Proposed Generalized Method and Algorithms for the Estimation of Parameters and Best Model Fits of Log Linear Model

OKOLI C.N; ONYEAGU S.I AND OSUJI G.A

Department of Statistics, Anambra State University, Nigeria. Department of Statistics, Nnamdi Azikiwe University, Awka.Nigeria

Correspondence E-mail: cecilia.okoli@yahoo.com or donfadino@yahoo.com

ABSTRACT

The paper is on proposed generalized method and algorithms developed for estimation of parameters and best model fits of log linear model for q-dimensional contingency table. For purpose of this work, the method was used to provide estimates of parameters of log –linear model for five- dimensional contingency table. In estimating these parameters and best model fit, computer programs in R were developed for the implementation of the algorithms. The iterative proportional fitting procedure was used to estimate the parameters and goodness of fits of models of the log linear model. A real life data was used for illustration and the result obtained showed the best model fit for five dimensional contingency table is [BSGM, BGAM]. This showed that the best model fit has sufficient evidence to fit the data without loss of information. This model has highest p-value and the least likelihood ratio estimate. This model also revealed that state of origin is independent of age given Bscgrade and mode of admission.

Keywords: contingency table , categorical data, hierarchical log –linear models, Parameters, proposed generalized method, algorithms, iterative proportional fitting procedure.

1. INTRODUCTION

Contingency tables are formed when a population is cross-classified according to a series of categories or factors (Agresti, 1996). Each cell count of the contingency tables gives the number of units observed under a particular cross-classification. Additionally, q- contingency table is a contingency table created by cross-classification of more than two categorical variables. A categorical variable is one for which the measurement scale consists of a set of categories (Everitt, 2006). Categorical data are data consisting of counts of observation falling in different categories. Categorical data in contingency tables are collected in many investigations. In order to understand the type of structures in prevailing data appropriate log linear models are fitted. Log linear analysis is a technique that makes no distinction between dependent and independent variables and it used to examine association or interaction among categorical variables (Jeansonne , A,2002). In log linear analysis, expected values of the observations are given by linear combination of number of parameters. The saturated model in log linear model analysis is a model that incorporates all possible effects, such as one-way effect, two way interactions effect, and three-way interactions e.t.c. A saturated model imposes no constraints on the data and always reproduced the observed counts. The parsimonious model in log linear model analysis is incomplete model that achieves satisfactory level of goodness of fit. The log linear model is called hierarchical whenever the model contains higher-order effects incorporates lower-order effects composed of the variables (Everitt, 1977). The reason for including lower-order terms is that the statistical significance and practical interpretation of higher –order terms depend on how the variables are coded. This is undesirable, but with hierarchical models, the same results are obtained, irrespective of how the variables are coded (Bishop et al, 1975).

2. MATERIALS AND METHOD

Material: The aim of this paper is to use proposed generalized method for estimation of parameters and algorithms developed implemented in R computer programs for estimating the parameters and best model fit of log linear model for five-dimensional contingency table. The data on B.Sc grade, State of origin, gender, age and mode of admission were collected from degree results of 1291 graduated students from Micro- Biology department, Anambra State University, Uli, Nigeria.
The variables and Categories

Variable 1: B Sc grade were classified as: Pass; Third class; Lower division; Upper division, First class

Variable 2: State of Origin – Indigene and Non-indigene

Variable 3: Gender – Male and Female

Variable 4: Age - under 26 and 26 & over

Variable 5: Mode of admission – Jamb and Pre –science

2i. GENERALIZED Method

For any \(\vec{j} = t \ (t \neq 0) \) and \(q < \infty \ (q \in \mathbb{N}) \), we define

\[
\mu_{\vec{j}} = \log \left(\frac{\sum n_{\vec{i},\vec{j}}}{I_{\vec{i}_{\vec{0}}} / i_{\vec{0}}} \right) - \sum_{t=0}^{q} \sum_{\{j_t\} \in P(\{j_t\}):\{j_t\}\vec{=}t} \mu_{\vec{j}} \cdot \{j_t\} \in P([q]:\{j_t\}\vec{=}t) \quad t = 1, 2, \ldots, q
\]

Where \([q] = \{1, 2, \ldots, q\}, \ P([q]) \) is the power set of \([q]\).

\([\vec{j}]\) is the level of interaction/cardinality of the set /length of element in the set. \(j \) is a member of collections of sequence \([q]\).

Estimation of parameters for q-dimensional contingency table

For \(q = 5 \), the saturated log linear for 5-dimensional contingency table and its parameter effects is given by

\[
\log m_{i_{12345}} = \mu + \mu_{i_{1}} + \mu_{i_{2}} + \mu_{i_{3}} + \mu_{i_{4}} + \mu_{i_{5}} + \mu_{i_{12}} + \mu_{i_{13}} + \mu_{i_{14}} + \mu_{i_{15}} + \mu_{i_{23}} + \mu_{i_{24}} + \mu_{i_{25}} + \mu_{i_{34}} + \mu_{i_{35}} + \mu_{i_{45}} + \mu_{i_{123}} + \mu_{i_{124}} + \mu_{i_{125}} + \mu_{i_{134}} + \mu_{i_{135}} + \mu_{i_{145}} + \mu_{i_{234}} + \mu_{i_{235}} + \mu_{i_{245}} + \mu_{i_{345}} + \mu_{i_{1234}} + \mu_{i_{1235}} + \mu_{i_{1245}} + \mu_{i_{1345}} + \mu_{i_{2345}}
\]

Conventionally, taking \(\mu \phi(\phi) = \mu \) and

\[
[j] = 0 \quad (i.e. \ [j] = \phi)
\]
\[\hat{\mu} = \log \left(\frac{\sum_{i,j \in \mathcal{A}} n_{i,j}(\hat{\mu})}{\sum_{i,j \in \mathcal{A}} n_{i,j}(\hat{\mu})} \right) \]

\([j] = 1; \)

\[\hat{\mu}_{[1]}(\hat{\mu}) = \log \left(\frac{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})}{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})} \right) - \hat{\mu} \]

\[\hat{\mu}_{[2]}(\hat{\mu}) = \log \left(\frac{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})}{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})} \right) - \hat{\mu} \]

\[\hat{\mu}_{[3]}(\hat{\mu}) = \log \left(\frac{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})}{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})} \right) - \hat{\mu} \]

\[\hat{\mu}_{[4]}(\hat{\mu}) = \log \left(\frac{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})}{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})} \right) - \hat{\mu} \]

\([j] = 2; \)

\[\hat{\mu}_{[12]}(\hat{\mu}) = \log \left(\frac{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})}{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})} \right) - \hat{\mu} - \hat{\mu}_{[1]}(\hat{\mu}) - \hat{\mu}_{[2]}(\hat{\mu}) \]

\[\hat{\mu}_{[13]}(\hat{\mu}) = \log \left(\frac{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})}{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})} \right) - \hat{\mu} - \hat{\mu}_{[1]}(\hat{\mu}) - \hat{\mu}_{[3]}(\hat{\mu}) \]

\[\hat{\mu}_{[14]}(\hat{\mu}) = \log \left(\frac{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})}{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})} \right) - \hat{\mu} - \hat{\mu}_{[1]}(\hat{\mu}) - \hat{\mu}_{[4]}(\hat{\mu}) \]

\[\hat{\mu}_{[15]}(\hat{\mu}) = \log \left(\frac{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})}{\sum_{i \in \mathcal{A}} n_{i}(\hat{\mu})} \right) - \hat{\mu} - \hat{\mu}_{[1]}(\hat{\mu}) - \hat{\mu}_{[5]}(\hat{\mu}) \]
\[\hat{\mu}_{[16]}(i_{k}) = \log \left(\frac{\sum_{j_{k} \neq i_{k}} n_{j_{k}}}{I_{i_{k}} I_{1} I_{2} I_{6}} \right) - \hat{\mu} - \hat{\mu}_{[1]}(i_{k}) - \hat{\mu}_{[6]}(i_{k}) \]

\[\hat{\mu}_{[23]}(i_{k}) = \log \left(\frac{\sum_{j_{k} \neq i_{k}} n_{j_{k}}}{I_{i_{k}} I_{1} I_{4} I_{6}} \right) - \hat{\mu} - \hat{\mu}_{[2]}(i_{k}) - \hat{\mu}_{[3]}(i_{k}) \]

\[\hat{\mu}_{[24]}(i_{k}) = \log \left(\frac{\sum_{j_{k} \neq i_{k}} n_{j_{k}}}{I_{i_{k}} I_{1} I_{5} I_{6}} \right) - \hat{\mu} - \hat{\mu}_{[2]}(i_{k}) - \hat{\mu}_{[4]}(i_{k}) \]

\[\hat{\mu}_{[25]}(i_{k}) = \log \left(\frac{\sum_{j_{k} \neq i_{k}} n_{j_{k}}}{I_{i_{k}} I_{1} I_{4} I_{6}} \right) - \hat{\mu} - \hat{\mu}_{[2]}(i_{k}) - \hat{\mu}_{[5]}(i_{k}) \]

\[\hat{\mu}_{[34]}(i_{k}) = \log \left(\frac{\sum_{j_{k} \neq i_{k}} n_{j_{k}}}{I_{i_{k}} I_{2} I_{6}} \right) - \hat{\mu} - \hat{\mu}_{[3]}(i_{k}) - \hat{\mu}_{[4]}(i_{k}) \]

\[\hat{\mu}_{[35]}(i_{k}) = \log \left(\frac{\sum_{j_{k} \neq i_{k}} n_{j_{k}}}{I_{i_{k}} I_{2} I_{6}} \right) - \hat{\mu} - \hat{\mu}_{[3]}(i_{k}) - \hat{\mu}_{[5]}(i_{k}) \]

\[\hat{\mu}_{[45]}(i_{k}) = \log \left(\frac{\sum_{j_{k} \neq i_{k}} n_{j_{k}}}{I_{i_{k}} I_{2} I_{6}} \right) - \hat{\mu} - \hat{\mu}_{[4]}(i_{k}) - \hat{\mu}_{[5]}(i_{k}) \]

\[\left\| j \right\| = 3; \]
\[\hat{\mu}_{[123]}(i_{j_k}) = \log \left(\frac{\sum_{i_{j_k}} n_{(j_{1, i_{j_k}})} I_{i_{j_k}} I_{i_{j_k}}}{I_{i_{j_k}} I_{i_{j_k}}} \right) - \hat{\mu} - \hat{\mu}_{[1]}(i_{j_k}) - \hat{\mu}_{[2]}(i_{j_k}) - \hat{\mu}_{[3]}(i_{j_k}) - \hat{\mu}_{[12]}(i_{j_k}) - \hat{\mu}_{[13]}(i_{j_k}) - \hat{\mu}_{[23]}(i_{j_k}) \]

\[\hat{\mu}_{[124]}(i_{j_k}) = \log \left(\frac{\sum_{i_{j_k}} n_{(j_{1, i_{j_k}})} I_{i_{j_k}} I_{i_{j_k}}}{I_{i_{j_k}} I_{i_{j_k}}} \right) - \hat{\mu} - \hat{\mu}_{[1]}(i_{j_k}) - \hat{\mu}_{[2]}(i_{j_k}) - \hat{\mu}_{[4]}(i_{j_k}) - \hat{\mu}_{[12]}(i_{j_k}) - \hat{\mu}_{[14]}(i_{j_k}) - \hat{\mu}_{[24]}(i_{j_k}) \]

\[\hat{\mu}_{[125]}(i_{j_k}) = \log \left(\frac{\sum_{i_{j_k}} n_{(j_{1, i_{j_k}})} I_{i_{j_k}} I_{i_{j_k}}}{I_{i_{j_k}} I_{i_{j_k}}} \right) - \hat{\mu} - \hat{\mu}_{[1]}(i_{j_k}) - \hat{\mu}_{[5]}(i_{j_k}) - \hat{\mu}_{[12]}(i_{j_k}) - \hat{\mu}_{[15]}(i_{j_k}) - \hat{\mu}_{[25]}(i_{j_k}) \]

\[\hat{\mu}_{[134]}(i_{j_k}) = \log \left(\frac{\sum_{i_{j_k}} n_{(j_{1, i_{j_k}})} I_{i_{j_k}} I_{i_{j_k}}}{I_{i_{j_k}} I_{i_{j_k}}} \right) - \hat{\mu} - \hat{\mu}_{[3]}(i_{j_k}) - \hat{\mu}_{[4]}(i_{j_k}) - \hat{\mu}_{[13]}(i_{j_k}) - \hat{\mu}_{[14]}(i_{j_k}) - \hat{\mu}_{[34]}(i_{j_k}) \]

\[\hat{\mu}_{[135]}(i_{j_k}) = \log \left(\frac{\sum_{i_{j_k}} n_{(j_{1, i_{j_k}})} I_{i_{j_k}} I_{i_{j_k}}}{I_{i_{j_k}} I_{i_{j_k}}} \right) - \hat{\mu} - \hat{\mu}_{[1]}(i_{j_k}) - \hat{\mu}_{[5]}(i_{j_k}) - \hat{\mu}_{[13]}(i_{j_k}) - \hat{\mu}_{[15]}(i_{j_k}) - \hat{\mu}_{[35]}(i_{j_k}) \]

\[\hat{\mu}_{[145]}(i_{j_k}) = \log \left(\frac{\sum_{i_{j_k}} n_{(j_{1, i_{j_k}})} I_{i_{j_k}} I_{i_{j_k}}}{I_{i_{j_k}} I_{i_{j_k}}} \right) - \hat{\mu} - \hat{\mu}_{[4]}(i_{j_k}) - \hat{\mu}_{[5]}(i_{j_k}) - \hat{\mu}_{[14]}(i_{j_k}) - \hat{\mu}_{[15]}(i_{j_k}) - \hat{\mu}_{[45]}(i_{j_k}) \]

\[\hat{\mu}_{[234]}(i_{j_k}) = \log \left(\frac{\sum_{i_{j_k}} n_{(j_{2, i_{j_k}})} I_{i_{j_k}} I_{i_{j_k}}}{I_{i_{j_k}} I_{i_{j_k}}} \right) - \hat{\mu} - \hat{\mu}_{[2]}(i_{j_k}) - \hat{\mu}_{[3]}(i_{j_k}) - \hat{\mu}_{[4]}(i_{j_k}) - \hat{\mu}_{[23]}(i_{j_k}) - \hat{\mu}_{[24]}(i_{j_k}) - \hat{\mu}_{[34]}(i_{j_k}) \]

\[\hat{\mu}_{[235]}(i_{j_k}) = \log \left(\frac{\sum_{i_{j_k}} n_{(j_{2, i_{j_k}})} I_{i_{j_k}} I_{i_{j_k}}}{I_{i_{j_k}} I_{i_{j_k}}} \right) - \hat{\mu} - \hat{\mu}_{[2]}(i_{j_k}) - \hat{\mu}_{[3]}(i_{j_k}) - \hat{\mu}_{[5]}(i_{j_k}) - \hat{\mu}_{[23]}(i_{j_k}) - \hat{\mu}_{[25]}(i_{j_k}) - \hat{\mu}_{[35]}(i_{j_k}) \]

\[\hat{\mu}_{[245]}(i_{j_k}) = \log \left(\frac{\sum_{i_{j_k}} n_{(j_{2, i_{j_k}})} I_{i_{j_k}} I_{i_{j_k}}}{I_{i_{j_k}} I_{i_{j_k}}} \right) - \hat{\mu} - \hat{\mu}_{[2]}(i_{j_k}) - \hat{\mu}_{[4]}(i_{j_k}) - \hat{\mu}_{[5]}(i_{j_k}) - \hat{\mu}_{[24]}(i_{j_k}) - \hat{\mu}_{[25]}(i_{j_k}) - \hat{\mu}_{[45]}(i_{j_k}) \]
\[\hat{\mu}_{[345]([i,j,k])} = \log \left(\frac{\sum_{i,j,k} n_{i,j,k}}{I_{i} I_{j} I_{k}} \right) - \hat{\mu}_{[3]([i])} - \hat{\mu}_{[4]([i])} - \hat{\mu}_{[5]([i])} - \hat{\mu}_{[13]([i,j])} - \hat{\mu}_{[14]([i,k])} - \hat{\mu}_{[23]([j,k])} \]

\[\left\lfloor j \right\rfloor = 4; \]

\[\hat{\mu}_{[1234]([i,j,k,l])} = \log \left(\frac{\sum_{i,j,k,l} n_{i,j,k,l}}{I_{i} I_{j} I_{k} I_{l}} \right) - \hat{\mu}_{[1]([i])} - \hat{\mu}_{[2]([j])} - \hat{\mu}_{[3]([k])} - \hat{\mu}_{[4]([l])} - \hat{\mu}_{[12]([i,j])} - \hat{\mu}_{[13]([i,k])} - \hat{\mu}_{[14]([i,l])} - \hat{\mu}_{[23]([j,k])} - \hat{\mu}_{[24]([j,l])} - \hat{\mu}_{[34]([k,l])} - \hat{\mu}_{[123]([i,j,k])} - \hat{\mu}_{[124]([i,j,l])} - \hat{\mu}_{[134]([i,k,l])} - \hat{\mu}_{[234]([j,k,l])} - \hat{\mu}_{[345]([k,l])} - \hat{\mu}_{[1234]([i,j,k,l])} \]

2ii. ITERATIVE PROPORTIONAL FITTING PROCEDURE

The iterative proportional fitting (IPF) in Deming and Stephan (1940) is used to estimate model parameters and best model fit of log linear model. This is to ensure that the expected values are obtained iteratively for model whose expected values are not directly obtainable from marginal totals of observed values.
Consider 5-factor model, without 5-factor interaction given as

\[
\log m_{ijklm} = \mu + \mu_{i} + \mu_{j} + \mu_{k} + \mu_{(ij)} + \mu_{l} + \mu_{(ijl)} + \mu_{m} + \mu_{(ijkm)} + \mu_{(ijl)m} + \mu_{ijkl} + \mu_{ijklm} + \mu_{(ijkl)m} + \mu_{ijklm} + \mu_{ijklm}
\]

This model is hereby used to illustrate IPF algorithm for estimating expected frequencies \(\{m_{ijkl}\} \).

Totals \(\hat{m}_{ijkl}, \hat{m}_{ijk.m}, \hat{m}_{i.klm}, \) and \(\hat{m}_{ijklm} \) are characterized to be equal to the corresponding observed marginal totals \(n_{ijkl}, n_{ijk.m}, n_{i.klm}, \) and \(n_{ijklm} \) respectively.

To start IPF procedure, we start initial values \(\hat{m}_{ijkl}^{(0)} = 1 \) and proceed by adjusting these proportionally to satisfy the first marginal constraint \(\hat{m}_{ij.} = n_{ij.} \), calculated from:

\[
\hat{m}_{ij.} (1) = \frac{\hat{m}_{ijkl}^{(0)} n_{ij.}}{m_{ijkl}^{(0)}}
\]

Revise expected values \(\hat{m}_{ijkl}^{(1)} \) to satisfy the second marginal’s constraint \(\hat{m}_{ij.k} = n_{ij.k} \) using

\[
\hat{m}_{ij.k} (2) = \frac{\hat{m}_{ijkl}^{(1)} n_{ij.k}}{m_{ij.k}}\]

Revise expected values \(\hat{m}_{ijklm}^{(2)} \) to satisfy the marginal constraint \(\hat{m}_{ijklm} = n_{ijklm} \), using

\[
\hat{m}_{ijklm} (3) = \frac{\hat{m}_{ijklm}^{(2)} n_{ij.klm}}{m_{ij.klm}}\]

Revise expected values \(\hat{m}_{ijklm}^{(3)} \) to satisfy the marginal constraint \(\hat{m}_{ijklm} = n_{ijklm} \), using

\[
\hat{m}_{ijklm} (4) = \frac{\hat{m}_{ijklm}^{(3)} n_{ij.klm}}{m_{ij.klm}}\]

96
Complete the cycle by adjusting $\hat{m}_{ijklm}^{(4)}$ to satisfy the fifth marginal constraint $\hat{m}_{ijklm} = n_{ijklm}$, using

$$\hat{m}_{ijklm}^{(5)} = \frac{\hat{m}_{ijklm}^{(4)} n_{ijklm}}{m_{ijklm}^{(4)}}$$ (2.7)

This five-step is repeated until convergence to desired accuracy is attained.

2iii. ALGORITHMS FOR ESTIMATION OF PARAMETERS AND MODEL FITS IN LOG LINEAR MODELS FOR Q-DIMENSIONAL CONTINGENCY TABLES

The step by step approach for the estimation of parameters that will enable us to develop our R-programs for estimating parameters, expected values and goodness of log linear models are as follows:

Step 1 Given a set of observed data with variables say (2, 3, 4, ..., q). Identify the dimension of the variable.

Step 2 Estimate the parameters of the model by the method of Iterative proportional fitting (IPF).

Step 3 Estimate the expected values by the method of IPF.

Step 4 Compute the model estimates using IPF.

Step 5 Using R-programs, the chi squared (χ^2), log–likelihood ratio (G^2) and all the parameters of the model(s) involved are estimated.

3. DATA ANALYSIS AND RESULTS

When the data was analyzed, we obtained this table of output

TABLE 1 SUMMARY OF THE RESULTS OF GOODNESS OF FITS FOR 5-DIMENSIONAL CONTINGENCY TABLE DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>G^2</th>
<th>χ^2</th>
<th>d.f</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[B,S,G,A,M]</td>
<td>172.9839</td>
<td>176.3949</td>
<td>71</td>
<td><0.001</td>
</tr>
<tr>
<td>[S,G,AM]</td>
<td>141.2813</td>
<td>139.1354</td>
<td>67</td>
<td><0.001</td>
</tr>
<tr>
<td>[S,M,BG]</td>
<td>139.1010</td>
<td>141.8967</td>
<td>67</td>
<td><0.001</td>
</tr>
<tr>
<td>[B,G,MA]</td>
<td>166.3272</td>
<td>171.4614</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>[B,M,S,A]</td>
<td>127.9646</td>
<td>131.5539</td>
<td>63</td>
<td><0.001</td>
</tr>
<tr>
<td>[B,G,A,SM]</td>
<td>171.2029</td>
<td>170.3752</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>[B,M,GA]</td>
<td>172.9719</td>
<td>176.5359</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>[B,M,GA]</td>
<td>172.8484</td>
<td>175.9629</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>[B,M,GA,BS]</td>
<td>127.9595</td>
<td>131.5539</td>
<td>63</td>
<td><0.001</td>
</tr>
<tr>
<td>[S,A,BM,BG]</td>
<td>125.7791</td>
<td>134.4006</td>
<td>63</td>
<td>< 0.001</td>
</tr>
<tr>
<td>[S,G,BM,BA]</td>
<td>153.0054</td>
<td>174.6249</td>
<td>63</td>
<td><0.001</td>
</tr>
</tbody>
</table>
P-value for G^2

4. CONCLUSION

We proposed generalized method and algorithms developed for estimation of the parameters and best model fit of log linear model for q-dimensional contingency table. Five-dimensional contingency table was considered for this paper. In estimating these parameters and best model fit, computer...
programs in R were developed for the implementation of the algorithms. The Iterative proportional fitting procedure was used to estimate the parameters and models of the log linear model.

The results of the real life data analysis showed the best model fit for 5-dimensional contingency table is [BSGM, BGAM]. This showed that the best model fit has sufficient evidence to fit the data without loss of information. This model also revealed that state of origin is independent of age given BScgrade and mode of admission.

We also discovered that the results of the goodness of fit showed that the best model adequately fit the data set having highest p-value and the least likelihood ratio estimate. The value of the best of fit statistics are: Likelihood ratio \((G^2) = 13.40143 \); d.f =20 ; p –value = 0.8595041

\[
\chi^2 = 13.44084; \text{d.f} =20; \text{p-value} = 0.859041
\]

REFERENCES

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar