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Abstract. 

This paper compare the performance of the empirical Bayes and generalized maximum likelihood estimation 

approaches in context of progressively Type II censored data from one parameter Rayleigh distribution. The 

generalized maximum likelihood and empirical Bayes estimates of scale parameter, reliability function, and 

failure rate function are compared using risk efficiency criterion. The empirical Bayes estimates are considered 

with respect to squared error loss function. The wind speed data is presented to illustrate the proposed estimation 

approaches, and an extensive Monte Carlo simulated study is done to compare the empirical Bayes and 

Generalized maximum likelihood estimates. The study indicates that the empirical Bayesian approach using 

squared error loss function is preferable than the generalized maximum likelihood approach for the estimation of 

reliability performances.      

Keywords: Progressively Type II censored samples, generalized maximum likelihood estimation, squared error 

loss function, empirical Bayes estimation, Risk efficiency, Monte Carlo simulation. 

 

1. Introduction 

Rayleigh distribution is one of the most popular and widely used distributions in reliability and life testing 

analysis. Lord Rayleigh (1880) invented this distribution from the amplitude of sound resulting from many 

important sources. Polovko (1968) demonstrated the importance of the distribution in communication 

engineering and electro vacuum devices. Siddique (1962) has used this distribution as a radio wave power 

distribution. Bhattacharya and Tyagi (1990) applied this distribution in some clinical studies dealing with cancer 

patients. 

In lifetime analysis, the most popular censoring schemes among the various types of censoring 

schemes is Type II censoring. Under this censoring scheme, the life testing experiment continues until a pre-

specified number of failures occurs. However, in the above conventional schemes, a researcher cannot remove 

experimental units at points other than the terminal point of the experiment. Cohen (1963) generalized the 

conventional Type II censoring scheme in a manner that removal of the units are allowed in between also. This 

generalization is referred to as progressive Type II censoring scheme, which is useful in many practical 

situations where budget constraints are in place or there is a demand for rapid testing. It is known that this 

censoring scheme significantly improve upon conventional Type II censoring, and therefore received a 

significant importance in the last few decades. Several authors have discussed statistical inference problems for 

various distributions under progressive Type II censoring (Balakrishnan & Aggarwala 2000, Wu et al. 2006, 

Patel & Patel 2007). 

Empirical Bayes approach is commonly used to make a data-driven choice of hyper-parameter 

(parameter of prior distribution). In practice rather than specifying the hyper-parameter, researcher often tempted 

to use some estimate of the hyper-parameter for expressing honest prior information. Many authors have 

described this approach extensively (Robbins 1964, Maritz & Lewin 1989, Casella 1992, Carlin & Louis 1996, 

Lehmann & Casella 1998). In order to obtain EB estimates, the choice of an appropriate loss function is essential, 

and depends on financial consideration only. One of the most popular symmetric loss functions is the squared 

error loss function (SELF), proposed by Legendre (1805) and Gauss (1810) to develop the least square theory. 

Most of the Bayesian inference procedures have been developed under the usual SELF, which gives an equal 

weight to over-estimation and under-estimation because of its symmetrical nature. 

Based on risk efficiency criterion, the performance of Bayes estimates has been studied by several 

authors (Al-Nachawati & Abu-Youssef 2009, Dey 2011, Dey 2012, Barot & Patel 2014). However, up to now, 

the performance of empirical Bayes estimates of reliability performances relative to the SELF are not compared 

with that of generalized maximum likelihood (GML) estimates using risk efficiency criterion when the data are 

progressively censored from the Rayleigh distribution. The aim of the paper is to examine and compare the GML 

and empirical Bayes estimates of scale parameter, reliability function, and failure rate function of Rayleigh 

model under progressively Type II censoring. Section 2 describes the GML estimation and empirical Bayes 

estimation relative to SELF. In Section 3, the risk functions of GML and empirical Bayes estimates of reliability 

parameters relative to SELF are obtained under SELF. In Section 4, the wind speed data is analysed for an 

illustrative purpose. In Section 5, an extensive Monte Carlo simulation study is carried out to examine and 
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compare the performance of the derived estimates. The paper concludes with a brief discussion in Section 6. 

 

2. Estimation of Reliability Parameters of the Rayleigh Model 

Under progressive Type II censoring scheme, let n  units are placed on a life-testing experiment and only 

( )nm < 
 are completely observed until failure. At the time of each failure occurring prior to the termination 

point, one or more surviving units are removed from the test. Let ir  be the withdrawn units at 
th

i failure, 

mi , ... ,2 ,1=
; and ( )ix

 be the lifetimes of completely observed units following one parameter Rayleigh 

distribution with the probability density, cumulative distribution, reliability, and failure rate functions, 

respectively, 

         (1) 

 

The likelihood function based the progressive Type II censored sample ( ) ( ) ( )( )mxxxx  ,  ...  , , 21=
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To describe the uncertainty surrounding the unknown quantity θ  of the model, we require assigning its prior 

distribution. In the previous couple of decades, many types of discrete, continuous, and mixed prior distributions 

have been proposed to consider subjective inputs from experienced experts or summary judgments of past 

research that yielded similar results. An inverted gamma distribution is one of most prominent random 

probability distributions, and its good mathematical properties facilitate insight and computational reduction. In 

reliability analysis and life testing, it is preferred over many other distributions due to its richness, computational 

ease, better fit to the failure data, analytical tractability, and easy interpretability. To ease the computational 

burden and get computable closed form expression for the posterior distribution of θ , it is assumed that θ 

follows an inverted gamma distribution with the probability density function 
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Where b  is an unknown positive hyper-parameter chosen to reflect prior beliefs onθ . Since the prior density (4) 

belongs to a parametric family, the maximum likelihood estimate of the hyper-parameter, denoted by MLb̂ , can be 

used for expressing honest prior information. Following the idea of Barot & Patel (2014), the estimate MLb̂ can be 

obtained by solving the log likelihood equation 
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2.1 GML Estimation 

The GML estimate of the parameterθ , denoted by GMLθ̂
, is the value of θ  at which the posterior density of θ  

given 
x

 is maximal. The invariance property of GML estimation enables one to obtain the GML estimates 

( )GMLtR̂
 and 

( )GMLtĥ
by substituting GMLθ̂

 for θ  in (1). Barot & Patel (2014) have obtained GML estimates of 

reliability parameters, respectively, as 
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2.2 Empirical Bayes Estimation 

As the performance of Bayes estimate depends upon the loss function, its choice is an integral part of Bayes 

estimation procedure. The SELF is one of the most popular symmetrical loss functions due to its mathematical 

simplicity and relevance with classical procedures. It is in the form ( ) ( )2ˆ,ˆ φφφφ −=L and symmetrical in nature, 

that is, gives equal importance to the losses due to overestimation and underestimation of equal magnitude. This 

loss function is appropriate when decisions become gradually more damaging for large errors. Under the SELF, 

the usual Bayes estimate of scale parameter is the posterior mean. It is more appropriate when decisions become 

gradually more damaging for large errors. Following the idea of Lehmann and Casella (1998), the empirical 

Bayes estimates of scale parameter, reliability function, and failure rate function under SELF are obtained, 

respectively, as 
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3. Risk functions of GML and empirical Bayes estimates of reliability parameters under SELF  

At this point, we obtain the risk functions of GML and empirical Bayes estimates of reliability parameters under 

SELF. The risk function of the estimate 
φ̂

 under SELF is given by 
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The risk functions of 
( )ESEtR̂

and 
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under SELF are given, respectively, by 
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and 
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The risk functions of 
( )ESEtλ̂

 and 
( )GMLtλ̂

under SELF are given, respectively, by 
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The risk efficiency is usually computed to see whether one estimate outperforms another estimate or not. The 

risk efficiency of estimate 1φ̂  with respect to estimate 2φ̂  under SELF, denoted by ( )
21

ˆ,ˆ φφLRE , can be defined as 

the ratio of ( )
2φ̂LR  to ( )

1φ̂LR . If ( )
21

ˆ,ˆ φφLRE  is more than one then 1φ̂  outperforms 2φ̂ . Under SELF, the risk 

efficiencies
( )

GMLESELRE θθ ˆ,ˆ
, 

( ) ( )( )GMLESEL tRtRRE ˆ,ˆ
 and 

( ) ( )( )
GMLESEL ttRE λλ ˆ,ˆ

 can be obtained from the results (9) - 

(14). 

 

4. Numerical example (Real data) 

The real data set consisting of average daily wind speeds (in meter/sec) at Elanora Heights during November 

2007 (Best et al. 2010), is presented by making some modification to compare the performance of empirical 

Bayes estimates with that of GML estimates. The average daily wind speeds were as follows: 

0.5833   0.6667   0.6944   0.7222    0.7500   0.7778    0.8056   0.8056    0.8611    0.8889 

0.9167   1.0000   1.0278   1.0278    1.1111   1.1111    1.1111   1.1667    1.1667    1.1944 

1.2778   1.2778   1.3056   1.3333    1.3333   1.3611    1.4444   2.1111    2.1389    2.7778 

Barot & Patel (2014) have performed Kolmogorov-Smirnov and Anderson-Darling tests and suggested that the 
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one-parameter Rayleigh distribution provides an adequate fit to this data set. 

As a numerical illustration, the artificial progressive and conventional Type II censored samples of size 20=m

have been generated from the given data set. In the first case, let the vector of observed average wind speeds be 

1x = (0.5833, 0.6667, 0.7222, 0.7500, 0.7778, 0.8056, 0.8889, 0.9167, 1.0000, 1.0278, 1.1111, 1.1111, 1.1667, 

1.1944, 1.2778, 1.3333, 1.3611, 1.4444, 2.1389, 2.7778) with the progressive Type II censoring scheme 
1r

= 

(1*5, 0*10, 1*5). In the second case, let the vector of observed average wind speeds be 2x
 = (0.5833, 0.6667, 

0.6944, 0.7222, 0.7500, 0.7778, 0.8056, 0.8056, 0.8611, 0.8889, 0.9167, 1.0000, 1.0278, 1.0278, 1.1111, 1.1111, 

1.1111, 1.1667, 1.1667, 1.1944) with the conventional Type II censoring scheme 
2r

 = (0*19, 10). 

The risk efficiencies
( )

GMLESELRE θθ ˆ,ˆ
, 

( ) ( )( )GMLESEL tRtRRE ˆ,ˆ
 and 

( ) ( )( )
GMLESEL ttRE λλ ˆ,ˆ

 were computed at 04.0=t  

using the results outlined in section 3. For progressive Type II censored sample, the risk efficiencies were, 

respectively, 1.00008, 1.00199, and 1.20468; and for conventional Type II censored sample, the risk efficiencies 

were, respectively, 1.00105, 1.00302, and 1.11089. This indicates that the empirical Bayes estimation 

outperforms the GML estimation. Moreover, the risk efficiencies 
( )

GMLESELRE θθ ˆ,ˆ
 and 

( ) ( )( )GMLESEL tRtRRE ˆ,ˆ
 for 

the progressive Type II censored sample are smaller than that for the conventional Type II censored sample 

while the risk efficiencies 
( ) ( )( )

GMLESEL ttRE λλ ˆ,ˆ
 for the progressive Type II sample is greater than that for the 

conventional Type II censored sample. 

 

5. Simulation study 

Since the performance of GML and empirical Bayes estimates cannot be judged theoretically, we have 

performed an extensive Monte Carlo simulation study to examine and compare the performance of empirical 

Bayes estimates with that of GML estimates for different values of hyper-parameter
( )b

, sample size
( )n

, 

effective sample size
( )m

, and progressive Type II censoring scheme
( )r

. The risk efficiencies
( )

GMLESELRE θθ ˆ,ˆ
,

( ) ( )( )GMLESEL tRtRRE ˆ,ˆ
 and ( ) ( )( )GMLESEL ttRE λλ ˆ,ˆ

 were computed to see whether empirical Bayes estimates 

outperforms GML estimates or not. As one data set does not help to clarify the performance of the estimates, we 

have computed the risk efficiencies at t = 0.04 by averaging over 2,000 simulated progressively Type II censored 

samples of size m. These samples were generated from the Rayleigh distribution according to the algorithm 

given in Balakrishnan and Sandhu (1995). 

Table 1 summarized the different progressive Type II censoring schemes applied in the simulation study. The 

risk efficiencies were computed at 04.0=t  using the results outlined in section 3. The simulated results are 

reported in Tables 2 - 4 respectively. From the simulation results, the following points can be drawn: 

1. The risk efficiencies
( )

GMLESELRE θθ ˆ,ˆ
,

( ) ( )( )GMLESEL tRtRRE ˆ,ˆ
 and 

( ) ( )( )
GMLESEL ttRE λλ ˆ,ˆ

 are greater than one for all 

the considered cases, which indicates that the empirical Bayes estimates are preferable than the GML 

estimates. 

2. The risk efficiencies 
( )

GMLESELRE θθ ˆ,ˆ
 and 

( ) ( )( )GMLESEL tRtRRE ˆ,ˆ
 for progressive Type II censored samples are 

smaller than that for conventional Type II censored samples while the risk efficiencies 
( ) ( )( )

GMLESEL ttRE λλ ˆ,ˆ
 

for progressive Type II samples are greater than those for the conventional Type II censored samples. 

3. The risk efficiencies under SELF are very sensitive to variation in hyper-parameter b for all the considered 

cases. 

 

6.  Conclusion 

The present paper proposes the risk efficiency criterion for the comparison of GML and empirical Bayes 

estimates the unknown scale parameter, reliability function, and failure rate function of the Rayleigh model 

under progressive Type II censored data. The use of an inverted gamma distribution for the scale parameter 

resulted in a closed form expression for the posterior pdf. The risk functions of GML and empirical Bayes 

estimates are obtained under SELF; and compared using risk efficiency criterion with the help of simulation 

study and wind speed data application. The findings from the analysis of wind speed data are in accordance with 

those of simulation study, suggesting empirical Bayesian approach is superior to GML approach. As the 

empirical Bayes estimates outperforms the GML estimates, we recommend empirical Bayesian approach for 

estimating reliability parameters of the Rayleigh model. 
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Table 1. Progressively Type II Censoring Schemes (C.S.) applied in the simulation study 

n m C.S. No. ( )mrrrr  , ... ,, 21=
 

 
n m 

C.S. 

No. 
( )mrrrr  , ... ,, 21=

 

100 

50 
[1] (2*12, 1, 0*26, 1, 2*12)  

80 34 
[11] (2*11, 1, 0*10, 1, 2*11) 

[2] (0*49, 50)  [12] (0*33, 46) 

34 
[3] (2*16, 1*2, 2*16)  

70 

50 
[13] (1*10, 0*30, 1*10) 

[4] (0*33, 66)  [14] (0*49, 20) 

90 

50 
[5] (1*20, 0*10, 1*20)  

34 
[15] (2*9, 0*16, 2*9) 

[6] (0*49, 40)  [16] (0*33, 36) 

34 
[7] (2*14, 0*6, 2*14)  

60 

50 
[17] (1*5, 0*40, 1*5) 

[8] (0*33, 56)  [18] (0*49, 10) 

80 50 
[9] (1*15, 0*20, 1*15)  

34 
[19] (1*13, 0*8, 1*13) 

[10] (0*49, 30)  [20] (0*33, 26) 

 

Table 2. Risk efficiency of ESEθ̂
 with respect to GMLθ̂

under SELF 

C.S. 25=b  30=b  35=b   C.S. 25=b  30=b  35=b  
[1] 1.00052 1.00068 1.00024  [11] 1.00009 1.00066 1.04622 

[2] 1.00085 1.00089 1.00088  [12] 1.00030 1.00070 1.05032 

[3] 1.00009 1.00026 1.10331  [13] 1.00011 1.00015 1.00013 

[4] 1.00015 1.00038 1.46327  [14] 1.00061 1.00078 1.00036 

[5] 1.00013 1.00025 1.00035  [15] 1.00002 1.00017 1.18351 

[6] 1.00061 1.00084 1.00059  [16] 1.00011 1.00037 1.24999 

[7] 1.00006 1.00007 1.20818  [17] 1.00015 1.00068 1.00053 

[8] 1.00014 1.00090 1.69757  [18] 1.00029 1.00087 1.00065 

[9] 1.00040 1.00058 1.00092  [19] 1.00007 1.00058 1.01941 

[10] 1.00074 1.00075 1.00114  [20] 1.00022 1.00077 1.02002 

Table 3. Risk efficiency of 
( )ESEtR̂

with respect to 
( )GMLtR̂

under SELF 

C.S. 25=b  30=b  35=b   C.S. 25=b  30=b  35=b  
[1] 1.11102 1.12610 1.19014  [11] 1.13591 1.23092 1.24088 

[2] 1.11865 1.13533 1.20568  [12] 1.14494 1.23938 1.24782 

[3] 1.13845 1.23416 1.24010  [13] 1.10325 1.11667 1.17302 

[4] 1.14607 1.23425 1.24085  [14] 1.11153 1.12672 1.19126 

[5] 1.10754 1.12188 1.18254  [15] 1.13374 1.22676 1.23072 

[6] 1.11717 1.13355 1.20313  [16] 1.14412 1.24115 1.23089 

[7] 1.13743 1.23336 1.24060  [17] 1.09837 1.11073 1.16203 

[8] 1.14578 1.23777 1.24098  [18] 1.10499 1.11878 1.17690 

[9] 1.10593 1.11992 1.17898  [19] 1.12717 1.21231 1.22076 

[10] 1.11501 1.13093 1.19876  [20] 1.14127 1.23851 1.22743 

Table 4. Risk efficiency of 
( )ESEtλ̂

 with respect to 
( )GMLtλ̂

under SELF 

C.S. 25=b  30=b  35=b   C.S. 25=b  30=b  35=b  
[1] 1.15589 1.02687 1.01362  [11] 1.01937 1.01861 1.01634 

[2] 1.05002 1.01765 1.01230  [12] 1.01779 1.01702 1.01492 

[3] 1.01898 1.01821 1.01594  [13] 1.17944 1.04632 1.01528 

[4] 1.01746 1.01669 1.01449  [14] 1.15958 1.02609 1.01353 

[5] 1.08421 1.03350 1.01432  [15] 1.01971 1.01896 1.01669 

[6] 1.07314 1.01906 1.01254  [16] 1.01808 1.01730 1.01508 

[7] 1.01914 1.01838 1.01611  [17] 1.00076 1.07607 1.01655 

[8] 1.01760 1.01682 1.01462  [18] 1.00024 1.04036 1.01488 

[9] 1.00085 1.03754 1.01467  [19] 1.02082 1.02010 1.01788 

[10] 1.00034 1.02141 1.01290  [20] 1.01855 1.01777 1.01563 
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