Assessment of the Genotoxicity, Antigenotoxicity on Alloxan-Induce Diabetic in Mice by Micronucleus(MN) Assay

Roaa M. H. Shoker¹ Ahmed D. Latif¹ Oras N. Hamad²
1. Dept. pharmacology and toxicology, college of Medicine Univ. of Wasit – Iraq
2. Dept. Anatomy and Biology, college of Medicine Univ. of Wasit – Iraq

Abstract
Fenugreek (Trigonellafoenum-graecum) plant has become interest subject because of its beneficial effects on human health, good nutritive value in addition it has antigenotoxic effects therefore, the purpose of the present study was to investigate antigenotoxic effects of alcoholic extract of Fenugreek seed at 200 mg /kg b.w on mice bone marrow which treated with alloxan, 6-mercaptopurine anticancer at 200 mg /kg b.w by using micronucleus test at 5 day for all treatments. Cytogenetic study showed significant increasing at (p<0.05) in Micronucleus number MN in diabetic mice, anticanercergroup or both when compared to the negative control. After 5day of alloxan treated mice with marked hyperglycemia (blood glucose),results recorded significant increase at (p< 0.05) in diabetic group (group treated with alloxan) than anticancer in same time compared with control. Finally, alcoholic extracts of Fenugreek seeds found significant reduced MN, blood glucose in all treated groups. These results indicate that fenugreek plant were one of the primary supplements used to support type I diabetics or insulin-dependent diabetes mellitus (NIDDM), in addition it has active compounds which have important role on antigenotoxic, hyperglycemia activity.

Keywords: Extracts,Fenugreek,Alloxan,Micronucleus assay ,anticancer,mercaptopurine.

Introduction
Micronuclei (MN) and other nuclear anomalies such anucleoplasmic bridges (NPBs) and nuclear buds (NBUDs)are biomarkers of genotoxic events and chromosomal instability [1]. Micronucleus refers to the fragment of damaged chromosomes or whole chromosomes which fail to find their way onto the spindle during cell division, which are much smaller than the principle nuclei and are generally referred to as micronucleus[2]. MN represent structural chromosomal maberrations (chromosome loss or breakage) induced by ionizing radiation or chemical mutagens [3].

Genotoxicity of anticancer drugs to normal cells is one of the most serious problems of chemotherapy due to the possibility of inducing secondary malignancies [4] and it is no doubt that DNA damage plays an important role in most mechanisms underlying the action of anticancer drugs interacting with DNA. It is therefore an imperative task in chemotherapy to determine the DNA-damaging effect of these drugs on normal cells [5, 6, 7]. A number of medicines drugs used anticancer treatment cause Cytotoxicity and Genotoxicity, but most of the anticancer drugs target the enzyme systems in the cell cycle to block cell division [8, 9]. Six-mercaptopurine (6-MP) has been used in cancer chemotherapy, primarily in childhood and adult leukemia and usually in combination with other drugs. 6-MP is also used to treat autoimmune diseases, such as inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA) [10,11]. Azathioprine (AZA) and its active metabolite 6-mercaptopurine(6-MP) drugs are not only cytotoxic but also immunosuppressive and anti inflammatory. The effects are dose-related, small doses of either drug are anti-inflammatory, but larger doses are immunosuppressive and cytotoxic [12]. In humans, diabetes mellitus is one of the most prevalent conditions with spontaneous manifestation. In animals, it can be induced by partial pancreactectomy or by the administration of diabetogenic drugs such as alloxan, streptozotocin, dietizona and anti-insulin serum [13]. These agents selectively destroy the Langerhans islet β-cells. Alloxan (2,4,5,6-tetraoxypyrimidine; 5,6-dioxoyuracil), a derivative of uric acid, as well as of other substances of different chemical groups causes β-cells to degranulate and consequently degenerate [14,15,16]. The dose of alloxan required for inducing diabetes depends on the animal species, route of administration and nutritional status. Human islets are considerably more resistant to alloxan than those of the rat and mouse [17].DNA damage and repair play a major role in neoplastic transformation, because mutations in DNA repair genes can be directly related with cancer and the efficacy of DNA repair may determine the susceptibility to carcinogenesis [18].Treatment of diabetes mellitus and its complications in the recent context has focused on the usage of plant extracts and their constituents [19].

In many industrialized countries herbal medicines are gaining popularity as alternative and complimentary therapies [20].Some of the plants are exhibit a wide range of biological and pharmacological activities such as anti-cancer, anti inflammatory, diuretic, oxytocic, laxative, antispasmodic, antihypertensive, anti-diabetic, and anti-microbial functions[21].

Fenugreek (Trigonellafoenum-graeicum) is a member of the Leguminosae (Fabaceae) family and is commonly cultivated in India, Egypt, the Middle East and North Africa. The seeds of the plant have been used as a traditional remedy for numerous conditions including gastrointestinal disorders, gout, wound healing and
inflammation, hyperlipidemia and diabetes [22]. The antihyperglycemic effects of fenugreek seeds and its subfractions are demonstrated in diabetic rats, and also show beneficial effects in cancer[23,24]. Fenugreek has also been reported to exhibit pharmacological properties such as antitumor, antiviral, antimicrobial, anti-inflammatory, hypotensive and antioxidant[25,26]. Antioxidants are intimately involved in the prevention of cellular damage, the common pathway for cancer, aging, and a variety of diseases by interact with free radicals and terminate the chain reaction before vital molecules are damaged [27,28].

The aim of this study is to evaluate the genotoxic activity of mice using micronucleus (MN) test on DNA damage induced by 6-mercaptopurine anticancer drugs and alloxan induced-diabetic mouse bone marrow cells in vivo and evaluate anti-genotoxic activity by alcohol extracts of Fenugreek seeds.

Materials and Methods

Animals: Males of albino mice weighing 12-20 gram were maintained under standard laboratory conditions and provided a standard diet and water ad libitum.

Chemicals: Anti-cancer: The anti-cancer drugs 6-mercaptopurine (Purinethol) was selected for present study due to their is mutagenic in animals and humans.

Alloxan (diabetes Induction) was obtained from CDH-Central Drug House – India.

Plant Extracts Preparation: Preparation of alcoholic extract of Fenugreek seed according Jin et al.[29]. The seeds air dried in the shade, grounded into a fine powder by using coffee grinder and weighing (100 gm) then put it in a volumetric conical flask then 1000 ml of 70% ethyl alcohol was added on the powder which make the ratio (1/10) (W/V). After that the mixture was shake by using magnetic stirrer apparatus for 24 hours, the mixture was filtered by using 4 layers of medical gauze then was filtered again using what man NO.1 filter paper. The filtrated mixture was concentrated by using incubator on (40°C) for 72 hr, to obtain crude extract. This extract was stored in a volumetric conical flask then 1000 ml of 70% ethyl alcohol was added on the powder which make the ratio (1/10) (W/V).

The experiment was carried out to assess the genotoxic analysis of Mercaptopurine, Alloxan – induced diabetes and Anti-genotoxic effect of alcoholic extract of Fenugreek. The male mice were divided in to six experimental groups. Each group consisted of 4 male mice. The animal were divided to:

Group I: As negative control treated with 0.5 ml of distill water injected intra peritoneal for 5 day.

Group II: As positive control treated with 200 mg /kg b.w of Alloxan injected intra peritoneal for 5 day.

Group III: As positive control treated with 200 mg /kg b.w of Mercaptopurine injected intraperitoneal for 5 day.

Group IV: Each animal had treated with 200 mg /kg b.w of Mercaptopurine injected intra peritoneal then treated with Alloxan by injected intra peritoneal 200 mg /kg b.w for 5 day.

Group V: Each animal had treated with 200 mg /kg b.w of Mercaptopurine injected intra peritoneal then treated with Alloxan injected intra peritoneal 200 mg /kg b.w of Fenugreek intra peritoneal for 5 day.

Group VI: Each animal had treated with 200 mg /kg B.W of Mercaptopurine intra peritonial, intra peritoneal injection 200 mg /kg B.W of Alloxan and 200 mg /kg B.W of Fenugreek extract intra peritoneal for 5 day.

Cytogenetic Experiments-Micronucleus test in mouse bone marrow cells

The experiment was done according to method of [30] as follow:

1-The femur bone cleaned from tissues and muscles, then gapped from the middle with a forceps in a vertical position over the edge of a test tube by a sterile syringe, (1 ml) of bovine calf serum (heat inactivated) was injected so as to wash and drop the bone marrow in the test tube.

2-The test tubes were centrifuged at speed of 1000 rpm (5 min).

3-The supernatant was removed, and one drop from the pellet was taken to make a smear on a clean slide. The slides were kept at room temperature for (24 hr).

4-The slides were fixed with absolute methanol for (5 min.), then stained with Giemsa stain for (15 min), then washed with D.W and left to dry.

5- Two slides for each animal were prepared for micronucleus test.

Statistical analysis

Statistical analysis was performed with SPSS software. Data were analyzed using three-way analysis of paired-samples T-test for comparison between different treatment. Results were reported as mean ± S.E. and differences were considered as significant when P<0.05.

Results

In order to evaluate the protective, antigenotoxicity or therapeutic effects of Fenugreek (Trigonellafoenum-graecum), mice were pretreated for 5day with alloxan, anticancer or both. Results in table (1) showed significant increase MN on mice bone marrow at (p< 0.05) of group treated with alloxan, anticancer or both(4.56 ± 0.010 , 4.18 ± 0.058, 4.20 ± 0.044) frequency compared to the control (1.16 ± 0.024) . Symptoms which were observed
in the animals during treatment with alloxan and anticancer or both: decreased activity, closed eyes, diarrhoea and tremors. Results showed significant increase MN on mice bone marrow in all groups treated with alloxan, anticancer or both (figure 1).

Figure(1): Micronucleus cell at 40X magnification

After 5 day of alloxan treated, mice with marked hyperglycemia, table (2) recorded significant increase at (p< 0.05) in diabetic group 378.80 ± 22.352 compared with control (153.80 ± 5.053).

In this works showed significant different for all groups when treated with Fenugreek alcoholic extracts, table (1) showed that fenugreek extracts caused significant reduce MN when treated with anticancer group (1.50 ± 0.148) compared with only anticancer group (4.18 ± 0.058). Fenugreek plant have hyperglycemia activity, table (2) showed Fenugreek alcoholic extracts significant reduced blood glucose in group treated with alloxan, anticancer in same time (145.80 ± 3.023) compared with alloxan and anticancer treated group (472.00 ± 23.323).

Table (1): Micronucleus assay MN of experimental mice (Mean ± S.E.).

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>MN / 1000 Cell (Mean ± S.E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control</td>
<td>1.16 ± 0.024 a</td>
</tr>
<tr>
<td>II</td>
<td>Alloxan</td>
<td>4.56 ± 0.010 a</td>
</tr>
<tr>
<td>III</td>
<td>Anticancer</td>
<td>4.18 ± 0.058 a b</td>
</tr>
<tr>
<td>IV</td>
<td>Anticancer Alloxan+</td>
<td>4.20 ± 0.044 b</td>
</tr>
<tr>
<td>V</td>
<td>Anticancer + Extract</td>
<td>1.50 ± 0.148 a b c</td>
</tr>
<tr>
<td>VI</td>
<td>Anticancer + Extract + Alloxan</td>
<td>2.10 ± 0.031 a b d</td>
</tr>
</tbody>
</table>

Means with different superscript letters are significantly different (P<0.05).

Table (2): blood glucose level of experimental mice (Mean ± S.E.).

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Blood Glucose level (Mean ± S.E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control</td>
<td>153.80 ± 5.053 a</td>
</tr>
<tr>
<td>II</td>
<td>Alloxan</td>
<td>378.80 ± 22.352 a b</td>
</tr>
<tr>
<td>III</td>
<td>Anticancer</td>
<td>151.40 ± 3.140 a c b</td>
</tr>
<tr>
<td>IV</td>
<td>Anticancer + Alloxan</td>
<td>472.00 ± 23.323 a b c</td>
</tr>
<tr>
<td>V</td>
<td>Anticancer + Extract</td>
<td>144.00 ± 4.301 a b c</td>
</tr>
<tr>
<td>VI</td>
<td>Anticancer + Alloxan + Extract</td>
<td>145.80 ± 3.023 b c</td>
</tr>
</tbody>
</table>

Means with different superscript letters are significantly different (P<0.05).

Discussion

Table (1) showed significant increase MN number on mice bone marrow at (p<0.05) of group treated with alloxan,
Previous studies showed that fenugreek seeds do not have acute toxicity or lethal side effects on bone marrow cells. That may be due to fenugreek alcoholic extracts having compounds which have hypoglycemic and anti-genotoxic properties. It is known that the micronuclei originate either from fragment or lagging chromosomes during the cell fission process. This significant increase in MN was not accompanied by significant increase in breaks or fragments. Therefore, the formation of MN was not attributed to chromosome fragments but to lagging chromosomes. Interaction between anticancer drugs (Taxol) and centromere could explain a considerable amount of the centromere positive micronuclei due to multipolar mitosis. As MNs are formed out of whole chromosome and anticancer drugs found to increase significantly the micro-nucleated lymphocyte rates and over 85% of those micronuclei contained one or more whole chromosomes, anticancer drugs is said to be an eugenic agent. Using natural anti-oxidative compounds would have a benefit in preventing diabetes oxidative stress related consequences, certain antioxidants are known to have genotoxic or carcinogenic potentials. Our study found that fenugreek alcoholic extracts do not have any toxic or lethal side effects on bone marrow cells. That may be due to fenugreek alcoholic extracts having compounds which have hypoglycemic and anti-genotoxic properties. Previous studies showed that fenugreek seeds do not have acute toxicity. Our study found that reported increased chromosomal aberration and MN number in the bone marrow of mice treated with the Taxol anticancer drug in triple therapeutic dose. Carboplatin antitumor drug induced significant increased MN both in the fetal liver and the maternal bone marrow at different doses.

It is known that the micronuclei originate either from fragment or lagging chromosomes during the cell fission process. This significant increase in MN was not accompanied by significant increase in breaks or fragments. Therefore, the formation of MN was not attributed to chromosome fragments but to lagging chromosomes. Interaction between anticancer drugs (Taxol) and centromere could explain a considerable amount of the centromere positive micronuclei due to multipolar mitosis. As MNs are formed out of whole chromosome and anticancer drugs found to increase significantly the micro-nucleated lymphocyte rates and over 85% of those micronuclei contained one or more whole chromosomes, anticancer drugs is said to be an eugenic agent using natural anti-oxidative compounds would have a benefit in preventing diabetes oxidative stress related consequences, certain antioxidants are known to have genotoxic or carcinogenic potentials. Our study found that fenugreek alcoholic extracts do not have any toxic or lethal side effects on bone marrow cells. That may be due to fenugreek alcoholic extracts having compounds which have hypoglycemic and anti-genotoxic properties. Previous studies showed that fenugreek seeds do not have acute toxicity. Our study found that reported increased chromosomal aberration and MN number in the bone marrow of mice treated with the Taxol anticancer drug in triple therapeutic dose. Carboplatin antitumor drug induced significant increased MN both in the fetal liver and the maternal bone marrow at different doses.

It is known that the micronuclei originate either from fragment or lagging chromosomes during the cell fission process. This significant increase in MN was not accompanied by significant increase in breaks or fragments. Therefore, the formation of MN was not attributed to chromosome fragments but to lagging chromosomes. Interaction between anticancer drugs (Taxol) and centromere could explain a considerable amount of the centromere positive micronuclei due to multipolar mitosis. As MNs are formed out of whole chromosome and anticancer drugs found to increase significantly the micro-nucleated lymphocyte rates and over 85% of those micronuclei contained one or more whole chromosomes, anticancer drugs is said to be an eugenic agent using natural anti-oxidative compounds would have a benefit in preventing diabetes oxidative stress related consequences, certain antioxidants are known to have genotoxic or carcinogenic potentials. Our study found that fenugreek alcoholic extracts do not have any toxic or lethal side effects on bone marrow cells. That may be due to fenugreek alcoholic extracts having compounds which have hypoglycemic and anti-genotoxic properties. Previous studies showed that fenugreek seeds do not have acute toxicity. Our study found that reported increased chromosomal aberration and MN number in the bone marrow of mice treated with the Taxol anticancer drug in triple therapeutic dose. Carboplatin antitumor drug induced significant increased MN both in the fetal liver and the maternal bone marrow at different doses.

It is known that the micronuclei originate either from fragment or lagging chromosomes during the cell fission process. This significant increase in MN was not accompanied by significant increase in breaks or fragments. Therefore, the formation of MN was not attributed to chromosome fragments but to lagging chromosomes. Interaction between anticancer drugs (Taxol) and centromere could explain a considerable amount of the centromere positive micronuclei due to multipolar mitosis. As MNs are formed out of whole chromosome and anticancer drugs found to increase significantly the micro-nucleated lymphocyte rates and over 85% of those micronuclei contained one or more whole chromosomes, anticancer drugs is said to be an eugenic agent using natural anti-oxidative compounds would have a benefit in preventing diabetes oxidative stress related consequences, certain antioxidants are known to have genotoxic or carcinogenic potentials. Our study found that fenugreek alcoholic extracts do not have any toxic or lethal side effects on bone marrow cells. That may be due to fenugreek alcoholic extracts having compounds which have hypoglycemic and anti-genotoxic properties. Previous studies showed that fenugreek seeds do not have acute toxicity. Our study found that reported increased chromosomal aberration and MN number in the bone marrow of mice treated with the Taxol anticancer drug in triple therapeutic dose. Carboplatin antitumor drug induced significant increased MN both in the fetal liver and the maternal bone marrow at different doses.

It is known that the micronuclei originate either from fragment or lagging chromosomes during the cell fission process. This significant increase in MN was not accompanied by significant increase in breaks or fragments. Therefore, the formation of MN was not attributed to chromosome fragments but to lagging chromosomes. Interaction between anticancer drugs (Taxol) and centromere could explain a considerable amount of the centromere positive micronuclei due to multipolar mitosis. As MNs are formed out of whole chromosome and anticancer drugs found to increase significantly the micro-nucleated lymphocyte rates and over 85% of those micronuclei contained one or more whole chromosomes, anticancer drugs is said to be an eugenic agent using natural anti-oxidative compounds would have a benefit in preventing diabetes oxidative stress related consequences, certain antioxidants are known to have genotoxic or carcinogenic potentials. Our study found that fenugreek alcoholic extracts do not have any toxic or lethal side effects on bone marrow cells. That may be due to fenugreek alcoholic extracts having compounds which have hypoglycemic and anti-genotoxic properties. Previous studies showed that fenugreek seeds do not have acute toxicity. Our study found that reported increased chromosomal aberration and MN number in the bone marrow of mice treated with the Taxol anticancer drug in triple therapeutic dose. Carboplatin antitumor drug induced significant increased MN both in the fetal liver and the maternal bone marrow at different doses.

It is known that the micronuclei originate either from fragment or lagging chromosomes during the cell fission process. This significant increase in MN was not accompanied by significant increase in breaks or fragments. Therefore, the formation of MN was not attributed to chromosome fragments but to lagging chromosomes. Interaction between anticancer drugs (Taxol) and centromere could explain a considerable amount of the centromere positive micronuclei due to multipolar mitosis. As MNs are formed out of whole chromosome and anticancer drugs found to increase significantly the micro-nucleated lymphocyte rates and over 85% of those micronuclei contained one or more whole chromosomes, anticancer drugs is said to be an eugenic agent using natural anti-oxidative compounds would have a benefit in preventing diabetes oxidative stress related consequences, certain antioxidants are known to have genotoxic or carcinogenic potentials. Our study found that fenugreek alcoholic extracts do not have any toxic or lethal side effects on bone marrow cells. That may be due to fenugreek alcoholic extracts having compounds which have hypoglycemic and anti-genotoxic properties. Previous studies showed that fenugreek seeds do not have acute toxicity. Our study found that reported increased chromosomal aberration and MN number in the bone marrow of mice treated with the Taxol anticancer drug in triple therapeutic dose. Carboplatin antitumor drug induced significant increased MN both in the fetal liver and the maternal bone marrow at different doses.

Conclusion
fenugreek seeds are one of the primary supplements used to support type I diabetics or insulin-dependent diabetes mellitus (NIDDM). Fenugreek Seed helps to reducing blood sugar levels, and genotoxicity.

Acknowledgement
We wish to thank whole I. K. Ajlan and T. K. Khalaf Assistance lecturer in Medicine College of Wasit University for helping in statistical analysis.

References

