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Abstract 

In this paper, a non-linear harvesting of prey is considered in a prey-predator system. The predator is considered 

to be of modified Leslie- Gower type. The effort is taken as dynamic variable. The steady states of the system 

are determined and the dynamical behavior of the system for its all steady states is discussed under certain 

conditions. Necessary condition for global stability of the system is analyzed at the positive interior equilibrium 

point. Numerical simulations are carried out to explore the dynamics of the system for the suitable choice of 

parameters.      
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1. Introduction 

The ecological non-linear models of interacting populations have been studied extensively by many authors .In 

recent years, the need for more food/ resources is growing at large scale, which has resulted in over exploitation 

of several biological resources. Even there is a global concern to protect the ecosystem from exploitation at large 

scale. Therefore, there is a need for a sustainable development policy in various spheres of human activity to 

protect ecosystems. In particular, bio-economic modeling is concerned with scientific management of the 

exploitation of renewable resources like fisheries and forestry. Hence harvesting of ecosystems has been of 

interest to economists and ecologists. A harvesting policy refers to the management of biological resources by 

systematically controlling the period, intensity and type of harvesting. The primary objective here is to maximize 

productivity without depleting or driving the stocks to extinction. In recent years, many works on optimal 

management of renewable resources are done. An excellent introduction to optimal management of renewable 

resources is given by Clark [3] and also policies related to bionomic exploitations of renewable resources are 

discussed by him. Harvesting has a strong impact on the dynamics of biological resources. The severity of the 

impact depends on the nature of the implementation of harvesting strategy. Basically three types of harvesting 

strategies are reported in literature (i) constant harvesting (ii) proportional harvesting, h(x) = qEx and (iii) 

nonlinear harvesting, H(x) = qEx/(m1E + m2x) (Holling type-II. Many researchers have analyzed mathematical 

models using non-linear harvesting by considering different type of growth depending upon the species and their 

interactions [5, 6, 12] etc. 

Zhu and Lan [16] studied Leslie- Gower model with constant harvesting in prey. Though there are 

numerous works on predator- prey system incorporating the harvesting of the species. Leslie Gower predator 

prey model and modified Leslie Gower predator-prey under the assumption of the nonlinear harvesting on prey 

species has been studied by Gupta and Banerjee et al. [5]. But in this paper, we consider a dynamical reaction 

model of modified Leslie Gower predator- prey incorporating the non-linear harvesting on prey where effort is 

taken as a dynamic variable. The present paper deals with a dynamic reaction model in the case of a prey-

predator type fishery system, while the model we study here is especially based on a modified version of the 

Leslie Gower scheme, where only the prey species is subjected to non- linear harvesting. The main aim of this 

paper is to examine the effect of harvesting on such kind of prey - predator system with the effort dynamic which 

can give the best possible benefit through harvesting to the society while preventing extinction of the species. 

 

2. The Mathematical Model 

Let x(t), y(t) and E(t) are the densities of prey, predator population and the harvesting effort at a time ’t’. The 

Holling type- II functional response and non-linear harvesting is considered for a logistically growing prey 

species and predator is assumed to be modified Leslie- Gower type. The mathematical model for the dynamics of 

the system governed by the following system of differential equations: 
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                 x(0) >0,  y(0)> 0,  E(0)>0. 

 

The constants r, s, k, α, β, p, c, and η are the parameters assuming only positive values. The parameters r, s, k, α, 

β, p, c, and η represents intrinsic growth rate of prey population, growth rate for the predator, environmental 

carrying capacity, en-counter rate of predator to prey, maximum rate of the reduction of predator population, 

price and cost per unit mass and stiffness  parameter, respectively. 

 

3. Uniform Boundedness 
Theorem: All the solutions of the system (2.1) which start in the region R3 are uniformly bounded. 

Proof:  let us consider a function φ (t) such that 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Introducing, a positive constant N and rewrite the above equation, we get 

 

 

 

Let us c > N, Then we have:  

 

 

 

 

  

 

Solving above inequality, we get 

     

 

 All the solutions of the system (2.1) which start in the region R3 are confined in the region: 

This proves the result. 

 

 

4.Existence of Equilibrium Points 

For the model (2.1), there exists six non-negative equilibrium points which are given below: 

1.  P0 (0, 0, 0) is a trivial equilibrium point. 

2.  P1 (k, 0, 0) is the axial equilibrium point on x-axis. 

3. P2 (0, a/β, 0) is the axial point on y-axis in the absent of prey and harvesting.  

       4.         is boundary equilibrium point on xy-plane in the absence of harvesting effort. The    
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 are the solution of the following equations: 
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5.          is boundary equilibrium point on xy- plane in the absence of harvesting effort. These equilibrium 

levels are the solution of the following equations: 

 

 

 

 

 
                  

  

Solving, we get the values as:  and ; where 

 

 

 

 is positive if    and   

 

6.  is the unique interior point of the following equations: 
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6. Local Stability of Various Equilibrium Points 
Here we discuss the local stability conditions for feasible equilibrium points of the system (2.1) based upon the 

standard linearization technique and then using the well-known Routh- Hurwitz criterion to determine the nature 

of eigenvalues of the Jacobian matrix evaluated at the equilibrium point[10]. The Jacobian matrix of the system 
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6.1. Stability of point (0, 0, 0); 

The Jacobian matrix evaluated at the equilibrium point P0 (0, 0, 0) is given by : 
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. Hence the origin (0, 0, 0) is a saddle point with unstable manifold in y direction and stable 

manifold in x as well as in E-direction. 

 

6.2. Stability of point (k, 0, 0); 

The Jacobian matrix evaluated at the equilibrium point P1 (k, 0, 0) is given by: 

 

 

 

 

 

 

 

The eigen values of 1J
 evaluated at equilibrium point (k, 0, 0) are 

0,0 21 >=<−= sr λλ
 and 

 

 . The equilibrium point (k, 0, 0) is saddle point as 
02 >= sλ

 with unstable  

 

manifold in y- direction and stable manifold in x-direction and also in E-direction if  .  

 

6.3. Stability of point (0, a/β, 0); 

The Jacobian matrix evaluated at the equilibrium point P2 (0, a/β, 0) is given by: 
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 The Jacobian matrix evaluated at the equilibrium point          is given by: 

















−

−

=

c

s

r

J

η00

00

00

)0,0,0(0





























−

−

+

−
−

=

c
m

pq

s

m

q

ka

k
r

kJ

2

2

1

00

00)0,0,(

η

α























−

−
−

−

=

c

s
s

r

a
J

η
β

β

α

β
00

0

00

)0,,0(2









−= c

m

pq

2

3 ηλ

c
m

pq
<

2

β

α
λ −= r1









0.,

__

3 yxP









0.,

__

3 yxP



Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 

Vol.5, No.3, 2015 

 

22 









































−

++

−

+

−

















+

+−

=

c
m

pq
xa

ys

xa

sy

m

q

xa

x

xa

y

k

r
x

yxJ

2

_

_

2
_

2

2
_

_

2
_

_
_

__

3

00

0

)(

)(

)0,,(

η

ββ

αα

  

The characteristic equation associated to the matrix 
)0,,(

__

3 yxJ
 yields the eigen values as follows: 

  
  

   (i)  If                    and       , then the equilibrium point 3P
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6.5. Stability of equilibrium point  

The Jacobian matrix evaluated at the equilibrium point     is given by: 
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The characteristics equations of the above Jacobian matrix about the equilibrium point          

 is given by:  
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Using Routh- Hurwitz Criteria, the conditions for local stability of point P5 are 
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7. Global Stability  

Theorem: The interior equilibrium point (x∗, y∗, E∗) is globally asymptotically stable. 
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8. Numerical Simulations 

In this section, numerical simulations are carried out for different choice of parameters to investigate the 

dynamic behavior of the system. We start the numerical investigation keeping all the parameters fixed except ‘c’. 

Let r = 0.5,  k = 100,  α= 0.005,  m1 = 0.5,  m2 = 0.5,  q = 0.15,  a = 3,  s = 1,  β = 0.15, 
1=η

,  p =5; 

 

Figure 1: Time series analysis of prey population, predator population and Effort ’E’ for different value of 

cost ’c’ with initial level (40, 350, 10). 

 

 
Figure 2: Phase portrait of prey population, predator population and Effort ’E’ for different initial level 

corresponding (A).c=1.2 and (B). c=1.8  

In the figure-1, diagrams (A), (B) and (C) give long term behavior of trajectories of prey- predator 

populations and effort ’E’ w.r.t time ’t’. which shows that for the initial condition (40, 350, 10) in the interior, 

for the different value of cost ’c’ and keeping other parameters fixed, all the trajectories converges to its interior 

equilibrium point which means that interior equilibrium is asymptotically locally stable provided 0 < c < 1.5. 

Also, we see that as the value of cost ’c’ will start increase then eventually harvesting effort will start decrease 

and in resulted prey population increases as well predator population also. But, for c > 1.5 effort ’E’ will tends to 

zero. 

Figure-2(A) represents phase plane trajectories of species x, y and effort E with the different initial 

levels which represents that the interior point (x*, y* E*) = (81.3332, 562.2056, 20.333) is asymptotically global 

stable for c = 1.2 as 0 < c < 1.5 for the existence of interior equilibrium point. The figure-2(B) represents phase 

plane trajectories of different biomasses with the different initial levels at the interior which converge to the 

point (93.3340, 642.2877, 0.0000) on the boundary plane i.e., x-y plane corresponding to c = 1.8 for the 

condition c > 1.5, keeping other parameters fixed.. Therefore, for the condition c > 1.5, it shows that for the 

every initial points on the x - y - E space converge to the point on x - y plane asymptotically which means that 

there is on harvesting of the prey population for this condition as it is not profitable to fishermen to do harvesting. 

 

5. Conclusion 

This paper is concerned with the study of nonlinear harvesting and the conservation of ecological resources for a 

two-dimensional prey predator type dynamical system. We have considered a prey predator model with Holling 

type-II functional response and nonlinear harvesting of prey. The harvesting effort is taken as a dynamic variable. 

The conditions for existence and local asymptotic stability of various equilibrium points have been examined. It 

is established that the coexistence of prey and predator population depends upon the proper harvesting strategies 
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and hence we can avoid the risk of extinction or over exploitation of the species. By analytical and numerical 

results, we have examined that for fixed value of price ’p’ per unit mass and other parameters, as the value of 

cost ’c’ is increasing, then harvesting level will start to decrease. after a time, we will find a level of cost ’c’ 

where harvesting effort will tends to zero. So for the co-existence of prey- predator populations along with effort 

dynamics, there is a restriction on value of cost ’c’ so that there can co-exist all the species with optimal level of 

harvesting effort. 
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