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Abstract  

Lexicographic Linear Goal programming within a pre-emptive priority structure has been one of the most widely 

used techniques considered in solving multiple objective problems. In the past several years, the modified 

simplex algorithm has been shown to be widely used and very accurate in computational formulation. Orumie 

and Ebong recently developed a generalized linear goal programming algorithm that is efficient. A new approach 

for solving lexicographic linear Goal programming problem is developed, together with an illustrative example. 

The method is efficient in reaching solution. 

Keywords: Lexicographic Goal programming, multi objective, simplex method. 

 

1.INTRODUCTION 
Multiple Objective optimizations technique is a type of optimization that handles problems with a set of 

objectives to be maximized or minimized. This problem has at least two conflicting criteria/objectives. They 

cannot reach their optimal values simultaneously or satisfaction of one will result in damaging or degrading the 

full satisfaction of the other(s). There is no single optimal solution in this type of optimization; rather an 

interaction among different objectives gives rise to a set of compromised solutions, largely known as the trade-

off or non dominated or non inferior or Pareto-optimal solutions. Multiple Objective optimization consists of 

different problem situations, such as multiple objective linear programming (MOLP), Multiple Objective Integer 

Linear Programming (MOILP), and Nonlinear Multiple Objective Optimization (NMOO).  

Wang et.al (1980) and Evans (1984) categorised multiple objective optimization into three as shown in 

Aouni and Kettani (2001). The categories are as follows; 

• A priori techniques in which all decision maker preferences are specified before the solution 

process. 

• Interactive techniques in which the decision maker preferences are elicited during the solution 

technique, mainly in response to their opinion of solutions generated to that point. 

• A posteriori techniques where the solution process takes place first and the decision maker 

preferences are then elicited from the generated set of solution. 

Goal programming is one of the posteriori techniques, and most commonly method for solving multiple 

objective decision problems. (See Sunar and Kahraman (2001)). Goal programming popularity from amongst 

the distance-based MCDM techniques as described by Tamize and Jones (2010) demonstrates its continuous 

growth in recent years as represented below; 

 

Goal Programming as a Multi-criteria Decision Analysis Tool 

 
Source: Tamiz M, &D. F Jones (2010) Practical Goal Programming. International Series in Operations Research 

& Management Science. Springer New York http://www.springer.com/series/6161. 
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Goal programming is used in optimization of multiple objective goals by minimizing the deviation for each of 

the objectives from the desired target. In fact the basic concept of goal programming is whether goals are 

attainable or not, an objective may be stated in which optimization gives a result which come as close as possible 

to the desired goals.  Schniederjans and Kwaks (1982) referred to the most commonly applied type of goal 

programming as "pre-emptive weighted priority goal programming" and a generalized model for this type of 

programming is as follows: 

 minimize: 

 Z = ∑ +−
+

m

i

iiii ddpw )(                                                                                                  (1.1) 
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+−
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In many situations, however, a decision maker may rank his or her goals from the most important (goal 

1) to least important (goal m).  This is called Preemptive goal programming and its procedure starts by 

concentrating on meeting the most important goal as closely as possible, before proceeding to the next higher 

goal, and so on to the least goal i.e. the objective functions are prioritized such that attainment of first goal is far 

more important than attainment of second goal which is far more important than attainment of third goal, etc, 

such that lower order goals are only achieved as long as they do not degrade the solution attained by higher 

priority goal. When this is the case, pre emptive goal programming may prove to be a useful tool. The objective 

function coefficient for the variable representing goal i will be pi. In problem with more than one goal, the 

decision maker must rank the goals in order of importance.  

However, a major limitation in applying GP as recorded in Schniederjans, M. J. & N. K. Kwak (1982) 

has been the lack of an algorithm capable of reaching optimum solution in a reasonable time. Hwang and Yoo 

(1981) cited a number of limitations found in existing algorithms. The purpose of this research is to present an 

efficient method for solving lexicographic linear goal programming problems. 

The paper is organized as follows: Introduction to Preemptive Linear Goal Programming is provided in 

section two. The new algorithm for lexicographic goal programming and the solution description are the focus 

of Section three and four respectively, whereas the summary and conclusion will be presented in section five and 

six respectively.     

 

2.LEXICOGRAPHIC (PREEMPTIVE) LINEAR GOAL PROGRAMMING (LLGP) 

The basic purpose of LLGP is to simultaneously satisfy several goals relevant to the decision-making situation. 

To this end, a set of attributes to be considered in the problem situation is established. Then, for each attribute, a 

target value (i.e., appraisal level) is determined. Next, the deviation variables are introduced. These deviation 

variables may be negative or positive (represented by di
-

 
and di

+
 respectively). The negative deviation variable, 

di
-

 
, represents the quantification of the under-achievement of the ith goal. Similarly, di

+  

 
represents the 

quantification of the over-achievement of the ith goal. Finally for each attribute, the desire to overachieve 

(minimize di
-

 
) or underachieve (minimize di

+
 ), or satisfy the target value exactly (minimize di

-

 
+ di

+
 ) is 

articulated. And finally, the deviational variables prioritized in order of importance. 

The general algebraic representation of lexicographic linear goal programming is given as 

( ) ( ) ( )+−+−+−
= kkk ddpddpddpzlexi ,...,,,,,(min 222111                                           (2.1) 
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The model has k priorities, m objectives and n decision variables. pi is the ordered i
th

 priority levels of 

the deviational variables in the achievement function. The priority structure for the model is established by 

assigning each goal or a set of goals to a priority level, thereby ranking the goals lexicographically in order of 

importance to the decision maker. This is known as lexicographic GP (LGP), as introduced by Ijiri (1965), and 

developed by Lee (1972) , and Ignizio (1976). This was  modified by [11], [12], [13], [14], and [15].Priorities do 

not take numerical value, but simply a suitable way of indicating that one goal is more important than another. 
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3.THE NEW ALGORITHM FOR LEXICOGRAPHIC GOAL PROGRAMMING (LGP) 

The procedure utilizes Orumie and Ebong (2011) initial table with modifications as  shown below, together with 

the inclusion of hard constraints. The procedure considers goal constraints as both the objective function and 

constraints. The objective function becomes the prioritized deviational variables and solves sequentially starting 

from the highest priority level to the lowest. It starts by not including the deviational variable columns that did 

not appear in the basis on the table, but developed when necessary since di
+
= - di

-
. 

 

TABLE 1.1 INNITIAL TABLE OF THE NEW ALGORITM 

Variable in basis with pi  .  CB    X1          X2     …    Xn   S  d1
(v)

    d2
(v)

  .  .  .dt
(v)

 Solution value  bi. R.H.S 

 a11        a12.       …       a1n      s1   c11
(v)

    c11
(v) 

.  .  . c1t
(v)

 b1 

  a21     a22        …       a2n    s2  c21
(v)

     c22
(v)

 .  . .c2t
(v)

 b2 

 am1     am2    …           amn    sm     cm1
(v)

  cm2
(v)

. . . cmt
(v)

 bm 

 

Consider the Preemptive Linear Goal programming model. The formulation for n variables, m goal 

constraints, t deviational variables in z and L preemptive priority factors is defined below. 
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kk ii dd  are set of deviational variables in z with the priorities attached to them.
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Let pk be the k
th

 priority level, then; the algorithm; 

Step 1. Initialization: 

Set  k ←1  i.e set the first priority k=1 

Step 2. Feasibility:  

If ib  = 0 for i=1,2,.  .., m,  go to Step 8.  i.e if all the rhs=0 {solution optimal} 

Set ib ←
ib for I =1,2,..., m.   i.e take absolute value of the rhs {ensure feasibility} 

Step  3. Optimality test: 

If  hjg ≤ 0 for all j columnpivot≠ , kih ∈ go to Step 7.           

{all coefficients of  priority row h non positive ,so  is satisfied}. 

Step 4. Entering variable: 

Entering variable is the variable with highest positive coefficient in the row },2,1{,. Lhgh ∈  

for the
+−

tt iik ddp ,( ) rows of the objective function which does not violate priority condition. 

i.e if },2,1{,. Lhgh ∈  is the highest coefficient, but has been previously satisfied or more 

important than the leaving variable under consideration, then consider the next higher value on 

the same row, otherwise go to step 7. (The priority attached to the entering variable should be 

placed alongside with it into the basis).   

 In case of ties {
shjhj gg .,.,.

1
}, then the entering variable is the variable for which 
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Step 5. Leaving variable:  

If 0y  is the column corresponding to the entering variable in Step 4, then the leaving variable 

is the basic variable with minimum 








=> mig
g

b
y

y
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0

0

.
.

{
0. yg  is the pivot 

column}. 

In case of ties, the variable with the smallest right hand side leaves the basis. 

Step 6. Interchange basic variable and non basic variable: 

Perform Gauss Jordan row operations to update the table. If  
 
is still in the basis (CB), go to 

Step 3.  

Step 7. Increment process: 

Set k   ←k +1.If k ≤ L, go to Step 3. Satisfied priority will not reenter for the lesser one to 

leave, instead variable with the next higher coefficient enters the basis. 

Step 8. Solution is optimal when:  

i.) The coefficient of the priority rows are all negative or zero  

ii.) The right hand sides of the priority rows are all zero  

iii.) The priority rows are satisfied.  

The optimal solution is the value  ),( −+

iik ddp  in the objective function as appeared in the last iteration table. 

i.e. The value of the achievement function becomes a vector of priority levels in the optimal values in the final 

tableau.   

Note : Just as in the method of  artificial variables, a variable of higher or equal priority that has been 

satisfied should not be allowed to re-enter the table. In this case the next higher coefficient of 

hjg will be considered.  

 

4.SOLUTION OF ILLUSTRATIVE EXAMPLE 

Given an example i below, the solution procedure is thus; 

(i) 
++−−

+++= 44342211min dpdPdPdpz  
 

                 s.t      

                        7
−

++ 121 6 dxx - 
+

1d =30 

               2x1 +3x2+ 
−

2d  –
+
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               6x1 + 5x2 +d3
—

d3
+
 =30 

                 x2 +d4
-
 
 —
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+
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0,0,,0 =•≥≥

−+−+

iiiii ddddx   

 

TABLE 1: INNITIAL TABLE FOR PROBLEM (I) 

 

 

 

 

 

 

 

 

 

 

x1 enter 

d1
--
 leaves 

 

The above table (1) is the initial table of problem (i). Column one represents the variables in z with priorities 

assigned to each of them which forms the bases. Columns two and three represent the coefficients of the decision 

 x1 x2 d1
- 

d2
-
 d4

- 
d3

+ 
RHS 

p
1 d1

-
 7 

 
1 0 0 0 30 

 
 p

2d2
-
 2 

 
0 1 0 0 12 

 
 p

4d3
+ 

6 
 

0 0 0 -1 30 

 
 p

3d4
- 

0 
 

0 0 1 0 7 
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variables (aij) in the goal constraints equation. Columns four to seven represent coefficient of deviational 

variables (cit
v
) in the goal constraint equations that appeared in the achievement function. Column eight is the 

right hand side values of the constraints equations. Applying the algorithm, 

 

step 1.  set k=1. 

Step 2.  ∃  ib  = 0 for i=1,2,.  .   ., 4,  {So solution feasible.} 

Step 3.  ∃ jg1 >0  for some j.     {So solution not optimal}. Since there is positive 

 coefficient in the priority row, then the solution is not optimal. 

Step4.   Max {gi}=max{7, 6, 1, 0,0,0,}=7 at g11 i.e. x1=7 enters the bases since 

 it is the highest in the row. 

step 5  Min { }0: 11
>ig

b
g

i

i = min{30/7, 6, 5,}= 30/7 at [ ]
11

1

g

b
. So d1

-
 leaves the 

 bases. i.e the minimum ratio of the right hand side to the entrying column. 

Step6.  Perform the normal gauss Jordan’s simplex operation to update the new  

Tableau (see Tableau 2) and check if 1p is still in the basis (CB) to test for  

optimality. 

 

TABLE 2: 1
st
 ITERATION FOR PROBLEM(i) 

 

 

 

 

 

 

x2  enter 

d2
- 
 leaves 

Table (2), shows that 1p  is satisfied since it is no longer in the bases. 

Step7.   Set k=2. Since 2 < L=4, go to step 3.  

Step3.  ∃ jg2 >0  for some j. i.e 2
nd

 priority row.    {So solution not optimal} 

Step4.   }max{ 2 jg =max {0,9/7,-2/7,1,0,0}=9/7 at g22. So, x2
 
enters the basis. 

Step5. Min 0: 2
2

>ig

b
g

i

i =min {5, 8/3,7}= 8/3 at 
22

2

g

b
.  d2

-
 leave since it has the smallest minimum 

ratio.  

Step 6.  Perform the same operation to update the new tableau Table 3 and check if 2p is still in the 

basis (CB) to test for optimality. 

 

Table 3: 2
ND 

ITERATION FOR PROBLEM (i) 

 

 

 

 

 

 

 

d2
+
 enter 

x1 Leaves 

Table (3), shows that 2p  is satisfied since it is no longer in the bases. 

Step7.   Set k=3. Since 3 < L=4, go to step 3.  

Step3.  ∃ jg 4  
>0  for some j. i.e 3

th
 priority row.    {So solution not optimal} 

Step4.   }{max 4 jg =max {0,0, 2/9,-7/9,1,0}=
9

7−
 at g44. So, d2

+ 
enters the basis. 

Step5. Min
4i

i

g

b
: 04 >ig =min {3, 39/7}= 3 at 

14

1

g

b
.  So x1 leave since it has the smallest minimum 

ratio.  

 x1 x2 d1
- 

d2
-
 d4

- 
d3

+ 
RHS 

x1 1 6/7 1/7 0 0 0 30/7 

 
 p

2d2
-
 0 9/7 -2/7 1 0 0 24/7 

 
 p

4d3
- 

0 -1/7 -6/7 0 0 -1 30/7 

 
 p

3d4
- 

0 1 0 0 1 0 7 

 x1 x2 d1
- 

d2
-
 d4

- 
d3

+ 
RHS 

x1 1 0 1/3 -2/3 0 0 2 

 
 
 x2 0 1 -2/9 7/9 0 0 8/3 

 
 p

4d3
+ 

0 0 -8/9 1/9 0 -1 14/3 

 
 p

3d4
- 

0 0 2/9 -7/9 1 0 13/3 
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Step 6.  Perform the same operation to update the new tableau Table 4 and check if 3p is still in the 

basis (CB) to test for optimality. 

Table 4: 3
RD

 ITERATION FOR PROBLEM (i) 

 

d1
+
 enter 

 d3
+
  leaves 

 

Table (4), shows that 3p  is not 

satisfied since it is still in the bases. 

Step3.  ∃ jg 4  
>0  for some j. i.e 3

th
 priority row.    {So solution not optimal} 

Step4.   }{max 4 jg =max {-7/6,0, 1/6, 0, 1,0, 0}=1/6 at g43. But , d1
-  

cannot re-enter 

  for lower priority to leave the basis. Therefore p3 cannot be satisfied further, 

 so go to step 7. 

Step7.   Set k=4 and go to step 3.  

Step3.  ∃ jg3  
>0  for some j. i.e 4

th
 priority row.    {So solution not optimal} 

Step4.  }{max 3 jg =max {1/6,0, -5/6,0,0, 0,-1}=5/6 at  at 33g . So, d1
+ 

enters the basis. 

Step5. Min
3i

i

g

b
: 0: 3 >ig =min {6}= 6 at 

33

3

g

b
.  So d3

+
 leave..  

Step 6.  Perform the same operation to update the new tableau Table 5 and check if 4p is still in the 

basis (CB) to test for optimality. 

 

Table 5: 4
TH

 ITERATION FOR PROBLEM(i) 

 

 

 

 

 

 

 

 

d3
+
   reenter 

d4
-
  leaves 

 

Table (5), shows that 4p  is satisfied since it has left the bases. But p3 can be improved. 

Step3.  ∃ jg 4  
>0  for some j. i.e 3

th
 priority row.    {So solution not optimal} 

Step4.   }{max 4 jg =max {-6/5,0, 0, 0, 1, 0, 0,1/5}=1/5 at g48. so , d3
+ 

 re-enter 

  for higher priority to leave the basis.  

Step5. Min 0: 8
8

>ig

b
g

i

i =min {5}=5 at g48.  So d4
-
 leave.  

Step 6.  Perform the same operation to update the new tableau Table 6 and check if 4p is still in the 

basis (CB) to test for optimality. 

 

Table 6: Final iteration 

 

 

 

 

 

 

 

 

Z=5 

 x1 x2 d1
- 

d2
-
 d4

- 
d2

+ 
d3

+ 
RHS 

d2
+
 3/2 0 1/2 -1 0 1 0 3 

 
 
 x2 7/6 1 1/6 0 0 0 0 5 

 
 p

4d3
+ 

1/6 0 -5/6 0 0 0 -1 5 

 
 p

3d4
- 

-7/6 0 1/6 0 1 0 0 2 

 x1 x2 d1
- 

d2
-
 d4

- 
d1

+ 
d2

+ 
d3

+ 
RHS 

d2
+
 8/5 0 0 -1 0 0 1 -3/2 6 

 
 
 x2 6/5 1 0 0 0 0 0 -1/5 6 

 
 
d1

+ 
1/5 0 -1 0 0 1 0 -6/5 6 

 
 
d4

- 
-6/5 0 0 0 1 0 0 1/5 1 

 x1 x2 d1
- 

d2
-
 d4

- 
d1

+ 
d2

+ 
d3

+ 
RHS 

d2
+
 37 0 0 -1 

 
0 1 0 27/2 

 
 
 x2 0 1 0 0 1 0 0 0 7 

 
 
d1

+ 
-7 0 -1 0 6 1 0 0 12 

 
 
d3

+ 
-6 0 0 0 5 0 0 1 5 
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The above is optimum since they cannot be achieved further. 

 

5.RESULT  

Problems from standard published papers of various sizes and complexities were solved to test the efficiency of 

the new lexicographic algorithm. The models varied widely in the number of constraints, decision variables, 

deviational variables and pre-emptive priority levels as shown in the table below.   

 

TABLE 7. RESULT SUMMARY OF THE SOLVED PROBLEMS USING THE PROPOSED METHOD 

source No of constraints No of decision  

variables  

No of  deviational 

variables 

No of preemptive 

priorities  

Igizio(1982) 5 4 10 3 

Crowder & Sposito  

(1987) 

4 2 8 3 

Cohon (1978) 4 2 6 2 

Hana (2006) 4 2 8 4 

Gupta(2009) 4 2 8 2 

Gupta(2009) 5 2 8 3 

Rifia (1996) 4 2 6 2 

Baykasoglu(1999) 4 2 7 3 

Baykasoglu(2001) 2 4 8 4 

Olson(1984)  3 2 6 2 

 

6 CONCLUSION 

The proposed method is an efficient method of solving lexicographic Goal programming. The new method is 

used in solving various lexicographic linear Goal programming problems of different variables sizes, goals, 

constraints and deviational variables. The proposed method is an efficient method and its formulation represents 

a better model than the existing ones.  
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