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Abstract

In this paper, a non-linear harvesting of prey is considered in a prey-predator system. The predator is considered
to be of modified Leslie- Gower type. The effort is taken as dynamic variable. The steady states of the system
are determined and the dynamical behavior of the system for its all steady states is discussed under certain
conditions. Necessary condition for global stability of the system is analyzed at the positive interior equilibrium
point. Numerical simulations are carried out to explore the dynamics of the system for the suitable choice of
parameters.
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1. Introduction

The ecological non-linear models of interacting populations have been studied extensively by many authors .In
recent years, the need for more food/ resources is growing at large scale, which has resulted in over exploitation
of several biological resources. Even there is a global concern to protect the ecosystem from exploitation at large
scale. Therefore, there is a need for a sustainable development policy in various spheres of human activity to
protect ecosystems. In particular, bio-economic modeling is concerned with scientific management of the
exploitation of renewable resources like fisheries and forestry. Hence harvesting of ecosystems has been of
interest to economists and ecologists. A harvesting policy refers to the management of biological resources by
systematically controlling the period, intensity and type of harvesting. The primary objective here is to maximize
productivity without depleting or driving the stocks to extinction. In recent years, many works on optimal
management of renewable resources are done. An excellent introduction to optimal management of renewable
resources is given by Clark [3] and also policies related to bionomic exploitations of renewable resources are
discussed by him. Harvesting has a strong impact on the dynamics of biological resources. The severity of the
impact depends on the nature of the implementation of harvesting strategy. Basically three types of harvesting
strategies are reported in literature (i) constant harvesting (ii) proportional harvesting, h(x) = qEx and (iii)
nonlinear harvesting, H(x) = qEx/(m1E + m2x) (Holling type-II. Many researchers have analyzed mathematical
models using non-linear harvesting by considering different type of growth depending upon the species and their
interactions [5, 6, 12] etc.

Zhu and Lan [16] studied Leslie- Gower model with constant harvesting in prey. Though there are
numerous works on predator- prey system incorporating the harvesting of the species. Leslie Gower predator
prey model and modified Leslie Gower predator-prey under the assumption of the nonlinear harvesting on prey
species has been studied by Gupta and Banerjee et al. [5]. But in this paper, we consider a dynamical reaction
model of modified Leslie Gower predator- prey incorporating the non-linear harvesting on prey where effort is
taken as a dynamic variable. The present paper deals with a dynamic reaction model in the case of a prey-
predator type fishery system, while the model we study here is especially based on a modified version of the
Leslie Gower scheme, where only the prey species is subjected to non- linear harvesting. The main aim of this
paper is to examine the effect of harvesting on such kind of prey - predator system with the effort dynamic which
can give the best possible benefit through harvesting to the society while preventing extinction of the species.

2. The Mathematical Model

Let x(t), y(t) and E(t) are the densities of prey, predator population and the harvesting effort at a time ’t’. The
Holling type- II functional response and non-linear harvesting is considered for a logistically growing prey
species and predator is assumed to be modified Leslie- Gower type. The mathematical model for the dynamics of
the system governed by the following system of differential equations:
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ax. e S 9L = xf(x, y, E),
dt k a + x mE + myx
d
dl = Sy(l— By j = yg(x,y),
2.1) t a+ x
E g — o) = mx, B,
dt mE + myx

x(0) >0, y(0)> 0, E(0)>0.

The constants 1, s, k, a, B, p, ¢, and 1 are the parameters assuming only positive values. The parameters r, s, k, a,
B, p, ¢, and m represents intrinsic growth rate of prey population, growth rate for the predator, environmental
carrying capacity, en-counter rate of predator to prey, maximum rate of the reduction of predator population,
price and cost per unit mass and stiffness parameter, respectively.

3. Uniform Boundedness

Theorem: All the solutions of the system (2.1) which start in the region R3 gre uniformly bounded.
Proof: let us consider a function ¢ (t) such that

(1) = x(1) + y(1) + ——E(1)
np

490 _ iy y 0+ ——E (1)
dt np

2
=rx(1—£j— xy__ gEx +Sy_sﬁy + arx _E
a+x mE+m,x a+x mE+m,x 1p

deo(t rx’ , sy>  CE

ﬂﬁ X —— +Sy—ﬁy -—

dt k a+k np
Introducing, a positive constant N and rewrite the above equation, we get

2

—di(t)+N¢(t)S((r+N)x—%J+((s+N)y—ﬁssz —(C_N)E

a+k
Let us ¢ > N, Then we have P

diﬁlﬁt)+N¢(t)s_£(x_k(r+N) Jz_ 5B (y_(s+N)(k+a)J2'+M

2r a+k 2sB
do(t 2 2 2 2
¢( )+N¢(t)SM, M= k (l"+2N) +(S+N)2(k2+a)
Solving a%{we inequality, we get 4r 4s ,B

0<limg(r) £ M
All the solutions of the system t(?fl) which Qart in the region R3 are confined in the region:
This proves theresult.

R={(x,y,E)e R;0< x(t)+y(z)+nLE(z)SM +4.0>0 }
p

4.Existence of Equilibrium Points
For the model (2.1), there exists six non-negative equilibrium points which are given below:
1. PO (0, 0, 0) is a trivial equilibrium point.
2. P1(k, 0, 0) is the axial equilibrium point on x-axis.
3. P2 (0, a/B, 0) is the axial point on y-axis in the absent of prey and harvesting.
4. p, E x, y .ds| boundary equilibrium point on xy-plane in the absence of harvesting effort. The
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equilibrium level X and Y are the solution of the following equations:

Fx[ 12|25V . By |_y
a+x a+x
| - 1 a )—} a+x
Solving, we get, X=rll=-— =
g g B

Point P{x,y.O) exists for rf>a.

5. (x 0 I boundary equilibrium point on xy- plane in the absence of harvesting effort. These equilibrium
level$\are the solution of the following equations:
R A é A
rxl—ﬁ—ax): q xA=0
a+x d E+ m, x
X
Ty
m, E+m, x
Solving, we get the values as: ;\c —l1- qL and E, _ L)Ac ; where [ = P4 =cm,
r(m,L+m,) cm,

P4

<
P{x,O,EJ is positive if r(mL+m,)>qL and € m,

6. is the unique interior point of the following equations:

rx*[l_x_J_ax y“_ qfx - :O;Sy*[l_ﬁ—y*J:O

k) a+x” mE +myx"
nE | —I _¢|=0
mE +m,x

| A | - yoare o ad gy
rB r(mL+m,) yi)

PS(x*ﬂy*’E*)

X and ¥ are positive for qL <1 and E is positive for c <ﬂ

+—
rB r(m,L+m,) m,

6. Local Stability of Various Equilibrium Points

Here we discuss the local stability conditions for feasible equilibrium points of the system (2.1) based upon the
standard linearization technique and then using the well-known Routh- Hurwitz criterion to determine the nature
of eigenvalues of the Jacobian matrix evaluated at the equilibrium point[10]. The Jacobian matrix of the system
(2.1) at any point (x, y, E) is given by:

[ oar of or |
X — + £ X — X —
ox dy oF
8g Jdg Jdg
) 1E = - —
J(x, v, E) y == yay+g -y
8]7 Ea_h Eah 5
i BX 04 0F ]
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J(x, 5, E) =

Ir
x| - —+
-

ay qbm,
(a+x)?  (mF + myx)
Bsy’
(a + x)°
mlf]pqEz

(mE + myx)’

|+

£ - ax

a+ x

Bsy

a+ x

D'
myq| ———
’ mE + myx

0

B mnpalx
(mE + myx)

+ A

T

6.1. Stability of point (0, 0, 0);
The Jacobian matrix evaluated at the equilibrium point Py (0, 0, 0) is given by :

-r 0 0
J,(0,00)=] 0 s 0
0 0 —nc

=-r<0,4,=5>0
a

The eigen values of S evaluated at equilibrium point (0, 0, 0) are /11 nd

Ay =1 < 0. Hence the origin (0, 0, 0) is a saddle point with unstable manifold in y direction and stable
manifold in x as well as in E-direction.

6.2. Stability of point (k, 0, 0);
The Jacobian matrix evaluated at the equilibrium point P, (k, 0, 0) is given by:

_, ZOk -4
a+k m,
J (£,0,0)=| 0 K 0
0 0 n[ﬂ ] j
m,
The eigen values of J) evaluated at equilibrium point (k, 0, 0) are 2" =-r<0, /12 =s5>0 and
1. =n| P41 _ _
2 =7 ( m, ¢ J . The equilibrium point (k, 0, 0) is saddle point as /12 s>0 with uﬁable
<c
m,

manifold in y- direction and stable manifold in x-direction and also in E-direction if

6.3. Stability of point (0, a/3, 0);
The Jacobian matrix evaluated at the equilibrium point P, (0, a/p, 0) is given by:

2 0 o

B

a -5
7,0, L0=| =X -5 o

B B
0 0 -—-nc

a — —
"l%b e_ig]én_v%es of J2 evaluated at equilibrium point (k, 0, 0) are XZ __S<0’% =<0 and

A /11 <0, then the equilibrium point P, (0, a/B, 0) is locally asymptotically stable.
Otherwise, it is a saddle point with an unstable manifold in x-direction and stable manifold in y as well as in E
direction.

Pl x,y.0
6.4. Stability of point " (x Y j:
The Jacobian matrix evaluated at the equilibrium pointp3 (;}7 J', .oj is given by:
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- r a 'y - x - q
X| — ; +
(a + x)° a+ x M
, .
Jo(x, v,0) = Py Bs v 0
(a + x)° a+ x
0 %éq_cJ
iy
. . . _J(x,0,0) .
The characteristic equation associated to the matrix yields the eigen values as follows:
( Vosgry . | V. ai )| ,spry  amd
2 =i_,_5.+5ﬂ_"':‘i (i_,,_.s_rax_i_i‘sﬂx_} an A,=1 Pq—cw
B ) a+x A ) a+x) a+x \ M2 J
sBxy a p
@1 If ﬁ—ya'né r+s8—— then_t‘g_e &qéilibrium point B is locally
a+x B e
asymptotically stable. It is a saddle point with an unstable manifold in E-direction for pgq
. . . Y >c
For P9 _ c there is a chance of bifurcation. m
21 _ 2

m,

The Jacobian matrix evaluated at the e

6.5. Stability of equilibrium point p, g x ,0, E

uilibriurj poinP, ( x,0,E ) is given by:

A A A 2
e IR B
A k (m E+m,x)* ) a+x m, E+m, x
J,(x,0,E)= 0 A2 s 0 )
_mipgE 0 mipgE x
(m, E+ m, )Ac)2 (mE+m, )Ac)2
Corresponding to equilibrium point ¥ , one of the eigen value is /17 =s>0 , and the other two can be
A A 2]
x —%Jf 420, o —
J*4(;,O,ZA?)= (mlE+2n12x) m E+m,x
mlﬂpqg _ mlﬂpqE;
(m, E+m, x)° (mE +myx)" |

obtained as the eigen values of the following 2x2 matrix:

If (1) Tr( J 4 )< 0, the the point £ is a saddle point. (ii) If Tr( J 4 )=0, the we get pair of imaginary roots which
shows that there is a case of hopf bifurcation.

6.6. Stabili Interior Equilibrium Point B %
ability of Interior Equilibrium omps(x y ,E()* o

Theorem: The unique positive interior equilibrium XLy,E
condition (6.1) is satisfied. . s
The Jacobian matrix evaluated at the equilibrium point s (x v L E is)given by:

) is asymptotically locally stable provided
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E -
=+ ay*z+ =" X g ———
k (a+x) (mE +m,x) a+x mE +m,x

%2

Iy E) = By P 0
(a+x) a+x
*2 * *
m7pqE 0 _ mpqE x
(mE" +m,x")’ (mE" +m,x")’

The characteristics equations of the above Jacobian matrix about the equilibrium point P, (x* , y* JET )
is given by:
A+ AV + 4,4+ 4,=0,
where
4, =—(a, +ay +ay)
4, = aynay +(a,,a5; —aiay) +(a,,a, —a,a,)
Ay = ay,ay,055 — 0,050, — 430545,

Using Routh- Hurwitz Criteria, the conditions for local stability of point Ps are
A1>0, A2>0 and A1A2-A3> 0

Notethat A>0if =7 @y gE'my _, (6.1)
k (a+x") (mE +myx")’

Also, A,>0 and A;A,-A3>0 for the condition (6.1)

Thus, the interior equilibrium point e is locally asymptotically stable for the sufficient condition (6.1).

7. Global Stability
Theorem: The interior equilibrium point (x*, y*, E*) is globally asymptotically stable.

Proof: Consider a Lyaponov function V (X, y, E) such that:

* * X * E
V(x,y,E)=do[(x—x )-x logf}ﬂl{(y—y )- E}
As 'V (X, y, E) is zero at the equilibrium point (x*, y*, E*) i.e.,

and positive for all other values of (x, . E) 5
L L N S L Ny 2
N .

A ’\. )
= c(x—x' -2 |- 2 9 +d1(«"_,\" s—ﬁi +d«(E—E' _awx .
k a+x mE+m,x a+x N mE + m,x
d—V=d°(x—x'):[£— ay _ qE }Jx—x Xy—y )[_ domc' . dls,BEs ]

y{}dz[(E—E*)—

V(x',y' ,E)=0

dt k (a+:(Xa+x') (mlE-}-m:x'XmlE' +m:x‘) (a+x) a+x
- dygx" +d,gpE’ e o) dsBly-yf  dygpe’(E-EY
(m E+m, r)(m E +m, r')(x ! XE E ) a+x (mlE + m:x)(mlE' + m:x')
av « o’ qE a’lsﬂ(y—y:) a’aqpx'(E—E')'
Y e T2 ' P dorler)
dt Tk +at\)(t(z m1E+m x 1 é D+ myx ) atx (m,E + myx)m E™ +myx )
Let dy =1 d, = and 2
qpE”
av £ ay' E’
220 it r_ ) _ q. 0 (7.1)
dt b k (a+x)a+x") (m1E+m2me1E'+m:x')>

Thus, interior equilibrium point (x", y", E") is globally stable for the above condition (7.1).
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8. Numerical Simulations
In this section, numerical simulations are carried out for different choice of parameters to investigate the
dynamic behavior of the system. We start the numerical investigation keeping all the parameters fixed except ‘c’.

Letr=0.5, k=100, o=0.005, m; =0.5, m;=0.5, q=0.15, a=3, s=1, B=0.15, 77:1, p =5;

A 100 (8 700
600t
8ot
prey 'x’ 500
Predator’y’ | |
60
| 400
' /“‘
a0t 300
o 20 40 60 80 100 120 140 160 180 200 o 20 40 60 80 100 120 140 160 180 200
Time't’ Time't
© 401
c=1.6
30+ ——c=1.5
c=1.4
20
EffortE’ —c=1.3
10f —c=1.2
¥ —_c=1.1
% 20 40 60 80 100 120 140 160 180 200 —c=1

Figure 1: Time series analysis of prey population, predator population and Effort ’E’ for different value of
cost ’¢’ with initial level (40, 350, 10).

(A) (81.3332; 562.2056, 20.333) ®
N

2 (93.3340, 642.2877, 0.0000)

N

Figure 2: Phase portrait of prey population, predator population and Effort ’E’ for different initial level
corresponding (A).c=1.2 and (B). c=1.8

In the figure-1, diagrams (A), (B) and (C) give long term behavior of trajectories of prey- predator
populations and effort ’E’ w.r.t time ’t’. which shows that for the initial condition (40, 350, 10) in the interior,
for the different value of cost ’c’ and keeping other parameters fixed, all the trajectories converges to its interior
equilibrium point which means that interior equilibrium is asymptotically locally stable provided 0 < ¢ < 1.5.
Also, we see that as the value of cost ’c’ will start increase then eventually harvesting effort will start decrease
and in resulted prey population increases as well predator population also. But, for ¢ > 1.5 effort ’E’ will tends to
Zero.

Figure-2(A) represents phase plane trajectories of species X, y and effort E with the different initial
levels which represents that the interior point (x*, y* E*) = (81.3332, 562.2056, 20.333) is asymptotically global
stable for ¢ = 1.2 as 0 < ¢ < 1.5 for the existence of interior equilibrium point. The figure-2(B) represents phase
plane trajectories of different biomasses with the different initial levels at the interior which converge to the
point (93.3340, 642.2877, 0.0000) on the boundary plane i.e., x-y plane corresponding to ¢ = 1.8 for the
condition ¢ > 1.5, keeping other parameters fixed.. Therefore, for the condition ¢ > 1.5, it shows that for the
every initial points on the x - y - E space converge to the point on x - y plane asymptotically which means that
there is on harvesting of the prey population for this condition as it is not profitable to fishermen to do harvesting.

5. Conclusion

This paper is concerned with the study of nonlinear harvesting and the conservation of ecological resources for a
two-dimensional prey predator type dynamical system. We have considered a prey predator model with Holling
type-II functional response and nonlinear harvesting of prey. The harvesting effort is taken as a dynamic variable.
The conditions for existence and local asymptotic stability of various equilibrium points have been examined. It
is established that the coexistence of prey and predator population depends upon the proper harvesting strategies
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and hence we can avoid the risk of extinction or over exploitation of the species. By analytical and numerical
results, we have examined that for fixed value of price ’p’ per unit mass and other parameters, as the value of
cost ’c’ is increasing, then harvesting level will start to decrease. after a time, we will find a level of cost ’c’
where harvesting effort will tends to zero. So for the co-existence of prey- predator populations along with effort
dynamics, there is a restriction on value of cost "¢’ so that there can co-exist all the species with optimal level of
harvesting effort.
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