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Abstract 

We have utilized a twenty-nine year crime data in Nigeria pertaining to Armed Robbery, the study proposes 

crime modeling and forecasting using Autoregressive Integrated Moving Average Models, the best model were 

selected based on the  minimum Akaike information criteria (AIC), Bayesian information criteria(BIC), and 

Hannan-Quinn criteria (HQC) values and was used to make forecast. Forecasted values suggest that Armed 

Robbery would slightly be on the increase 
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1. Introduction 

At the moment, there is no universal definition of crime. This is primarily as a result of continual changes in 

social, political, psychological and economic conditions of people in respective crime sites. An act may be a 

crime in one society, but not in another (Danbazau, 2007). For example, prostitution, adultery and homosexuality 

between consenting adults have been wholly or partially removed from the criminal law in USA (Feldman, 1997) 

but are considered as crimes in Muslim communities such as Saudi Arabia and Sharia states in Northern Nigeria. 

The constant changes in time also change the perception of society on crime. Today, it is also becoming crime to 

pollute the air and water. Pollution causes few problems and receives little attention in colonial days (Usman et 

al. 2012). Therefore, the perception of  an act as a crime varies with time and space. These perceptions are not 

determined by any objective indicator of the degree of injury or damage but by cultural values and power 

relations. Therefore, many scholars have defined crime in different views, mostly bordering on ethical and 

ideological orientation.  In a strict legal definition, a crime is a violation of criminal law, which in most societies 

can be defined broadly as any ‘act or omission forbidden by law on pain of punishment’ (Carvell and Swinfen, 

1970).  Tappan (1947) defined crime as an intentional act in violation of the criminal law committed without 

defense or excuse and penalized by the state.  One of the fundamental techniques to combat criminal activities is 

to better understanding of the dynamics of crime which can be harnessed by understanding the trend of collected 

crime statistics which in turn can be used for crime forecasting. The classification of crime differs from one 

country to another. In Nigeria, the Federal Bureau of Investigation tabulates the annual crime data as Uniform 

Crime Reports (UCR). They classify violations of laws, which derive from common law as part 1 (index) crimes 

in UCR data, further categorized as violent as property crimes. Part 1 violent crimes include murder and criminal 

homicide (voluntary manslaughter), forcible rape, aggravated assault, and robbery; while part 1 property crimes 

include burglary, arson, larceny/theft, and motor vehicle theft. All other crimes count as part II crimes. In 

Nigeria, the Police classification of crime also depends on what law prescribed. In Nigeria Police Abstract of 

Statistics (NPACS), offences are categorized into four main categories: Offences against persons include: 

manslaughter, murder and attempted murder, assault, rape, child stealing, grievous harm and wounding, etc. 

Offences against property include: armed robbery, house and store breakings, forgery, theft/stealing, etc. 

Offences against lawful authority include: forgery of current notes, gambling, breach of peace, bribery and 

corruption, etc. Offences against local act include: traffic offences, liquor offences, etc.  Nigeria has one of the 

highest crime rates in the world. Murder often accompanies minor burglaries. Rich Nigerians live in high 

secured compounds. Police in some states are empowered to shoot on sight violent criminals. In the 1980s, 

serious crime grew to nearly epidemic proportions, particularly in Lagos and other urbanized areas characterized 

by rapid growth and change, by stark economic inequality and deprivation, by social disorganization, and by 

inadequate government service and law enforcement capabilities. Annual crime rates fluctuated at around 200 

per 100,000 populations until the early 1960s. The purpose of this paper is to examine the modeling and 

forecasting of Armed Robbery rate using ARIMA models.  

 

2. Materials and Method 

In this paper, we have used the Crime data on Armed Robbery Cases for past 29 years (1986 -2014). The crime 

data were sourced from Nigeria Information Resource Centre. We have used GRETL (Gnu Regression, 

Econometrics and Time-series Library) software for plotting the graphs and analysis of the data set.   
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2.1 Box-Jenkins ARIMA Model 

∆yt  =  Yt  -  Yt-1 -------------------(1) 

∆2yt  =  ∆Yt   -  ∆Yt -1  =  Yt  -  2Yt-1  +  Yt-2 --------------------(2) 

where, Yt is time series at time t, Yt-1 is the proceeding time series of  Yt ,  ∆yt  is the first order difference, ∆2yt  is 

the second order difference of the current observation,  yt is the current observation and Yt-2 is the preceding time 

series to Yt-1 in the same series. 

After the appropriate differencing, the expected time series is expected to exhibit features of a 

stationary time series so that the appropriate ARIMA (p, d, q) process can be used to model the remaining serial 

correlation in the series. 

Where p is the number of auto regressive terms, d is the number of non seasonal differences, q is the 

number of lagged forecast errors in the prediction equation. 

for a time series process Yt , ARIMA (0,0,1) / AR(1) is the first order auto-regressive process and is given by; 

yt  =  µ  +  ɸ1Yt-1  +   ɛt  --------------------(3) 

and a first order moving average process ARIMA (0,0,1) / MA(1) and is given by; 

yt  =  µ  -  θ1ɛt-1  +   ɛt --------------------------(4) 

where ɸ and θ are coefficients of polynomial with order p and q respectively. 

Alternatively, the model ultimately derived may be a mixture of these processes and of higher orders, in that case, 

a stationary ARMA (p, q) process is defined by; 

yt  =  µ  +  ɸ1Yt-1  +   ɸ2Yt-2  + . . . +   ɸpYt-p  -   θ1ɛt-1  -   θ2ɛt-2   - . . . - θqɛt-q   +  ɛt ------------------(5) 

where yt is the degree of the differencing, ɛt is independently and normally distributed residual with zero mean 

and constant variance for t = 1,2,3,…,n. 

 

2.2 The Augmented Dickey - Fuller Test 

The augmented Dickey–Fuller (ADF) test is most widely used test for checking Stationarity of a series. If d 

equals 0, the model becomes ARMA, which is linear stationary model. ARIMA (i.e. d > 0) is a linear non-

stationary model. If the underlying time series is non-stationary, taking the difference of the series with itself 

predecessor to determine d makes it stationary, and then ARMA is applied onto the differenced series. A 

stationary process has a constant mean and variance over the time period. There are various methods available to 

make a time series stationary. Normally differencing techniques are used to transform a time series from a non-

stationary to stationary by subtracting each datum in the series from its predecessor.  

 

2.3 Model Identification Criteria  

At the identification stage different ARIMA are formulated and tested on the data then their respective Akaike 

Information Criterion, Schwarz-Bayesian Information Criteria (BIC) and Hannan-Quinn Criteria (HQC) were 

considered and recorded. In each case, the model with the least AIC, BIC and HQC values were selected and 

subjected to diagnostic check to ensure that they fit well with the data. 

AIC = (-2logL  + 2m) --------------------------(6) 

where m = p + q + P + Q  

and L is the likelihood function 

Also, -2logL = n (1 + log 2π)  +  n log σ2 --------------------(7) 

where σ2 is the mean square error,  this implies that; 

AIC =   { n (1 + log 2π)  +  n log σ2)  +  2m }-------------------(8) 

BIC  =  log σ2  + { (m log n) / n }----------------(9) 

 

3. Results and Discussion 
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Fig 1:  Time Series plot for Armed Robbery data  Series 
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Fig 2: Correlogram for Armed Robbery  data series 

 

Table 1:  Augmented Dickey-Fuller test for Stationarity of Armed Robbery  data series 

d t-statistic p-value Α-value 

0 −0.6480    0.4274 0.05 

1 −6.308     3.24e-07 0.05 
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Fig 3: Time Series plot for differenced Armed Robbery data series 
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Fig 4: Correlogram for differenced Armed Robbery( d_Armed Robbery) data  series 
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Table 2:  Identification of Best ARIMA model for Armed Robbery 

ARIMA 

Model 
AIC BIC HQC 

000 464.2668 465.6341 464.6950 

001 454.4714 458.5733 455.7561 

100 445.1840 449.2858 446.4686 

101 447.0676 452.5368 448.7805 

111 432.2431 437.5719 433.8722 

002 450.3334 455.8026 452.0463 

201 449.0168 455.8533 451.1579 

Akaike information criteria (AIC), Bayesian information criteria(BIC), and Hannan-Quinn criteria (HQC). 

 

3.1 Diagnostic check on the best model for Armed Robbery / Model Verification  
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Fig 5: Correlogram of residuals for Armed Robbery 

 

Table 3: Residual autocorrelation function 

***, **, * indicate significance at the 1%, 5%, 10% levels 

using standard error 1/T^0.5 
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Table 4:      Crime Forecasting for Armed Robbery using ARIMA (1,1,1) 

For 95% confidence intervals, z(0.025) = 1.96 

 Obs Armed Robbery prediction std. error 95% interval 

2016 undefined 2623.85 529.198 (1586.64, 3661.05) 

2017 undefined 2722.48 553.252 (1638.13, 3806.84) 

2018 undefined 2798.19 561.541 (1697.59, 3898.79) 
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Fig 6: Correlogram of residuals for Armed Robbery 

The time series plot and correllogram of the Armed Robbery data series on fig 1 and fig 2 respectively 

shows a strong evidence of a non stationary series, the non Stationarity was also confirmed with the help of the 

augmented dickey-fuller (ADF) test on table 1, which tests the null hypothesis that armed robbery data series 

follows a unit root  process which was accepted at 5% alpha level.  Thus, implying that the armed robbery data 

series is non stationary. By using first order differencing transformation, we obtained a t-statistic lesser than 

what was obtained at d = 0, and a p-value lesser than 5% alpha level. Thus, we select the condition that d = 1 

and transform the data using first order differencing to make it stationary as seen on fig 3. The Auto Correlation 

Function (ACF) and Partial Auto Correlation Function (PACF) plots of the differenced series is shown in fig 4. 

Seven tentative models were entertained, and the model with the minimum AIC, BIC and HQC, ARIMA (1,1,1) 

defined by  

Yt = 41.9206 + 0.5956Yt-1 - Yt-1 + et was chosen as the best model. To verify that the chosen ARIMA 

(1,1,1) is an appropriate model for armed robbery, a diagnostic check is done using residual ACF/PACF plot at 

different lags and testing the significance of the correlations up to 16 lags by Q statistic and respective p-values. 

Fig 5 above clearly shows evidence of random walk as the values are within the bounds and undulate about zero.  

Hence we uphold the first order differencing. Clearly, non of the correlations is significantly different from zero 

at a reasonable level. The ACF and PACF of the residuals also indicate good fit of the model and the respective 

p-values on table 3 are greater than the α-value which is a desirable result. This proves that the selected ARIMA 

(1,1,1) is appropriate for modeling Armed Robbery in Nigeria. Finally, from the forecast on table 4, we see 

armed robbery in Nigeria would increase in 2016, and also  in subsequent years. 

 

4. Conclusion  

ARIMA (1,1,1) has been successfully used to forecast Armed Robbery in Nigeria using a twenty-nine year data 

series. Armed robbery was found to be on the increase in the forecasted period. Hence, government in various 

states of the federation should put up structures to positively keep the citizens busy especially our youths.  The 

Nigerian government should review its anti-crime strategies and sanitize the Nigeria Police Force and other 

security agencies. Government and its agencies should partner with the private sector and encourage them to 

build industries that will help to gainfully employ her citizens. Parents and school administrators should take 

moral instruction seriously for their children so as to minimize criminal tendencies.  
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Appendix 

1. Autocorrelation function for Armed Robbery 

***, **, * indicate significance at the 1%, 5%, 10% levels 

using standard error 1/T^0.5 

 

  LAG      ACF          PACF         Q-stat. [p-value] 

 

    1   0.7445  ***   0.7445 ***     17.7962  [0.000] 

    2   0.5904  ***   0.0810         29.4015  [0.000] 

    3   0.4725  **    0.0188         37.1222  [0.000] 

    4   0.4267  **    0.1128         43.6700  [0.000] 

    5   0.3521  *    -0.0378         48.3126  [0.000] 

    6   0.2737       -0.0445         51.2410  [0.000] 

    7   0.1667       -0.1084         52.3768  [0.000] 

    8   0.0787       -0.0714         52.6417  [0.000] 

    9   0.0086       -0.0473         52.6450  [0.000] 

   10  -0.0973       -0.1634         53.0926  [0.000] 

   11  -0.2368       -0.2127         55.8934  [0.000] 

   12  -0.2468        0.1139         59.1132  [0.000] 

   13  -0.2745       -0.0578         63.3462  [0.000] 

   14  -0.3000       -0.0575         68.7420  [0.000] 

   15  -0.3737  **   -0.1196         77.7086  [0.000] 

   16  -0.3221  *     0.1744         84.8826  [0.000] 
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2. Autocorrelation function for d_Armed Robbery 

***, **, * indicate significance at the 1%, 5%, 10% levels 

using standard error 1/T^0.5 

 

  LAG      ACF          PACF         Q-stat. [p-value] 

 

    1  -0.1697       -0.1697          0.8964  [0.344] 

    2  -0.0741       -0.1060          1.0739  [0.585] 

    3  -0.1266       -0.1651          1.6125  [0.657] 

    4   0.0288       -0.0378          1.6416  [0.801] 

    5   0.0052       -0.0278          1.6426  [0.896] 

    6   0.0406        0.0167          1.7055  [0.945] 

    7   0.0013        0.0124          1.7055  [0.974] 

    8  -0.0093       -0.0004          1.7092  [0.989] 

    9   0.0592        0.0736          1.8640  [0.993] 

   10   0.0390        0.0730          1.9351  [0.997] 

   11  -0.2181       -0.1959          4.2847  [0.961] 

   12   0.0048       -0.0555          4.2859  [0.978] 

   13  -0.0098       -0.0598          4.2913  [0.988] 

   14   0.0944        0.0183          4.8258  [0.988] 

   15  -0.2508       -0.2775          8.8887  [0.883] 

   16   0.1568        0.0662         10.6105  [0.833] 

 

3. Augmented Dickey-Fuller test for Armed Robbery 

including 0 lags of (1-L)Armed Robbery 

(max was 1, criterion t-statistic) 

sample size 28 

unit-root null hypothesis: a = 1 

 

  test without constant  

  model: (1-L)y = (a-1)*y(-1) + e 

  estimated value of (a - 1): -0.0288058 

  test statistic: tau_nc(1) = -0.647953 

  p-value 0.4274 

  1st-order autocorrelation coeff. for e: -0.147 

 

Dickey-Fuller regression 

OLS, using observations 1987-2014 (T = 28) 

Dependent variable: d_Armed Robbery 

 

                   coefficient   std. error   t-ratio   p-value 

  ------------------------------------------------------------- 

  Armed Robbery_1   −0.0288058    0.0444566    −0.6480   0.4274  

 

  AIC: 429.441   BIC: 430.773   HQC: 429.849 
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4. Augmented Dickey-Fuller test for d_Armed Robbery 

including 0 lags of (1-L)d_Armed Robbery 

(max was 1, criterion t-statistic) 

sample size 27 

unit-root null hypothesis: a = 1 

 

  test without constant  

  model: (1-L)y = (a-1)*y(-1) + e 

  estimated value of (a - 1): -1.17011 

  test statistic: tau_nc(1) = -6.30817 

  p-value 3.239e-007 

  1st-order autocorrelation coeff. for e: -0.073 

 

Dickey-Fuller regression 

OLS, using observations 1988-2014 (T = 27) 

Dependent variable: d_d_Armed Robbery 

 

                     coefficient   std. error   t-ratio   p-value  

  ---------------------------------------------------------------- 

  d_Armed Robbery_1    −1.17011      0.185491    −6.308    3.24e-07 *** 

 

  AIC: 412.559   BIC: 413.855   HQC: 412.945 

 

5. Model 000: ARMA, using observations 1986-2014 (T = 29) 

 Dependent variable: Armed Robbery 

 

  Coefficient Std. Error z p-value  

const 2051.17 132.301 15.5039 <0.0001 *** 

 

Mean dependent var  2051.172  S.D. dependent var  712.4608 

Mean of innovations −4.70e-14  S.D. of innovations  712.4608 

Log-likelihood −231.1334  Akaike criterion  464.2668 

Schwarz criterion  465.6341  Hannan-Quinn  464.6950 

 

6. Model 001: ARMA, using observations 1986-2014 (T = 29) 

Estimated using Kalman filter (exact ML) 

Dependent variable: Armed Robbery 

Standard errors based on Hessian 

 

             coefficient   std. error     z       p-value  

  -------------------------------------------------------- 

  const      2066.25       157.303      13.14    2.06e-039 *** 

  theta_1       0.563140     0.121732    4.626   3.73e-06  *** 

 

Mean dependent var   2051.172   S.D. dependent var   712.4608 

Mean of innovations −4.491555   S.D. of innovations  548.2605 

Log-likelihood      −224.2357   Akaike criterion     454.4714 

Schwarz criterion    458.5733   Hannan-Quinn         455.7561 

 

                        Real  Imaginary    Modulus  Frequency 

  ----------------------------------------------------------- 

  MA 

    Root  1          -1.7758     0.0000     1.7758     0.5000 

  ----------------------------------------------------------- 
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7. Model 100: ARMA, using observations 1986-2014 (T = 29) 

Estimated using Kalman filter (exact ML) 

Dependent variable: Armed Robbery 

Standard errors based on Hessian 

 

             coefficient   std. error     z      p-value  

  ------------------------------------------------------- 

  const      2095.38       293.478      7.140   9.35e-013 *** 

  phi_1         0.729585     0.117750   6.196   5.79e-010 *** 

 

Mean dependent var   2051.172   S.D. dependent var   712.4608 

Mean of innovations −7.184895   S.D. of innovations  464.0985 

Log-likelihood      −219.5920   Akaike criterion     445.1840 

Schwarz criterion    449.2858   Hannan-Quinn         446.4686 

 

                        Real  Imaginary    Modulus  Frequency 

  ----------------------------------------------------------- 

  AR 

    Root  1           1.3706     0.0000     1.3706     0.0000 

  ----------------------------------------------------------- 

 

8. Model 101: ARMA, using observations 1986-2014 (T = 29) 

Estimated using Kalman filter (exact ML) 

Dependent variable: Armed Robbery 

Standard errors based on Hessian 

 

             coefficient    std. error      z       p-value  

  ---------------------------------------------------------- 

  const      2096.83        306.907       6.832    8.37e-012 *** 

  phi_1         0.769252      0.154731    4.972    6.64e-07  *** 

  theta_1      −0.0922184     0.274034   −0.3365   0.7365    

 

Mean dependent var   2051.172   S.D. dependent var   712.4608 

Mean of innovations −6.566929   S.D. of innovations  463.1898 

Log-likelihood      −219.5338   Akaike criterion     447.0676 

Schwarz criterion    452.5368   Hannan-Quinn         448.7805 

 

                        Real  Imaginary    Modulus  Frequency 

  ----------------------------------------------------------- 

  AR 

    Root  1           1.3000     0.0000     1.3000     0.0000 

  MA 

    Root  1          10.8438     0.0000    10.8438     0.0000 

  ----------------------------------------------------------- 
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9. Model 002: ARMA, using observations 1986-2014 (T = 29) 

Estimated using Kalman filter (exact ML) 

Dependent variable: Armed Robbery 

Standard errors based on Hessian 

 

             coefficient   std. error     z       p-value  

  -------------------------------------------------------- 

  const      2068.22       189.296      10.93    8.67e-028 *** 

  theta_1       0.716805     0.175946    4.074   4.62e-05  *** 

  theta_2       0.411255     0.144786    2.840   0.0045    *** 

 

Mean dependent var   2051.172   S.D. dependent var   712.4608 

Mean of innovations −8.448745   S.D. of innovations  490.7652 

Log-likelihood      −221.1667   Akaike criterion     450.3334 

Schwarz criterion    455.8026   Hannan-Quinn         452.0463 

 

                        Real  Imaginary    Modulus  Frequency 

  ----------------------------------------------------------- 

  MA 

    Root  1          -0.8715    -1.2931     1.5594    -0.3444 

    Root  2          -0.8715     1.2931     1.5594     0.3444 

  ----------------------------------------------------------- 

 

10. Model 201: ARMA, using observations 1986-2014 (T = 29) 

Estimated using Kalman filter (exact ML) 

Dependent variable: Armed Robbery 

Standard errors based on Hessian 

 

             coefficient   std. error      z       p-value  

  --------------------------------------------------------- 

  const      2098.11       316.687       6.625    3.47e-011 *** 

  phi_1         1.13329      0.973206    1.164    0.2442    

  phi_2        −0.263884     0.733192   −0.3599   0.7189    

  theta_1      −0.461441     0.939942   −0.4909   0.6235    

 

Mean dependent var   2051.172   S.D. dependent var   712.4608 

Mean of innovations −4.985078   S.D. of innovations  462.7944 

Log-likelihood      −219.5084   Akaike criterion     449.0168 

Schwarz criterion    455.8533   Hannan-Quinn         451.1579 

 

                        Real Imaginary    Modulus Frequency 

  ----------------------------------------------------------- 

  AR 

    Root  1           1.2410     0.0000     1.2410     0.0000 

    Root  2           3.0537     0.0000     3.0537     0.0000 

  MA 

    Root  1           2.1671     0.0000     2.1671     0.0000 

  ----------------------------------------------------------- 
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11. Model 111: ARIMA, using observations 1987-2014 (T = 28) 

Estimated using Kalman filter (exact ML) 

Dependent variable: (1-L) Armed Robbery 

Standard errors based on Hessian 

 

             coefficient   std. error     z       p-value  

  -------------------------------------------------------- 

  const       41.9206      24.1810       1.734   0.0830    * 

  phi_1        0.595752     0.199305     2.989   0.0028    *** 

  theta_1     −1.00000      0.110484    −9.051   1.42e-019 *** 

 

Mean dependent var  −3.428571   S.D. dependent var   512.7648 

Mean of innovations −64.06475   S.D. of innovations  454.6336 

Log-likelihood      −212.1216   Akaike criterion     432.2431 

Schwarz criterion    437.5719   Hannan-Quinn         433.8722 

 

                        Real  Imaginary    Modulus  Frequency 

  ----------------------------------------------------------- 

  AR 

    Root  1           1.6785     0.0000     1.6785     0.0000 

  MA 

    Root  1           1.0000     0.0000     1.0000     0.0000 

  ----------------------------------------------------------- 

 

 


