

and Fi is the force acting upon as a result of the interaction with other atoms.  

Similarly, in a MD simulation, a model system that consist a number of particles (N) are solved for the Newton's 

equation until properties of the system are no longer changing with time, then, the system are equated. After 

equating the system, the actual measurement will be initiated. Therefore, observables are express as a function of 

positions and particles in the system measuring its quantity in MD simulation. 

It is clearer from the aforementioned investigations that no work has been done on liquid Neon. In this work, 
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structural and dynamical properties of liquid Argon and Neon, a group 8 element, will be investigated using MD 

simulation. The structural property is the radial distribution function g(r) and the dynamical properties are the 

normal temperature (T), reduced temperature (�∗), reduced density ( ∗), diffusion coefficient (D), viscosity (ɳ) 

and mean-square displacement (��	
). These systems; Argon and Neon were chosen based on the availability of 

parameters that could enter the potential function and vaporization energies of the system. The g(r) is as well 

called the pair distributional/correlation function in the case of pair interactions. This g(r) is the most notable 

property among these aforementioned properties; plays significant role in determinations of theories of liquid 

state and effectively characterizes the local structures of fluid.  

 

METHODOLOGY 

It is easier to measure the radial distribution function g(r) in a simulation, because, it is the ratio between the 

average number of density ρ(r) at a distance (r) from any given atom. In such scenario, it is assumed that all 

atoms are identical and the ρ(r) at r from an atom in an ideal gas are the same over all densities. Structural 

calculations are obtained through the pair distribution function given by Frenkel and Smit (1996) as; 

 

2

V N
g(r) =  

N 4

∆ 
 ∆ r rπ

     (3) 

 

This is an integer over the simulation time steps at equilibrium. The volume of the box with N particles is V, 

while ∆N represent particles in a shell within the region r- (∆r/2) and r + (∆r/2) r, where ∆r is the shell thickness, 

that is, ∆r « r. Since r and ∆r are measure of position or distance, they are in units of length. The g(r) function is a 

time independent static equilibrium system that measures the static structure of a matter and describes spatial 

organization of molecules about a central molecule (Haile, 1992). The g(r) function plays a key role in the pair 

distribution function of dense fluids and provides a signature for identifying the lattice structure of crystalline 

solids. The probability to find a pair, which is a distance r apart, relative to what is expected for a uniform 

random distribution at the same density is define by Haile (1992) as; 

 

( )ij

1 1

1
g(r) = r - r

N

                     j i

= =

 
 
 

≠

∑∑
n n

i j

ρ

    (4) 

 

The angular bracket is the time average, ρ is the density number, N is the total number of particles and rij  is the 

vector between centers of atoms i and j. The average number of atoms located between �� and �� from a given 

atom is given by the expression; 

 
2( ) 4 r∫r g r drρ π

     (5)                                                                                                                          

 

This allows defining the coordination number when disorder occurs.  

Diffusion coefficient (D) and viscosity (ɳ) are some of the dynamical properties that will be consider in this 

paper. Diffusion is a transport process or dynamical phenomenon that results from molecular motion of particles 

in fluids. The Fick's law is a microscopic law, which describes D and states that the flux (J) of the diffusing 

species is directly proportional to the negative gradient () in the concentration (C) of species. That is, 

 

J = -D C∇        (6) 

 

Where, D is the constant of proportionality. 

Unlike D, ɳ was obtained through a well-known Kubo-like formula of  

 

0 = ( )∞∫ t dtη η
        (7) 

with 



Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 

Vol.4, No.1, 2014 

 

22 

 (0) T  (t)
(t) =  

3

 
 
 

∑
XY XY

GB

T

K T N

ρ
η

    (8) 

Where, T
XY

 is the shear stress, the sum is made on the circular permutation of indices and the bracket implies that 

the average is divided over the (initial) time. 

These properties are considered in an ensemble, such that the number of particles N, the Volume V and the total 

energy E of the system are constants. These indicate that a micro-canonical ensemble, which is an isolated 

system, does not interact with the rest of the universe or its environment. Hence, it is characterized by the state N, 

V and E. 

Lennard-Jone (LJ) potential model is employed to compute this isolated system. One of the reasons is that it 

describes the inter-atomic functions between pair of particles in a system of many particles. Given by the 

expression 

 

12 6

V(r) = N(N-1) 

4   -  
    ∑∑ ∈     
     r r

σ σ

   (9) 

The term ��
��

��
is a repulsive term that accounts for the columbic or screening effect of atoms pair. This repulsive 

term effect creates a short range order, which is a characteristic of the liquid state. The range of this repulsion is 

roughly equal to the nearest neighbor distance. The term ��
��

�
is an attractive term, which arises from Van der 

waals forces. These attractive forces bind the atoms together at long range and vary much more smoothly with 

the distance between particles. It also plays a minor role in determining the structure of the liquid (Verlet, 1962). 

Before triggering the simulation, the particles positions and velocities are initialized. This initialization of 

particles positions and velocities must be strictly compatible with intending structure the investigator is aiming to 

simulate (Frenkel and Smit, 1996). For example, the particles should not be positioned in such a way that results 

to overlapping of atomic or molecular cores. Recall that in thermal equilibrium,  

( ) BK T
V  = 

m
α

       (10) 

Where 
( )Vα  is the component α  of the velocity of a given particle, we define as instantaneous temperature at 

time t 
T(t)

 through this relation 

( )2N

B

1

mV t
K T(t)  

Nf=

≅ ∑ i

i

α

     (11) 

m is brownian particle mass 

N is number of particles 

KB  is Boltztmann constant 

 

During equilibrium, the temperature will adjust itself because, it is not critical. 

The most time consuming part of MD simulation the calculation of force acting on every particle. Considering 

LJ potential with pair wise additive interaction with contribution of particle i due to its neighbor, interaction only 

between a particle and the nearest image of another particle as well, then, for a system of N particles, pair 

distance 
�(���)

�  is evaluate.   

If given pair of particles are closer to interact, forces of particles and the contribution of the potential energy are 

easier to calculate. For example, if one wants to x-component of this force,  

(r)
Fx(r) = -

∂
∂x

φ

 

( )

 = -

 ∂ 
 

∂

x
r

r

x

φ

      (12) 
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then for a LJ system in a reduced unit 

2

12 6

48
Fx(r) =  

1 0.51
 

r r

 −  

X

r

     (13) 

The Verlet and predictor-corrector algorithms are most popularly used MD simulations. To derive the algorithm, 

we start with the Taylor expansion of the coordinate of a particle around time, t (Furio, 1997), where  

2 3 41 1
r (t + t) = r(t) + v(t) t + ( ) t  + ( ) t  + 0( t )

2 6
∆ ∆ ∆ ∆ ∆a t b t

 (14) 

Where t is the force divided by mass and the force is a function of r (t) position      

[ ]1
( )  - ( )= ∇a t V r t

m       (15) 
3

3

d ( )
and b is the 3  derivative of the position r(t),  wrt t

d

rd r t

t  

2 3 41 1
r (t + t) = r(t) + v(t) t + ( ) t  + ( ) t  + 0( t )

2 6
∆ ∆ ∆ ∆ ∆a t b t

 (16) 

adding these two expressions we have,
 

2 4r (t - t) = 2r(t) - r(t - t) + ( ) t  + 0( t )∆ ∆ ∆ ∆a t
   (17) 

 

The truncating error associated with equations (17) is of the order of ∆��, however, the third derivative cancels 

out and the fourth derivative is zero. One of the main disadvantages of this algorithm (equation 17) is that, it 

cannot be generated directly. Then, velocities can be computed from positions by 

 

                             �(�) = (� + ∆�) − �(��∆�)
�∆�     (18) 

 

Development of velocity Verlet algorithm (VVA) was able to overcome this truncating error associated with 

equations 17, which is of the order of ∆��. The estimation of positions, velocities and accelerations using VVA at 

time � + ∆� are obtained from the same quantity at time t as follow; 

 

 

21
r (t + t) = r(t) + r(t) t + ( ) t  

2
∆ ∆ ∆a t

    (19) 

1
v (t + t) = v(t) t + ( ) t

2
∆ ∆ ∆a t

    (20) 

[ ]1
(t + t)  - (t + t)  ∆ = ∇ ∆a r

m      (21) 

t 1
v (t + t) = v t +  + (t + t) t

2 2

∆ ∆ ∆ ∆ 
 

a

   (22) 

 

On the predictor corrector part of VVA, we adopt compromise between accuracy and stability. The idea is to use 

the information about the first n derivatives at time t to arrive at a prediction for a position and its first derivative 

at time � + ∆�. Therefore, computation of the force and acceleration at the predicted position could be easier to 

achieve. If there is discrepancy between predicted and observed accelerations, our estimates of positions and the 

remaining (n-1) derivatives could be improve. For example, considering Taylor expansion of the coordinate of a 

given particle at time t + ∆t as follow; 

 
2 2 3 3

2 3

t t
r (t + t) = r(t) + t  +  +  + .......  

2! 3!

∆ ∆
∆ ∆

r r r

t t t

δ δ δ
δ δ δ  (23) 
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0X  (t)  r (t)≅
         (24) 

1X  (t)  t≅ ∆
r

t

δ
δ         (25) 
2 2

2 2

t
X  (t)  

2!

∆
≅

r

t

δ
δ         (26) 

3 3

3 3

t
X  (t)  

3!

∆
≅

r

t

δ
δ         (27) 

 

 

We can write the following predictions for X0 (t + ∆t) through to X3(t+∆t)  

0 0 1 2 3X  (t + t) = X  (t) + X  (t) + X  (t) + X  (t)∆
    (28) 

1 1 2 3X  (t + t) =               X  (t) + X  (t) + X  (t)∆
    (29) 

2 2 3X  (t + t) =                             X  (t) + X  (t)∆
    (30) 

3 3X  (t + t) =                                           X  (t)∆
    (31) 

Since we have X0 (t), we can compute forces at predicted positions and as well compute the corrected values for 

X2 (t +∆t). To do that, denote the difference between 

2 2 2X  and X  by X∆correct predicted

2 2 2X  = X  - X∆ correct predicted

0 3then, we estimate corrected values of X  through to X  as follows;

2X  =  X  + C X∆corrected predicted

n n n        (32)       Where, the �  

are constants that are fixed for a given order of algorithm. All corrections are proportional to signal error signal 

such that values of Cn yield optimal compromise between the stability and accuracy of the algorithm. In a MD 

simulation, the D can as well be determined from the mean square displacement (MSD). The equation 

( )2

2D = lim  
→∞

 ∂  
∂t

x t

t   
shows that D is the gradient of MSD. In this case, only one Cartesian of the mean square displacement is 

considered. This equation is valued within the limit of � → ∞. In practice, it verification have to be in-place to 

confirmed that the simulation is adequate. The overall result is that the MSD is directly proportional to t and not 

another power of t. Therefore, normal temperature (T), reduced temperature(�∗), reduced density ( ∗), diffusion 

coefficient (D), viscosity (ɳ) and mean square displacement (�"#$) are simulated from MD model. 

 

RESULTS 

Table 1: Calculated structural properties from diffusion coefficient (D) of atom in liquid Argon 

System        Τ        
∗Τ          

*ρ  
       D η

 
r
max 

      
 

Argon 71.88 0.599 0.950 0.4490 4.656 0.9848 

Argon 77.88 0.649 0.900 0.3868 1.965 1.0026 

Argon 83.88 0.699 0.850 0.3255 -0.548 1.0219 

Argon 95.88 0.799 0.600 0.0893 -0.088 1.0908 

Argon 107.76 0.898 0.550 0.0957 0.006 1.1034 

Argon 119.76 0.998 0.550 0.1052 0.090 1.0838 

Argon 179.64 1.497 0.450 0.2440 0.202 1.0962 

Argon 215.64 1.797 0.400 0.3796 -0.228 1.0966 

Argon 239.52 1.996 0.350 0.5573 0.359 1.1011 

 

Where T is the normal temperature, �∗ is the reduced temperature,   ∗ is the reduced density, D is the diffusion 

coefficient, ɳ viscosity and ��	
 is the mean square displacement. 
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Table 2: Calculated structural properties from diffusion coefficient (D) of atom in liquid Neon 

System        Τ        
∗Τ          

*ρ  
       D η

 
r
max 

      
 

Neon 21.98 0.599 0.950 0.4490 4.656 0.9848 

Neon 23.82 0.649 0.900 0.3868 1.965 1.0026 

Neon 25.65 0.699 0.850 0.3255 -0.548 1.0219 

Neon 29.32 0.799 0.600 0.0893 -0.088 1.0908 

Neon 32.96 0.898 0.550 0.0957 0.006 1.1034 

Neon 36.63 0.998 0.550 0.1052 0.090 1.0838 

Neon 54.94 1.497 0.450 0.2440 0.202 1.0962 

Neon 65.95 1.797 0.400 0.3796 -0.228 1.0966 

Neon 73.25 1.996 0.350 0.5573 0.359 1.1011 

 

 

 
Figure 1: Variability of viscosity (in Pa-s) with temperature in liquid Argon. 
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Figure 2: Variability of viscosity (Pa-s) with temperature in liquid Neon. 

 

 

 

Figure 3: The pair distribution function, g(r) of Argon at reduced temperatures (K) and densities (%& '()⁄ . 
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Figure 4: The pair distribution function, g(r) of Neon at reduced temperatures (K) and densities (%& '()⁄ . 

 

 

 
  Figure 5: Variability of the mean square displacement (��	
) of liquid Argon. 
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          Figure 6: Variability of the mean square displacement (��	
) of liquid Neon.  

 

DISCUSSIONS OF RESULTS 
Results shown in table 1 and 2 were obtained using molecular dynamic (MD) model described under 

methodology. Apart from the pair distribution functions, g(r), structural properties of liquid Argon and Neon; 

viscosity (ɳ) with other input parameters like normal temperature (T), reduced temperature (�∗) , reduced 

density ( ∗), and mean square displacement (�"#$) that are deduced from diffusion coefficient (D) are depicted 

with table 1 and 2, respectively.  

From Figure 1, the shear ɳ of Argon variability with temperature is not linear. The shear ɳ of liquid Argon was 

highest below 80 K and has a value of ~ 4 Pa-s, closer to 80 K, liquid Argon shear ɳ value reduces sharply and 

faster such that it get to below zero Pa-s around 80 K. Closer to 90 K, it increases slightly to around 0.1 Pa-s and 

fluctuate between 0.1 Pa-s and a little higher (0.15 Pa-s) around 100 K and 180 K. Immediately after 180 K, 

liquid Argon shear ɳ reduces slightly and gradual to around 220 K and a value of ~ -0.2 Pa-s and later increases 

sharply to ~ 0.5 Pa-s at 240 K. Although, similar signature closer to that of figure 1 was observed in figure 2. 

However, in liquid Neon, reduced temperature and increased shear ɳ were observed compare to shear ɳ of liquid 

Argon. Around 23 K, highest shear ɳ of ~ 4.8 Pa-s was observed in liquid Neon, which immediately decreases 

sharply to ~ -0.5 Pa-s around 25 K. Shear ɳ of liquid Neon was observed increasing gradually immediately after 

25 K and has a value of ~ 0.1 Pa-s at 30 K. This value (~ 0.1 Pa-s) was observed increasing slightly after 30 K 

and get to a maximum around 55 K with a value of ~ 0.5 Pa-s. Immediately after 55 K, sharp decrease, which is 

slighter, was observed and gets to a minimum value of ~ -0.2 Pa-s around 66 K. Immediately after 66 K, a sharp 

increase that gets beyond 70 K was observed. This sharp increment that was observed before 70 K and beyond 

indicates that the variability of shear ɳ of liquid Argon is a continuation of liquid Neon with respect to 

temperature. Therefore, liquid Neon shear ɳ could extinct at temperature above 70 K and above 70 K, liquid 

Argon shear ɳ thrives. From both figures, it is clearer that the higher the temperature, the lower the shear ɳ. 

From figures 3 and 4, the variability of g(r) at reduced temperatures and densities of liquid Argon and Neon were 

shown, in that order. Interestingly, it was observed that this variability from both figures is the same in value. 

That is, they have reduced temperature (�∗) in the range of 0.559 K to 1.996 K and reduced density ( ∗) in the 

range of 0.950 %& '(⁄  to 0.350  %& '(⁄ . This is the reason for the same variability shown in figure 3 and 4, 

having the same peaks and position, which indicates that the structure of liquid Argon and Neon does not change 

with reduced  �∗ and  ∗. At �∗ of 0.799 K to 1.497 K and  ∗ of 0.450 Pa-s to 0.600 Pa-s of liquid Argon Neon, the 

plots are similar such that there is an abrupt change in the structure of real Argon and Neon system. Also, at  �∗ 

between 1.787 K and 1.996 K and at  ∗ between 0.350 K and 0.400 K in liquid Argon and Neon, they have 

similar structure. This range indicates that the structure is more of gases than liquid because structures of gases 

do not oscillate, that is, liquid Argon and Neon are closer to gaseous state. Irrespective of these aforementioned 
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characteristics, it was observed that as the �∗ increased, the  ∗ was observed decreasing for liquid Argon and 

Neon. This implies that the coordination number is lower in the liquid system.  

The mean square displacement ( ��	
)  variability was depicted in figures 5 and 6 for Argon and Neon, 

respectively. The values from the MD simulation that is the same reproduced the same polts for figures 5 and 6. 

From both figures (5 and 6), the ��	
 variability was observed increasing linearly with respect to  �∗ and   ∗ over 

time step. The  �∗ was observed to increase from 0.559 K to 1.996 K and the  ∗ was observed to reduce from 

0.950  %& '(⁄  to 0.350  %& '(⁄ , in that order. This implies that as �∗ is increasing,  ∗ is reducing, which result 

to the linear variability observed in both figures. 

 

CONCLUSIONS 
We have investigated the dependence of the structural properties and diffusion coefficient above the melting 

point of liquid Argon and Neon on reduced temperature and density. Our deductions are as follows: having 

compared our results on structure with that of experiments, we observed that the results agree quite well and it is 

within the limit of experimental errors. Hence we can easily infer that, molecular dynamics simulation is very 

useful and reliable tool for carrying out structural studies of group 8 elements. We also inferred that, both 

methods of simulation, i.e. MD and Monte-Carlo methods could be used as scientific tools in Physics in order to 

increase our understanding as well as give insight into the Physics governing systems interaction and properties. 

Other potential models should also be encouraged to study this kind of work apart from Lennard-Jones fluids. 

The effects of densities and temperatures on the structure, diffusion coefficient, and viscosity of systems 

modeled via the Lennard-Jones potential have been investigated; we therefore conclude that at temperatures 

above melting, the structure of Lennard-Jones liquids is affected by the temperature. Before we take reading in 

any simulation, we have to wait for a very long time. This is required to allow a system to attain equilibrium so 

that all readings taken are at equilibrium condition. The readings that are taken at non equilibrium cannot 

represent actual static structure and it would be wrong to use such data to calculate other properties. As a test, 

the structural and dynamical properties of Argon at various temperatures at reduced units were computed and 

compared with that of Daan Frenkel and B. Smit [4]. The agreement of our results and that of Frenkel and Smit 

is an indication that our chosen choice of simulation program is accurate; and that one should be able to extend 

the program to study other systems, which we were able to achieve, provided that the parameters of our pair 

potential were chosen from the literature. The parameters were calculated based on structures and energies of
;
 

the systems.  
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