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ABSTRACT 

In this paper, continuous Linear Multistep Method (LMM) for the direct solution of fourth order initial value 

problems in ordinary differential equation is derived. The study provides the use of both collocation and 

interpolation techniques to obtain the schemes. Direct form of power series is used as basis function for 

approximation. An order six symmetric and zero-stable method is obtained. To implement our method, 

predictors of the same order of accuracy as the main method were developed using Taylor’s series algorithm.  

This implementation strategy is found to be efficient and more accurate as the result has shown in the numerical 

experiments. The result obtained confirmed the superiority of our method over existing schemes 

Keywords: Direct method; Fourth order; interpolation; collocation multistep methods,;power series; 

approximate solutions. 

Introduction 

In this article, the direct method of solving a fourth order initial value problems in ordinary differential equations 

of the form: 

0 1 2 3( , , ', '', '''), ( ) , '( ) , ''( ) , '''( )ivy f x y y y y y a y y a y a y a       ,     where  , ,a y f R    (1)                                                                                                                                            

This class of problem has a lot of applications in sciences and engineering especially in control theory, hence the 

study of the methods of solution is of great interest to researchers. 

 The conventional method of solving(1) is to first to reduce it to a system of first order differential equation .The 

approach of reducing to a system of first order has very serious drawback which includes wastage of human and 

computer time due to complicated computational work and lengthy execution time[1-5], 

Direct method of solution of (1) using implicit linear multistep method has been found to be more more efficient  

in terms of speed and accuracy  than the method of reduction to a system of first order ordinary differential 

equation[6-7]. Implicit linear multistep method is chosen because it has better stability properties than the 

explicit methods. 

 Direct method of solving higher order ordinary differential equations by continuous collocation multistep 

methods have been extensively discussed in [1,2, 7,9].    

  Several continuous LMM have been developed for the direct solution (1) (see [10-14] 

The methods developed by some of these authors were implemented in predictor –corrector mode while those of 

the others were combined with additional methods obtained from continuous k-step LMMs to solve fourth orders 

ODES directly. Although the predictor- corrector methods yielded good results, the major setback of the method 

is that, apart from the inherent computational burden, the predictors which were developed have reducing order 

of accuracy. 

In this paper therefore, we proposed a continuous LMM implemented in predictor-corrector mode using 

predictors of the same order of accuracy as the main method. 

These authors in [10-14], have used a collocating function of the form: 
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In this work, we proposed a basis function of the form: 
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                                                                                   (3) 

This is of the type in (2).  The use of the above power series as basis function for approximate solution will 

enable us to derive continuous LMM of various orders and consequently the discrete formulae are obtained. 

This paper is organized as follows: Section 2 considers the derivation of the methods and materials; Section3 

considers the analysis of the basic properties of the method while Section 4 considers the implementation 

strategy and numerical experiments to test the efficiency of the new method. 

2.0 Derivation of the Method 

In this section, we shall approximate the exact solution  ( )y x  by  a polynomial of degree M of the form: 

                     0

( ) ( )
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j j

j
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                                                                                                 (4)

 

 

                                                                                                                                                                                                                

where           ( )j x  ( ) j

kx x ,  hence 

                 0

( ) ( )
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Y x a x x


                                                                                                (5)                                                                                                                  

We shall construct a k-step multistep method through collocation and interpolation techniques by imposing the 

following conditions     

                        
( ) , 0(2) 1k j k jY x y j M   

                                                                        (6)                                                                                                                                           
      

                          
( ) , 0(2)k j k jD x f j M  

                                                                           (7)                                                                            
 

           Substituting (4) into (7) yield                

                   

4

4

( 1)( 2)( 3) ( ) ( , , ', '', ''')
M

j j n i

j

j j j j a x f x y y y y  



   
                            (8)                                                                                                    

                                                               

           By interpolating (4) at , 2(1) 1k ix x i M    and collocating (7) at  

       2, 4 6,k k kx x x x    we obtained the system of equations as follows : 

                   4

4

( 1)( 2)( 3) ( )
M

j j k i k i

j

j j j j a x f   



                                                       (9) 

                   0

( )
M

j j k i k i

j

a x y  




                                                                                           (10) 

By solving the system above for the  'ja s   , 0(1)j M  and substituting into (5) for 6M  ,we obtain the 

polynomial                                                          

http://www.iiste.org/


Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 

Vol.5, No.5, 2015 

 

133 

2 2 3

22

1 480
( ) 2880 22560 ( ) 5760( ) ( )

2880
k k k kY x h h x x x x x x y

h h


 
       

 
       

2 2 3

32

2 2 3

42

2 2

52

1 1440
57600 54720 ( ) 15840( ) ( )( )

2880

1 1440
43200 44640 ( ) 14400( ) ( )( )

2880

1 480
11520 12480 ( ) 4320( ) ( )( )

2880

1

2880

k k k k

k k k k

k k k k

h h x x x x x x y
h h

h h x x x x x x y
h h

h h x x x x x x y
h h

h







 
       
 

 
      

 

 
       
 

6 5 4 2 3 3

62 2 4 5 6

6 5 4 2 3 3

42 2 4 5 6

2

840 598 ( ) 239 ( ) 340 ( )

120 ( ) 18 ( ) ( )

13200 13100 ( ) 2642 ( ) 1040 ( )1

2880 480 ( ) 60 ( ) 2( )

2041

2880

k k k

k

k k k

k k k

k

k k k

h h x x h x x h x x
f

h x x h x x x x

h h x x h x x h x x
f

h h x x h x x x x

h





       
 
       

      
 
       

6 5 4 2 3 3

22 4 5 6

0 5978 ( ) 5639 ( ) 2380 ( )

480 ( ) 42 ( ) ( )

k k k

k

k k k

h h x x h x x h x x
f

h x x h x x x x


      
 
       

               (11) 

            Evaluating (11) at 6kx x   , we obtained the discrete scheme: 

           
4

6 5 4 3 2 6 4 24 6 4 22
24

k k k k k k k k
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y y y y y f f f                                                  (12) 

 

 

 

 

 

3.0            Analysis and Implementation of the Method      

The main method is a specific member of the conventional LMM which can be written as  

                                
4

0 0

k k

j n j j n j

j j

y h f  

 

  .                                                                                 (13)  

And can be written symbolically as  

                0)()(  n

n

n fEhyE   , ),( nnn yxff   .                                                               (14)                                                                                      

where E is the shift operator defined  jnn

i yyE   and )(E  and )(E  are respectively the first and second 

characteristics polynomial of the LMM defined as 

              ,)(
0
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Following [ 15,16]  we define the linear operator associated with the method (12) as 
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                                               (15) 

where  the function ( )y x  is assumed to have continuous derivatives of sufficiently high order. Therefore 

expanding (15) in Taylor series about the point  to obtain the expression  

                2 2
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 In the sense of  [15] ,we say that the method (12) is of order p and error constant 2pC  if  

             0,0... 21210   ppp CCCCCC
..         

This concept is used to calculate the order and error constant of the method (12). 

The order of the six-step method (12) is p =6 and error constant 2

31
0.043055555.

720
pC 


    

  3.1    Zero stability of the six –step method 

Given that the first characteristics polynomial of (12) is: 

          
6 5 4 3 2( ) 4 6 4 0r r r r r r        , . 

   On solving ( )r
,  we obtained   

2 4( 1) 0.r r  
.
 

Therefore 0,1,1,1,1r  . Thus ( ) 0r   satisfies 1, 1,...,jR j k  . That is the roots lie in the unit circle 

and the multiplicity of | | 1r   did not exceed four.  Hence the method is zero stable. 

3.2         Interval of absolute stability of the six-step method  

   The first and second characteristics polynomials of the method (3.6) are given as  

   
6 5 4 3 2( ) ( 4 6 4 )r r r r r r        ,  

6 4 21
( ) ( 22 )

24
r r r r    . 

    

6 5 4 3 2

6 4 2

( ) 24( 4 6 4 )
( ) .

( ) ( 22 )

r r r r r r
h r

r r r r
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    By letting  
ir e  ,where cos sinie i     ,then 
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     By setting  ( ) 0y    , we have 

    

24(134 184cos 56cos 2 8cos3 2cos 4 )
( ) .

486 88cos 2 2cos 4
x

   


 

   


 
  

Thereof re evaluating ( )x  for 0 180    in the interval of 30 ; we have  

The interval of absolute stability of the six –step method is (0, 16) 

 

3.3   Consistency of the method 

An LMM is said to be consistent if it has order  p≥1. Hence our method is consistent. 

3.4     Convergence 

The basic property which is demanded of an acceptable LMM is that it solution 
 ny

generated by the method 

converges to the theoretical solution 
( )y x

 as the step-length tends to zero. 

An LMM is convergent if and only if it is consistent and zero stable. The method (12) is  consistent, zero stable 

and hence convergent. 

 

4.0      Implementation 

Consider the initial value problem in (1). For our method of order p =6, we shall develop the predictors of the 

same order of accuracy by using Taylor series expansion of the form 

       ' '' '''
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where    , , ', '', '' ' '' '''
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' '' '''( , , , , ) .j j j j j jf x y y y y f  

          ( ' '' ''' )
' '' '''

D y y y f
x y y y y

    
    

    
    ,  

2 ( )D D D        

 and p is the order of the method.                     

4.2 Numerical Experiments 

Our methods of order p = 6  was used to solve some initial value problems of both general and special nature 

using Taylor’s series. Our results were compared with the results of other researchers in this area as seen in 

table1. In tables 2 and 3,the  accuracy  of our method is seen in the small  error values  

The following initial value problems were used as our test problems: 
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  Problem 1 

    

'''y x

      

, (0) 0y 

   

, '(0) 1y  , ''(0) 0y  , '''(0) 0,y 

 

0.1.h    

     Theoretical solution: 

2

( ) .
120

x
y x x  . 

 Problem 2: 
 

            

2 3 4

2

(8 25 30 12 )
''''

(1 )

x x x x
y

x

    



     , (0) 0y   , '(0) 1y   , ''(0) 0y   , '''(0) 3y    ,                

                     0.103125h   

 

Theoretical solution: ( ) (1 ) .xy x x x e  . 

 

 Problem 3: 

.         
1.1 1.2 0.1

''' '', (0) 0, '(0) , '' , .
72 50 144 100 32

y y y y y h
 

     
 

   

      

Theoretical solution: 
1 cos 1.2sin

( ) .
144 100

x x x
y x



  



 

      

    

       Problem 4: 

        
( ) 4 '' 0ivy y      (0) 1, '(0) 3, ''(0) 0, '''(0) 16y y y y      , 0 1x    0.1.h   

        Theoretical solution: 
2 2( ) 1 .x xy x x e e     

          

 Table 1: Result for test problem 1:     (h=0.1) 

 

X Exact solution New result 

(k=6,p=6) 

Errors in[13]      (P=6) Errors in our new 

result (k=6,p=6) 

0.1 0.1000000848E+00 0.1000000848E+00 7.000000024E-10 0.00000E+00 

0.2 0.2000026696E+00 0.2000026696E+00 8.999999912E-10 0.00000E+00 

0.3 0.3000262545E+00 0.3000262545E+00 2.599999993E-09 0.00000E+00 

0.4 0.4000853393E+00 0.4000853393E+00 5.100000033E-09 0.00000E+00 

0.5 0.5002604241E+00 0.5002604241E+00 7.799999979E-09 0.00000E+00 

0.6 0.6006480090E+00 0.6006480090E+00 1.180000009E-08 1.11022E-16 

0.7 0,7014005939E+00 0,7014005939E+00 1.240000003E-08 3.33067E-16 

0.8 0.8027306788E+00 0.8027306788E+00 1.410000006E-08 5.55112E-16 

0.9 0.9049207638E+00 0.9049207638E+00 1.880000000E-08 9.99201E-16 

1.0 0.1008333349E+00 0.1008333349E+00 2.600000015E-08 1.55431E-15 
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Table 2: Result for test problem 2:      (
1

).
320

h   

X-value Exact solution New result(k=6,p=6) Error in[14]  

 (p=7) 

Error in our New 

result (k=6,p=6) 

0.003125 0.3124984756E-02 0. 3124984756E-02 1.990205E-14 2.4874E-14 

0.006250 0.6249877513E-02 0.6249877512E-02 6.379298E-13 7.9720E-13 

0.009375 0.9374585568E-02 0.9374585562E-02 4.852393E-12 6.3116E-14 

0.001250 0.1249901545E-01 0.1249901542E-01 2.048206E-11 4.4102E-12 

0.015625 0.1562307290E-01 0.1562307282E-01 6.261025E-11 5.7680E-12 

0.018750 0.1874666289E-01 0.1874666270E-01 1.560543E-10 1.4918E-11 

0.021875 0.2186968961E-01 0.2186968919E-01 3.378600E-10 9.1931E-11 

0.025000 0.2499120564E-01 0.2499120556E-01 6.598189E-10 2.7786E-10 

0.028125 0.2811366598E-01 0.2811366450E-01 1.191010E-09 6.4684E-10 

0.031250 0.3123442003E-01 0.3123441752E-01 2.020367E-09 1.2977E-09 

 

Table 3 : Results of test problem 3 :   ( 0.103125)h   

X-value Exact solution New result (p=6) Errors in (p=6) Errors in [11]  

      (P=6) 

0.103125 0.11192647E+01 0.11192647E+01 2.11164E-13 4.68429E-12 

0.206250 0.12715995E+01 0.12715995E+01 5.69866E-12 2.06871E-10 

0.306250 0.14582861E+01 0.14582861E+01 6.80311E-10 9.04219E-10 

0.406250 0.16807458E+01 0.16807456E+01 2.20723E-09 2.91379E-09 

0.506250 0.19405540E+01 0.19405533E+01 1.27407E-08 7.51140E-09 

0.606250 0.22394574E+01 0.22394562E+01 3.45612E-06 1.62313E-08 

0.703125 0.25793924E+01 0.25793915E+01 6.55238E-06 3.22371E-08 

0.803125 0.29625057E+01 0.29625076E+01 9.58653E-06 5.88918E-08 

0.903125 0.33911774E+01 0.33911869E+01 1.04933E-06 1.00799E-07 

1.031250 0.38680458E+01 0.38680722E+01 5.69624E-06 1.63736E-08 

 

Table 4 : Results of test problem 4  : 
1

( ).
320

h   

 

 

 

 

 

 

 

 

 

Conclusion 

We have developed a k-step linear multistep method (LMM) and implemented same using predictors of the 

same order of accuracy. A new scheme of order p=6 is obtained which was applied to solve some special and 

general fourth order initial value problems in ordinary differential equations. Evidence of the better accuracy of 

our method over existing methods is as given in Tables 1,  

2, 3 and 4 respectively. 

X-value Exact solution  New results of our 

method(k=6,p=6) 

  Errors in the    

new results 

(k=6,p=6) 

0.003125 0.100937508152E+01 0.1009375082E+01     0.00000E+00 

0.006250 0.101875065133E+01 0.1018750651E+01     0.00000E+00 

0.009375 0.102812719772E+01 0.1028127198E+01     2.22045E-16 

0.001250 0.103750520906E+01 0.1037505209E+01     2.44249E-15 

0.015625 0.104688517372E+01 0.1046885174E+01     1.15463E-14 

0.018750 0.105626758020E+01 0.1056267580E+01     3.30846E-14 

0.021875 0.106565291706E+01 0.1065652917E+01     7.28306E-14 

0.025000 0.107504167299E+01 0.1075041673E+01      1.37002E-13 

0.028125 0.108443433682E+01 0.1084434337E+01      2.30926E-13 

0.031250 0.109383139751E+01 0.1093831398E+01      3.60822E-13 
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