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Abstract 

There are several methods of estimating dynamic panel data models in the context of both micro-economic and 

macro-economic data.  This paper investigates the performance of five different estimators of dynamic panel 

data models (the random effect model).  A  Monte Carlo experiment was conducted when individual, N is large 

and time dimension, T is finite and the error component model is assumed to be serially correlated. The bias and 

Root Mean Square Error criterion were used to access the performance of different estimators under 

consideration. We find that the Anderson-Hsiao using lagged differences as instrument (AH(d)) performs better 

when the time dimension is small (T=5), Anderson-Hsiao using lagged levels as instrument (AH(l)) performs 

better when T is moderate(T=10) and the first step Arellano-Bond estimator (ABGMM1) outperforms all other 

estimators when T increases to 20, this confirms the work of Kiviet (1995)  and Judson-Owen(1996) that no 

estimator has been found to be appropriate choice in all circumstances. For a dynamic panel data with large time 

dimension we suggest that the first step Arellano-Bond Estimator (ABGMM1) Estimator is appropriate.  The 

result shows that the bias of the first step Arellano-Bond estimator (ABGMM1) estimate is severe with small 

time dimension and the ordinary Least Square (OLS) and Least Square Dummy Variable (LSDV) are also bias 

when T is small.  It was discovered that the effect of serial correlation is negligible irrespective of the order.      

Keywords:  Autocorrelation, Dynamic Panel data, Econometric models, Generalized Method of Moment 

(GMM), Moving Average.  

 

1.     Introduction 

Panel data models are used extensively both in micro and macro-economic empirical research.  Application of 

dynamic panel data model is widely of interest in the field of science, economics and social sciences which 

includes Euler equations for household consumption, empirical model of economic growth etc.   

According to Baltagi (2008 pp. 147 ), the dynamic specification has two basic problems associated with 

it; autocorrelation due to the presence of lagged dependent variable among the regressors and individual effects 

characterizing the heterogeneity among individuals.  These problems lead to certain estimation issues which are 

dealt with by different estimation techniques.  

The discussion of dynamic panel data was opened by Balestra and Nerlove (1966). In that paper, the 

authors proposed to estimate the model with unobserved component using the Generalized Least Squares (GLS) 

estimator.  However, GLS or ML-Random Effects (RE) estimators are not consistent if the unobserved 

individual effects are correlated with the exogenous variables.  In the latter case the Fixed Effects (FE) 

specification is preferred.   

There are many studies on the properties of dynamic panel data estimators, most are geared towards the 

performance of the estimators using the conventional OLS, LSDV and some GMM estimators with micro-

economic data sets with large cross-section but small time dimension this includes: Arellano and Bond (1991),  

Kiviet (1995), Judson Owen (1996), Andreas Behr (200) Haris and Matyas (2010) but to mention few.  

A number of works on the testing for serial correlation in the disturbances of error terms  in dynamic 

panel data models they are: Baltagi and Li (1997), Hosung Jung (2005), Hujer, R.,  Rodgues J.M and Zeiss 

Christopher (2005)  using several test of AR(1) and MA(1). 

Similarly, among the notable works on the problem of serial correlation in panel data are Lillard and 

Willis (1978), Bhargava, Franzini, and Narendranathan (1982) Burke, Godfrey and Termayne (1990), Baltagi 

and Li (1991, 1994, 1995) Galbraith and Zinde-Wash (1992,1995).The error component model was extended to 

take into account first-order serial correlation in the remainder disturbances by Lillard and Willis (1978) for the 

random effects model and by Bhargava, Franzini, and Narendranathan (1982) for the fixed effects model. Both 

studies considered the first order Autoregressive [AR(1)] specification on the remainder disturbances. Nicholls, 

Pagan, and Terrell (1975), while considering first order moving average MA(1), find MA(1) is a viable 

alternative to AR(1). Baltagi and Li (1991) give a transformation which may be applied to certain autocorrelated 

disturbances in an error components model to yield spherical disturbances. They derive the transformations for 

first order Autoregressive AR(1) and second order Autoregressive [AR(2)] cases but little work has been done 

on dynamic panel data model. 
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This study is similar to the work of Harris and Matyas (2010) in the basic designs of experiment.  

However, there are differences, first we modify the parameter values by varying it to be mild, moderate and 

severe, two we increase the sample size, N and T especially we consider N to be large and T finite, three we take 

a subset of the estimation methods considered in their paper.  On the final note, we extend the experiment by 

incorporating different degrees of serial correlation of the disturbances to observe their effect on the estimators.   

Also the values of parameters of the serial correlation (AR and MA) is assumes to take a low, moderate and 

value close to one. Monte Carlo experiments were performed to compare the relative efficiency of various 

estimators of a dynamic panel data models when the disturbances itv
 follow an AR(1), AR(2), MA(1) or MA(2) 

processes. We consider a similar problem for the DPD error component regression with autocorrelated remainder 

disturbances.   Monte Carlo experiments were performed to compare small sample properties of five alternative 

estimators, when the remainder disturbances are generated by different generating schemes.  The estimators are 

Ordinary Least Squares (OLS), Least Square Dummy Variable (LSDV), The Anderson-Hsiao estimator using 

lagged levels as instrument( AH(l)), The Anderson-Hsiao estimator using lagged differences as instrument 

(AH(d)) and First step Arellano-Bond  estimator  GMM (ABGMM1). 

 

2 The model 

2.1 Dynamic Panel models 

All panel data models are dynamic, in so far as they exploit the longitudinal nature of panel data. Dynamic 

models include a lagged dependent variable on the right-hand side of the equation.  A widely used modeling 

approach is: 

     
TtNiuxyy itittiit ,...,1,...,11, ==+′+= − βδ

               (1) 

with i  denoting households, individuals, firms, countries, etc and t  denoting time.  The i  subscript, therefore 

denotes the cross-section dimension whereas  t  denotes the time-series dimension.  ity
 is the dependent 

variable,   1, −tiy
 is the lagged dependent variable , δ  is a scalar, itx′

 is the row vector of explanatory variable, 

dimension k , 
β

 is unknown parameter vector of k  explanatory variables and itu
  is the disturbance term.  We 

assume that the itu
 follow a one way error component model.  

  itiit vu += µ
                                                                           (2) 

where iµ  denotes the unobserved individual specific effect and itv
 denotes the remainder disturbance,   

),0(~ 2

µσµ IIDi  and 
),0(~ 2

vit IIDv σ
independent of each other and among themselves 

 

2.2 The fixed Effects Dynamic Panel Model 

It is assumed that the variable of interest ity
 is a linear function of the individual’s previous realization of this 

variable, and of their contemporaneous personal characteristics itx
 with unknown coefficient, 

δ
 and 

β
, 

respectively: 

itiittiit vxyy ++′+= − µβδ 1, ,                                              (3) 

where: iµ  are the individual effects (constant for each i) and itv
 are the usual white noise disturbance terms.  In 

matrix form: 

  
ittiiit

vXyDy +++=
−

βδµ
1,                                                (4) 

 Where 
.1 vectorunitTtheislandlID TTN ×⊗=
 

The usual method of estimating equation (4), i.e. when there is no Lagged Dependent Variable, consists of 

estimating equation directly by OLS ( the Least Squares Dummy Variable Estimator- LSDV), which also leads 

to the well known Within estimator.  However, given the short time series component typical of panel data sets, 

the OLS and Within estimators are well known to be biased and inconsistent as ∞→N  with finite T  (see 

Nickel (1981) and Sevestre and Trognon (1985) for a theoretical approach, and Nerlove (1967,1971) for a 

simulation based only). 
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2.3 The Random Effects Dynamic Panel Model  

Under the random effects specification, the iµ  terms of (3) are treated as independent random drawings from a 

particular distribution and the disturbance term becomes “composite”, itiit vu += µ
.  As with the fixed effects 

specification, the traditional estimators (Within and GLS) of the static random effects panel model are semi-

inconsistent in the dynamic setting (Sevestre and Trognon ,1985). 

Again semi-consistent estimators for the dynamic random effects model rely on certain maintained 

hypothesis, which are violated by the inclusion of a lagged dependent variable.  The assumptions concerning the 

equation’s disturbances imply that variance-covariance matrix of the composite disturbance term will be 

,)()( ∑⊗=′⊗==Ω
vNNv IvvEIvV

                           (5) 
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For the research work we are to assume a random effect of the dynamic panel data model. 

 

3. Methodology 

Here is the brief discussion on the estimators considers in the work 

 

3.1 Ordinary Least Square (OLS) Estimator 

In the static case in which all the explanatory variables are exogenous and are uncorrelated with the effects, we 

can ignore the error-component structure and apply the OLS method.  The OLS estimator, although less efficient, 

is still unbiased and consistent.  But this is no longer true for dynamic error-component models.  The correlation 

between the lagged dependent variable and individual-specific effects would seriously bias the OLS estimator.  

OLS, the simplest of all estimators considered, is applied to the equation in the level form.  Since the 

initial values of ity
 are known, OLS can use in actual estimation all of the cross-sections. 

The OLS estimator is given as: 
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3.2 Least Square Dummy Variable (LSDV) 

Consider now the least squares dummy variable (LSDV) estimator, also known as the 

fixed-effects or within-group estimator. We assume that the explanatory variables in  itx
 are strictly exogenous. 

Estimates of  
)( βδ and

are obtained by applying OLS to the model expressed in deviations from time means: 

),,1{),()()( 1,11 Ttvvxxyyyy iittiitiitiit L∈−+−′+−=− −−− βδ
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1 . This transformation wipes out the 

unobserved individual effects, eliminating one possible source of inconsistency 

 The LSDV estimators for δ is   
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3.3 The Anderson-Hsiao estimator  

Anderson and Hsiao (1981) proposed an instrumental-variable (IV) estimator that is consistent for fixed T and N 

→∞. The estimator suggested by Anderson and Hsiao (1982) is based on the differenced form of the original 

equation (3) 

 
)8()()( 1,1,2,1,1, −−−−− −+′−′+−=− tiittiittititiit vvxxyyyy βδ

                                     
 which  cancels  the  individual  fixed  effects  assumed  to  possibly  correlate  with  the exogenous variables 

).0(( ≠′
iitXE µ

  

When the dimension of the panel is TN × , the Anderson-Hsiao we employ is  

                                                                                                                                                              (9) 

We  add  the  symbol  L  or  D  to  indicate  the  use  of  levels  or  differences  as  instruments 

)ˆ,ˆ( ,, DAHLAH γγ
. 

 

3.4 The Arellano-Bond estimator  

The AH estimator is consistent but not efficient because it does not use all the available moment conditions. 

Arellano and Bond (1991) propose a generalized method of moments (GMM) estimator that also relies on first-

differencing the model.  The estimator is similar to the estimator suggested by Anderson and Hsiao but exploits 

additional moment restrictions, which enlarges the set of instruments.   

The dynamic equation to be estimated in levels is  

    
)10(1, itiittiit vXyy ++′+= − µβδ

     

where differencing eliminates the individual effects  iµ :               

  1,1,2,1,1, )()( −−−−− −+′−′+−=− tiittiittititiit vvxxyyyy βδ
 

For each year we now look for the instruments available for instrumenting the difference equation. For t=3 the 

equation to be estimated is  

  232,3122,3 )()( iiiiiiii vvxxyyyy −+′−′+−=− βδ
 

where the  instruments 121, , iii xandxy ′′
 are available.  Because  the  differencing  operation  introduces  first  

order  autocorrelation  into  the  error term, the first-step estimator makes use of a covariance matrix taking this 

autocorrelation into account.   
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The two-step GMM estimator uses the residuals of the first-step estimation to estimate the covariance matrix as 

suggested by White (1980):  

  
∑
=
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N
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The resulting estimator finally is  

  yWVWXXWVXWABGMM ′′′= −−− 111 ˆ)ˆ(γ̂ .                                      (11) 

 

4.  Monte Carlo study  

We study different estimators in the Monte Carlo experiment, the Ordinary Least Square (OLS),  Least Square 

Dummy variable(LSDV), Anderson and Hsiao  using lagged levels as instrument (AH(l), The Anderson-Hsiao 

using differences as instrument and First step Arellano –Bond GMM (ABGMM1) and compare them under 

different circumstances.  The data generating process closely  follows Nerlove (1971).  The simulation is based 

on the following model: 

 

                                 where itε  is uniformly distributed on the interval 
)5.0,5.0(−

  For the random effect 

specification we generate itiit vu += µ
 where 

)1,0(~ Niµ  and classical error term itv
is generated either by                          

itittiit uXyy +′+= − βδ 1,

ittiit xX ελ += −1,

YZXZAH ′′= −1)(γ)
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                   AR(1) process: ittiit vv ωρ += −1, ,        with 
),0(~ 2

ωσω IINit   ,  

                   AR(2) process: ittitiit vvv ωρρ ++= −− 2,21,1 ,   with 
),0(~ 2

ωσω IINit ,    

                  MA(1) process: ittiit vv ωθ += −1, ,  with 
),0(~ 2

ωσω IINit    or 

                  MA(2) process: ittitiitv ωωθωθ ++= −− 2,21,1 ,   with 
),0(~ 2

ωσω IINit    .   

Where 
2

ωσ  is normalized to 1. 

 The value of the serial correlation parameters 
θρ and

 are varied as 

8.0,5.0,2.0=ρ 8.0,5.0,2.0=θ
 ,  δ  and λ alternates between 0.1, 0.5 and 0.9 , 

1=β
 and 

),( ′= βδγ
.    

In the experiment, we consider N=50, 100 and T=5, 10, 20.    500 replications are performed since 

GMM estimator is quite computationally intensive and time consuming.  We examine the bias of different 

estimators under consideration to determine how their magnitudes vary with the characteristics of the dataset.  

Also, The Root Mean Square Error (RMSE) criterion is used to assess the efficiency of the estimators. 

 

5. Results  

Table 1-4 present the bias and RMSE for estimate of the autoregressive coefficient,  δ    for the case of N=50, 

T= 5, 10, 20.  Table 5 report the bias and RMSE for AH(d) estimator when it follows different error component 

process. Tables 6-9 show the bias and RMSE of the parameter of lagged dependent variable of all possible 

combinations of N and T when λ takes the values of 0.1, 0.5 and 0.9 for only AR(1) and MA(1) to save space.  

The results in table 1 indicates that AH(d) outperforms other methods of estimation under consideration 

when T=5 while the ABGMM1 estimator performs worst in term of producing higher bias and RMSE.   The bias 

and RMSE of the estimate using OLS and LSDV are constant for the various value of T even when the 

autoregressive parameter is varied.  For T=10, AH(l) performs best in terms of RMSE with a very small bias  

followed by LSDV while ABGMM1 still perform worse but the estimator seem to show the serious  

improvement  (larger percentage reduction in average RMSE and bias as it increases).  When T=20, ABGMM1 

shows a sharp changes as it outperforms other estimator when T is large it follow closely by AH(d), though it 

does not produce a superior estimate in terms of average bias.  Using a ABGMM1 estimator with small 

instruments produces a smaller expected bias in most cases, but using the full set of instruments almost always 

increases the efficiency of the estimate (Judson and Owen, 1996).  Here, the LSDV have the least performance 

with a small reduction in terms of RMSE and bias.  As the time dimension T increases AH(l) perform equally 

well .  It was also observed that AH (l) and AH(d)  estimates improve in performance as the serial correlation 
ρ

 

increases.  For ABGMM1 estimator it deteriorates in performance as the serial correlation increases.  The 

performance is constant for OLS and LSDV even when 
ρ

increases given that the two estimators ignore the 

serial correlation in the remainder term. 

Table 2 gives similar results as that of table 1, The performance in the AR(1) process is similar to the 

AR(2) process, but there is slight improvement in the performance of ABGMM1 When the serial correlation is 

of the higher order i.e AR(2) compared with AR(1) in term of RMSE but the bias of AR(2) is more than that of 

AR(2) .  AH(d) still perform better when T=5 and AH(l) perform better at T=10 and 20.  As T increases 

ABGMM1 also improve better in performance in both RMSE and bias. 

Table 3 and 4 shows the performance of different estimators when the serial correlation follows MA(1) 

or MA(2) process.  The result is similar to that of AR(1) and  AR(2) in tables 1 and2 respectively.  AH(d) 

estimator perform better than other estimators when T is small (T=5), AH(l) performs better when T is moderate 

(T=10), while ABGMM1 estimator outperforms others as T increases to 20.   ABGMM1 estimator performs 

badly when T is small but as T increases to 10 there is a drastic improvement in both the RMSE and bias of the 

estimate.  For AH(l) ,AH(d) and ABGMM1 their performances are fair when the serial correlation assumes 

MA(2) process than MA(1) process (though there is little difference). 

Table 5 shows the results to bias and RMSE of the estimate of δ  for AH(d) estimator when the serial 

correlation follows AR(1), AR(2), MA(1) or MA(2) process.  The results at different scenario shows that when 

the autoregressive of order 1 (AR(1))  is better than AR(2) though their differences are minimal.  When 

following the Moving Average process, MA(2) is better than MA(1). 

Similarly results were obtained when the number of individual units is 100 at different combination of 

N and T except that their bias and RMSE reduces compared to  when the number of individual units is 50 (the 
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result can be given on the request from the authors). 

The result in tables 6-9 show that for OLS estimator as value of λ increases the bias and RMSE 

deteriorates but for other estimators considered it improves as λ increases.  It was also observed that the 

ABGMM1 has a larger bias and RMSE when the value of 1.0=λ  compared to when it is 0.5 or 0.9 especially 

when time dimension, T is small.   Similar results were obtained irrespective of the number of individual and 

pattern of serial correlation process.   All the estimators improves in performance as the sample size increases 

this confirms the asymptotic properties of sample size. 

 

6.     Conclusion 

In general, the result of the Monte Carlo experiment shows that AH(d) outperforms other estimator when T is 

small, AH(l) is better when T is moderate(T=10) and ABGMM1 perform better when T is getting larger(T=20)  

at various level of serial correlation under consideration .  Also, it was observed that as T increases there is an 

improvement in the performance of ABGMM1 due to the increase in the instruments, this implies that 

ABGMM1 will be better when T is large.  The OLS and LSDV are constant at various level of T even when the 

Autoregressive and Moving Average parameters δ and θ  are varied in terms of bias and RMSE. 

The bias of most of the estimators reduces as the value of T increases especially the ABGMM1 

estimator.  The effect of making the serial correlation, itv
 to follow AR(1), AR(2), MA(1) or MA(2) are 

negligible in the performances of the estimators.  

Also, the result revealed that the bias and RMSE of OLS deteriorates as the value of λ  increases while 

other estimators improves with increase in the value of λ .   The GMM estimator proposed by Arellano-

Bond(1991) has a larger bias and RMSE when the value of the autoregressive parameter of exogenous variable,  

λ is mild and when the time dimension is small (i.e. T=5).  It was noted that as the sample sizes increases the 

performances of all the estimators improves.  
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