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Abstract  
This paper proposes an algorithm for the estimation of the parameters of logistic regression analysis using 

Jackknife. Jackknife delete-one and delete-d algorithm was used to provide estimates of logistic regression 

coefficient. The Jackknife standard deviation provides an estimate of variability of the standard deviation 

of sample and it is a good measure of precision. The method was illustrated with real life data; and the 

results obtained from the Jackknife samples was compared with the result from ordinary logistic regression 

using the maximum likelihood method and results obtained reveals that the values from the jackknife 

algorithm for the parameter estimation, standard deviation and confidence interval were so close to the 

result from ordinary logistic regression analysis, this provides a good approximation to the result which 

shows that there is no bias in the jackknife coefficients. 
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INTRODUCTION  
Sometimes one may be interested in situations where one is trying to predict whether something happens or 

not. For example a patient survives a treatment or not, a person contracts a disease or not, and a student 

passes a course or not. These are binary measures. Logistic regression regresses a dichotomous dependent 

variable on a set of independent variables, especially where the data set is very large, and the predictor 

variables do not behave in orderly ways, or obey the assumptions required of ordinary linear regression or 

discriminant analysis (Michael, 2008; Russell and Chritine, 2009; Ryan, 1997). Logistic regression applies 

maximum likelihood estimation after transforming the dependent variable into a logit variable which can be 

used to determine the effect of the independent variables on the dependent variable using the maximum 

likelihood estimation method (Russell and Chritine,2009).This is accomplished using iterative estimation 

algorithm. Jackknifing is used in statistical inference to estimate the bias and standard error when a random 

sample of observation is used. The basic idea behind the jackknife estimators lies in systematically 

recomputing the statistic estimate leaving out one or more observations at a time from the sample set. From 

this new set of replicates of the statistic, an estimate for the bias and an estimate for the variance of the 

statistic can be calculated. (Efron,1982; Efron and Tibshirami,1993) 

 

MATERIALS AND METHOD  
Material: The aim of this paper is to illustrate the Jackknife logistic regression parameter estimation. The 

data used is a secondary data collected from the delivery ward of general hospital Onitsha, Anambra state, 

Nigeria. Here, Maternal age, Parity, and babies Sex were considered as independent variables in order to 

determine their effect on the gestation period of n = 256 mothers. R programming language was used for 

the statistical analysis of these data. 

 
 

1    JACKKNIFE DELETE-ONE ALGORITHM 
 
The jackknife delete-one procedure is as follow: 
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Step1:   Given a randomly drawn n sized sample from population consisting of a dichotomous dependent 

variable and label the element of the vector ( )′= jiii XYZ ,  

where  ( )′= ni yyyyY ,...,,, 321   and the matrix ( )1 2 3, , ,...,ji j j j jnX x x x x=
′
; 1, 2,3,..., ,j k= and 

.,...,3,2,1 ni =  

Omit first row of the vector ( )′= jiii XYZ , and label the remaining 1−n sample sized observation sets 
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ji xxxX ,...,, 32  as the first delete-one jackknife 

sample
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Z1 , and estimate 1( )ˆ Jβ coefficient from
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Z1 using the maximum likelihood estimate of the 

logistic regression model in the Jackknife sample (Efron,1982; Sahinler and Topuz, 2007). The maximum 

likelihood estimate of iβ  in the logistic regression model are those values of iβ that maximize the log-

likelihood function 
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Where Yi are ordinary Bernoulli random variables with expected values ( )i iE Y π= , 
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Since each Yi observation in an ordinary Bernoulli random variable, where 

P (Yi  = 1) = iπ  

P (Yi  = 0) = 1 - iπ  

then, its probability distribution can be represented as 

          
1( ) (1 ) ,    Y 0,1; 1i iY Y

i i i i if Y i nπ π −= − = = L  

 
Since Yi observations are independent, their joint probability function is  
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To find the maximum likelihood estimates we take the log of both sides 
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Therefore, the log likelihood function for multiple logistic regression is  
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Step2: 
 

Computer intensive numerical search procedures are employed to find the values of 110 ,...,, −pβββ that 

maximize log ( β ) using the Gauss Newton method. These maximum likelihood estimates will be denoted 

by ,.,...,,, 1210 −pbbbb   
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The fitted logistic response function and fitted value can be expressed as 

[ ] 1exp( )
ˆ( ) 1 exp( )
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Here standard statistical R codes and minitab package were used for logistic regression to conduct the 
numerical search procedure by iteratively re-weighted least squares for the maximum likelihood estimates. 

 

step3: 

Iterative Procedures: 
 
a. Obtain starting basic values for the regression parameters denoted by b(0). This can be obtained by 
ordinary least squares regression of Y on the predictor variables using a first-order linear model. 

   
b. Using these starting values, obtain  

 

                              [ ] ii xb
′=′ )0()0(π̂         (7) 
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C. Calculate the new response variable 
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And the weights [ ])0(ˆ1)0(ˆ)0( iiWi ππ −=  

 

d. Regress )0(Y ′  in (equ. 10) on the predictor variables 1,...., −pi XX  using re-weighted least squares for 

the maximum likelihood estimates to obtain b (1).Repeat step (a) through (d) using the latest revised 
estimated regression coefficient until there is little if any change in the estimated coefficients which leads to 
convergence (Neter et al,1996; Hamadu, 2010; Ryan,1997) 

 

Then, omit second row of the vector ),( ′= jiii XYZ and label the remaining 1−n  sample size 

observation sets as ,
)(

2

J
Z estimate 

)( 2ˆ Jβ  coefficient from 
)(

2

J
Z  using the maximum likelihood estimate 

of the logistic regression also. Alternatively, omit each row of the observation set and estimate the 
)(ˆ iJβ  

coefficient using maximum likelihood estimate of the logistic regression. Where 

( )′= ni yyyyY ,...,,, 321 and the matrix of the independent variable ( )1 2 3, , ,...,ji j j j jnX x x x x=
′
 and 

)(ˆ iJβ  is jackknife logistic regression coefficient vector estimated after deleting the ith observation sets from 

Zi.    

 

Step4: 

Obtain the probability distribution F (
)(ˆ iJβ ) of jackknife estimates 

)( 1ˆ Jβ , 
)( 2ˆ Jβ , …,

)(ˆ nJβ   

 
Step5: 

Calculate the jackknife regression coefficient estimate which is the mean of the F (
)(ˆ iJβ ) distribution as; 
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Step 6 

The delete-one jackknife logistic regression equation is thus,  [ ] 1)( )exp(1ˆ −
−+= XbY J

where b(J) is the 

unbiased estimator of β . 

 

2    JACKKNIFE DELETE-D ALGORITHM 

Steps to the jackknife delete-d are as follows: 
Step1: 

Given a randomly drawn n sized sample 1 2( , , , )nZ Z ZL from a population,  

divide the sample into "S" independent group of size d. 

 

Step2:  
Omit first d observation set from full sample at a time and estimate the logistic regression coefficient using 
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likelihood estimate 
)( 2ˆ Jβ  from ( )n d−  sized remaining observation set. the maximum 

 

Step3: 

Omit second d observation set from full sample at a time and estimate the logistic regression coefficient 
)( 2ˆ Jβ  from 

( dn − ) sized remaining observation set. 

 

Step4:  

Alternately omit each d of the n observation sets and estimate the coefficients as 
)(ˆ kJβ , where 

)(ˆ kJβ   is the 

jackknife regression coefficient vector estimated after deleting of kth d observation set from full sample. 
Thus,  
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delete-d jackknife sample are obtained , K=1,2,...,S. 

 

Step 5: 
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Step 6: 
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The jackknife confidence interval  
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(Efron, 1982; Sahinler and Topuz, 2007) 
 
Illustrative example  
The logistic regression model was fitted in the data in the table 1 regressing gestation period on mother age, 
parity and babies’ sex. 
 

 

 1 2 3 4 …… 254 255 256

Gestation period Y 1 0 0 1 ….. 0 1 0

Mother Age 27 30 30 25 … 36 30 31

Parity 5 1 1 2 …. 2 5 6

Baby Sex 1 0 1 1 …. 1 0 1
 
Table 1: The data used in calculation of logistic regression and Jackknifes' results with n=256  
 
Let Yi be the response of the i

th randomly selected subject (gestation period) which assumes values of either 
1 (positive response) or 0 (negative response) for i= 1, 2, ,n. 
 

 
 
Let X1, X2  and X3 be independent variables mothers age, parity and sex of the baby respectively, where 1 represent 
baby boys and 0 represent baby girls. 

 

 

Results: 

 
First, logistic regression model was fitted to the data in (Table1) and the results was summarized in the 
(Table 2) below. The regression model is significant as the P-value is 0.000 that is (P < 0.05). 
 
The jackknife samples are generated omitting each d=1 or 2 or 3 sample(s) respectively of the n=256 

observation sets and estimated coefficients as
)(ˆ Jβ . 

 

Variable Ord. J( β̂ ) S.E( β̂ ) P-value 95% conf. Interval 

Constant ( 0β̂ ) 0.555092 0.856362 0.517 Lower          upper 

Mother’s age ( 1β̂ ) -0.0601875 0.0321786 0.061 0.88           1.00 

Parity ( 2β̂ ) 0.407925 0.0899854 0.00 1.26           1.79 

Baby’s sex ( 3β̂ ) -0.0108895 0.268384 0.968 0.58            1.67 

 
Table 2: The summary statistics of regression coefficients for binary logistics regression 
 
Log-likelihood = -164.996  
Test that all slopes are zero:  G= 23.335 df= 3 and P-value=0.000 
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    r      Variables    1    2    3   …  256 
J

0β̂  
J

1β̂  
J

2β̂  
J

3β̂   

            

1 Gestation  1 1 … 1      

 mother age  23 38 … 27 0.4583 -0.0573 0.4139 0.0089  

 Parity  3 6 … 5      

 Babysex  0 1 … 1      

2 Gestation 1  1 … 1      

 mother age 33  38 … 27 0.5472 -0.0591 0.4036 -0.0237  

 Parity 5  6 … 5      

 Babysex 1  1 … 1      

4 Gestation 1 1  … 1      

 mother age 33 23  … 27 0.5302 -0.0589 0.4017 -0.0018  

 Parity 5 3  … 5      

 Babysex 1 0  … 1      

. . . . . … . . . . .  

. . . . . 
 

. . . . .  

. . . . . . . . . .  

256 Gestation 1 1 1 …       

 mother age 33 23 38 …  0.5334 -0.0589 0.4036 -0.0187  

 Parity 5 3 6 …       

 Babysex 1 0 1 …       

       0.5552 

-0.0602 

   0.4080 

   -0.0109 

 

         
)(ˆ iJβ          

Table 3: The illustration of the Jackknife delete-1 logistic regression procedure from the data in Table 1 for the 

estimation of the regression parameters 

 
 

 Constant 

( 0β̂ ) 

Mother’s age 

( 1β̂ ) 
Parity ( 2β̂ ) Baby’s sex ( 3β̂ ) 

Ordinary logistic coef. 0.55509 -0.0602 0.40793 -0.0109 

Delete-1 jackknife coef. 0.55519 -0.0602 0.40797 -0.0109 

Delete-2 jackknife coef. 0.5553 -0.0607 0.40809 -0.0109 

Delete-3 jackknife coef. 0.5554 -0.0602 0.40805 -0.0109 

 
Table 4: The summaries of ordinary logistic regression and the jackknife results of  

delete-1, delete-2 and delete-3 values of logistic regression coefficients 
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var. ord.S.E del-1 S.E del-2 S.E del-3 S.E Ord.P-value del-1 del-2 del-3 

const. 0.8564 0.8581 0.8599 0.8619 0.517 0.548 0.563 0.5387 

M.age 0.03218 0.03224 0.03226 0.03236 0.061 0.067 0.0734 0.067 

parity 0.08999 0.09030 0.0901 0.09078 0.00 0.000 0.000 0.000 

B.sex 0.2684 0.2689 0.02692 0.26997 0.968 0.946 0.9508 0.929 

 

Table 5: The summary statistics of the logistic regression standard errors and their P-values and 
that jackknife delete-1, delete-2 and delete-3 standard errors and their P-values results. 

 
3    Discussion and Conclusions: 
Jackknife samples were generated by omitting each, one or two or three n observation(s) 

corresponding to delete-one or delete-two or delete-three jackknife respectively for the 

estimation of logistic regression coefficients
( )ˆ iJβ . Ordinary logistic regression on the data in 

table 1 for 310 ,...,, βββ are  

b0 = 0.55509, b1= -0.06019, b2 = 0.40793 and b3 = -0.01089 respectively, and the estimated 

precision of these estimates were  
S(b0)=0.85636, S(b1)=0.03218, S(b2)=0.08999, S(b3)=0.26838 with 95% confidence intervals as 

0.88 ≥≤ 1β 1.00, 1.26 ≥≤ 2β 1.79 and 0.58 ≥≤ 3β 1.67 respectively. The jackknifes results for the 

estimation of coefficients of logistic regression using the jackknife algorithm , estimation of the precision 
(standard error) and the confidence interval as shown in table 4 and 5 reveals that the Jackknife delete-one, 
delete-two, and delete-three estimated coefficients are quite close to analytical result. Also the estimated 
precisions and the confidence interval of the jackknife delete-one, delete-two and delete-three are also very 
close to that of analytical result when compared together. This reveals the appropriateness of the algorithm 
developed to the theoretical method. 
 
 Delete d R-Algorithm  
 

#This R code defines a function 'jack' for performing delete-d jacknife for logistic regression 

#p is the no of cols in the data. p=4 then there is 1 dept. var and 3 indept vars 
#d is the no of rows to be deleted 

jack=function(data,p,d)   

{ 

n=length(data[,1])  #the sample size 

u=combn(n,d) #Assign the matrix of all possible combinations to u 

output=matrix(0,ncol=p,nrow=ncol(u))#define the output 

y=data[,1] #the response vector 

x=data[,2:p] #the matrix of covariates 

for (i in 1:(ncol(u)))  

{ 

dd=c(u[,i]) 

yn=y[-dd] #delete d rows of the independent var 

xn=x[-dd,] #delete d rows of the dependent var 

logreg=glm(formula=yn~xn[,1]+xn[,2]+factor(xn[,3]),family = binomial(link = "logit"),na.action = 

na.pass)#Assuming 3 indpt vars with 1 as a factor 

coef=logreg$coef 

output[i,]=c(coef) #store the regression coefficients 

} 

output 
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} 

#This part can be used to obtain a jacknife estimate of the regression  
coefficients  
u=jack(data,4,2)  
beta=c(mean(u[,1]),mean(u[,2]),mean(u[,3]),mean(u[,4]))  
(Venables and Smith,2007) 
 
 
References 

 
[1] Efron,B.1982.The Jackknife,the Bootstrap and other Resampling Plans,CBN-NSF Regional 
COnference Series in Applied Mathematics Philadelphia,Pennsylvania.5-27. 
[2] Efron,B. and Tibshirani,R.J.1993.An Introduction to the Boot-strap.Chapman and Hall,New York. 
[3] Hamadu,D.2010.A Bootstrap Approach to Bias-Reduction of Non-linear Parameter in Regression 

Analysis.Journal of science Research Development.Vol.12,110-127.  

[4] Michael,P.L.2008.Logistic Regression. Circulation American Heart Association.Doi:10.1161.  

[5] Neter,J.,Kutner,M.H.,Nachtsheim,C.J.,andWasserman,W.1996. Regression Analysis.Fourth Edition,Mc-Grow 

Hill,U.S.A.pp429-536.  

[6] Russell,C. and Chritine,C.2009.Resampling Method of Analysis in Simulation Studies.Proceeding of Winter 
Simulation Conference.45-59.  

[7] Ryan,P.T.1997.Modern Regression Method.John Wiley and sons inc,Third aveenue, New York.pp255-308.  

[8] Sahinler,S. and Topuz,D.2007.Bootstrap and Jackknife Resampling Agorithm for Estmation of Regression 
Parameters.Journal of Applied Quantitative Method.vol.2,No.2:188-199.  

[9] Venables,W.N.and Smith .2007.An Introduction to R, A programming Environment for Data Analysis and 
Graphics.Version 2.6.1, 1-100 

 



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.   Prospective authors of 

IISTE journals can find the submission instruction on the following page: 

http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

