Molecular Barcoding and Phylogeny Reconstruction of Rhynchoporus sp in Minahasa North Sulawesi Based Partial Cytochrome Oxidase Sub Unit 1 Gene (CO1)

Sandra Korua^{1*} Jantje Pelealu² Max Tulung² Lucia Mandey² Mokosuli Yermia Semuel³ 1. Doctoral Student, Department of Entomology, Postgraduate Programme, Sam Ratulangi University, Manado, North Sulawesi Indonesia

 Department of Entomology, Postgraduate Programme, Sam Ratulangi University, North Sulawesi Indonesia
 Laboratory of Molecular Biology, Department of Biology, State University of Manado, Tondano, North Sulawesi, Indonesia

Abstract

Molecular phylogeny reconstruction of *Rhynchophorus sp* from *Cocus nucifera* L, *Arenga pinata* and *Metroxylan sagu* was investigated using partial sequences of *Cytochrome c oxidase* subunit I gene (CO1). Three type of *Rhynchophorus sp* according the place of live used this study. *Rhynchophorus sp* from *Cocus nucifera* (AR1), *Metroxylan sagu* (SG1) and *Arenga pinata* (AR1) was analysis the partial CO1 gene. Phylogeny trees was constructed using MEGA 6,0 and Geneous 6,0. From the results of this studied, based on partial CO1 gene, *Rhynchoporus* living at the *Arenga pinata* is *Rhynchoporus palmarum* while *Rhynchoporus* living on Sago palm (*Metoxylan sagu*) and Coconut (*Cocos nucifera*) are *Rynchoporus vulneratus*. The results of this study is the first step of the revision of the uncertain taxonomic status and phylogenetic relationships among the *Rhynchophorus* species as well as other molecular markers.

Keywords: Rhynchophorus sp, CO1, Cocus nucifera, Arenga pinata, Metroxylon sagu Rottb, CO1, phylogeny tree

Intoduction

Based on the previous studies, the morphological characteristics *Rhychoporus sp* in Minahasa. has many variation according to their habitat (Korua, 2015). The number of morphological variation in *Rhychoporus sp* in Minahasa cause problems in the identification of species. Identification based on morphological characteristics may be less accurate in getting the position *Rhychoporus sp* species in Minahasa. *Rhychoporus sp* is an important insect species in Minahasa, North Sulawesi, because it can attack the main agricultural crop (Coconuts). Besides coconut, *Rhychoporus sp* are also found in plants such as Sagu (local name) and Aren (local name). From the results of studies conducted habitat, *Rhychoporus sp* on coconut plants can be moved to and Sagu based on the availability of food (Mokosuli, 2015). It is difficult to identify species *Rhychoporus sp* because of mixing populations increase intraspecies variation. Identification of the *Rynchoporus sp* that live in coconut, Aren and Sagu are important in the effort to control the population. Over population of *Rynchoporus sp* on thats plants had decrease the production. In addition, by knowing the position of the species, it is important to conserve *Rynchoporus sp* as a source of genetic diversity.

Identification of species using mitochondrial DNA gene as a barcode has become a tool for the identification of animal species around the world. Cytochrome oxidase subunit I (COI) mitochondrial gene was established as a bioidentification tool and has been used to study genetic variation in various insect species (Hebert et. al. 2003). Identification of species of insects in Sulawesi using barcode molecular DNA mitochondrial gene CO1 was performed on *Apis dorsata* Binghami and *Apis nigrocincta* Smith (Mokosuli et. al., 2013), Damselfly (Rantung et. al. 2015), Termites subteran (Ngangi et. al. 2015) and Marine insect Gerridae (Warouw et.al. 2016). Lodging in *Rhychoporus sp* identification using CO1 gene has been done on *Rhychoporus sp* living at Sago plant in Sorong and Raja Ampat Islands, Papua (Mokosuli et. al. 2015). In contrast to previous studies that analyze gene CO1 *Rhychoporus sp* that lived at Sago plants alone. The aims of this study was to get top notch and construction species phylogeny *Rhychoporus sp* that lived on plant Coconut, Aren and Sagu in Minahasa, North Sulawesi.

MATERIALS AND METHODS

Sample

Insects collecting used modified method Cheng *et. al.* (2010), by using neuston net. Collection on the fields area randomly. Insects that have been collected will insert in a bottle sample that has been labeled with place and time of data sampling. The bottle was filled with 95% alcohol for identification and preservation.

www.iiste.org

DNA Extraction, PCR Amplification and Sequencing

Total genomic DNA was extracted from *Rhychoporus sp* samples using Axygen Bioscience according to the manufacturer's protocol. PCR was performed in a total volume of 25 μ L containing 1 × reaction buffer, 3 mM MgCl2, 0.24 mM dNTPs, 1.4 μ M of each primer LCO1490 : 5'-GGTCAACAAATCATAAAGATATTGG-3' and HCO2198 : 5'-TAAACTTCAGGGTGACCAAAAAATCA-3' (Folmer et. al., 1994), 1U Go Taq Flexi DNA polymerase (Promega Corp.) and 2.5 μ L of DNA (a 100 time dilution of the original DNA). The PCR program was as follows: 94 °C for 5 min, followed by 40 cycles of 94 °C for 1 min, 48 °C for 1 min and 72 °C for 1 min and a final extension at 72 °C for 5 min. PCR products were purified using Wizard SV Gel and PCR Clean-Up System (Promega Corp). Purified PCR products were analyzed by electro-phoresis in 1% agarose gel. The molecular size of the amplified products was estimated using 1 kbp DNA ladder (Biometra). PCR products were sequenced using AB1 PRISM Dye Terminator Cycle Sequencing Ready Reaction System, version 1.1. (Applied Biosystems) in FIRST BASE Singapura

Sequences Analyses and Phylogeny trees reconstructed

Obtained sequences were aligned using MEGA 6.0 and Geneous 6.0 software. Sequences were subjected to Basic Local Alignment Search Tool (BLAST) in order to perform sequence similarity searches (<u>www.ncbi.nih.gov.com</u>). Nucleotide frequencies were calculated using MEGA 6.0 software (Tamura et. al. 2013). The genetic distances (number of nucleotide substitutions per site) among sequences were calculated using the Maximum Composite Likelihood model in Geneous 6.0 software. Phylogenetic trees were reconstructed using two different reconstructed using the Maximum Composite Likelihood methods: (1) neighbor joining (NJ) and (2) maximum parsimony (MP). The NJ tree was reconstructed using the Maximum Composite Likelihood method. Phylogenetic analyses were conducted in MEGA 6.0 software. Bootstrap support values were obtained by 1,000 replications using both methods (Tamura et. al. 2013).

RESULTS AND DISCUSSION

DNA extraction used the tissue on hind legs of *Rhychoporus sp*. The results of PCR partial CO1 gene visualized by electogram of electrophoresis. Accordingly bands that formed showed the high concentration of amplicons partial CO1 gene in all sample (AR1, KL1 and SG1) (Figure 1).

Figure 1. Visualization CO1 gene PCR amplicons by electrophoresis on 1% agarose gel . AR1 (Rynchoporus sp. From palm, coconut and KL1 of SG1 from Sagu).

The sequencing results were interpreted using Geneous 6.0 software. The Molecular weight of partial CO1 gene sequences of KL1, AR1 and SG1 are 658 bp, 620 bp and 658 bp respectively (Gambar 2). Based of the chromatogram were resulted of the sequencing, showed all sequences of partial CO1 gene are good (Figure 2).

Consensus	1 GTCAACCA	10 AATCATAA	20 agatattggi	30 AACTCTATACT	40 TTTATTTTGG	50 aacttgagca	60 ggaatag tag	70 GGAACTTCTCT	80 Галбалтасті	90 Cattégageag	100 Баас табб ал	110 AATCCAGGATCATTA
Identity	1	10	20	30	40 1	50 '	60 '	70	80 '	90 '	100	110
REV 1. AR1_HC	GTCAACCA											
FWD 2. AR1 LC				×				MAN SGAACTTCTCT	MAN AATACT			
Consensus	120 Атсббсба	130 Атбатсала	140 TCTATAATG	150 FTATTGTCACA	160 Agete atgett	170 TC ATCATAAT	180 TTTT¹TT AT ?	190 Agttataccaa	200 .TTA TÅATTGI	210 SGGGTTTTGG	220 AAATTGATTA	230 AGTCCCCCTTATATT
	120	130	140 '	150	160 '	170	180	190	200	210	220	230
REV 1. AR1_HC					AGCTC ATGCTT							
FWD 2. AR1_LC				TATTETCACA	GCTC ATSCTT					GG GG TTTTGG		MMMMM AGTCCCCCTTATATT
Consensus Identity	240 AGGGGCCC	250 СТБАТАТА	260 GCTTTTCCCC	270 5 57773 à 773	280 ACATAAĠATTC	290 TGGCTTCTTC	300 ccccctc TT	310 ГААСТС ТТСТТ	320 TTA ATAAGA	330 Agaattstega	340 AAAAAGGTGC	350 Aggaac aggetgaa
	240	250	260	270	280	290	300	310	320	330	340	350
REV 1. AR1_HC		216	GCTTTTCCCC 226									AGGAAC AGGC TGAA
FWD 2. AR1_LC	AGGGGCCC		GCTTTTCCCC		WMMM CATAAGATTC	TGGCTTCTTC						AGGAAC AGGCTGAA
Consensus Identity	360 CAGTTTAC	370 CCCCCATT	380 Agcaggaaa	390 Igtagee cata	400 Agagg agc ttc	410 tg tagac tta	420 GCTATTTT	430 AGCCTTCATAT	440 AGC AGGGAT	450 CTCTTCAATC1	460 TTAGGGGCCA	470 ATTAACTTTATCTCC
REV 1. AR1_HC		370	380 AGCAGGAAA 346			410 	420 GCTATTTTT 386		AGC AGGGAT			
FWD 2. AR1_LC			AGCAGGAAA	TGTAGCC CATA	MAGAGG AGCTTC	TG TAGACTTA	GCTATTTT7	WWWW GCCTTCATAT				MMMMMM TTAACTTTATCTCC
Consensus Identity	480 ACAGCTAT	490 TTAATATAC	500 Бассалабо	510 GCATACTTTCC	520 GACCGACTTT	530 CTCTATTTAT	540 CTGAGCC GT1	550 FAGAATCACAG	560 CCC TTCTTC:	570 rccttctttc?	580 Асттестя та	590 TTAGCTGGAGCCAT
REV 1. AR1_HC	480 ACAGCTAT 446		500 GACCAAAGGO 486	510	520 GACC GAC TTT 486			550	560 526 526			590
FWD 2. AR1_LC			GACCAAAGGO 820		GACC GACTTT		CTGAGCC GTT				CTTCCTGTT	
Consensus Identity	TACTATAC 600	TATTAACT 610	GACCGAAA T	atcaatacctc	ATTTTTCGAC	CC AGC AGG AG	GAGGGGACCO	AATTC TTTAT	CAACACTTA	TTTGATTT	TTGGTCACC	GGAAGTTTAA
REV 1. AR1_HC			GAECGAAATS		ATTTTTCGAC		GAGGGGAECC	636	646 1	3 656	66	16 676
FWD 2. AR1_LC							GAGGGGACCO					GGAAGTTTAA

Figure 2a . Nigrogen base sequence of the gene CO1 AR1 read used Geneous Program 6.0

Consensus Identity	1 10 Ттббтсааса	AAT <mark>CA</mark> TAA.	20 AGATATTGO	30 FAACCC TATA1	40 	50 GGTACCTGAG(60 CAGGAATAGCI	70 AGGTACCTCAT	80 TAAGTATAT	90 ГААТТСБАБС	100 TGAATTAGG3	110 AAGACC TGGATCTT
	1 19		20	30	40	50	60 '	70	80 	90	100	110
REV 1 KL 1 HC	AMA	MMM		MMW			MMM					WWWWW
in the line					1	10 '	20 '	30	40	50	60	
FWD 2. KL1 LC					ATTTT	Dichar		AGGTACCTCAT	M.MM			MAGACC TEGATCTT
Consensus	120 1 ТААТТGGTGA	30 16 atc a aa	140 TTTATAATO	150 5 TAATTGTTA C	160 AGC TCATGC	170 FTTTATTATA	180 ATTTTTTTCA	190 tagttatacct	200 ATCATAATT	210 GGAGGATTC G	220 GAAATTGATT	230 ragttccactaata
Identity	120 1	30 1	140 1	150 1	160	170	180 1	190	200	210	220	230
	MMM	MWW	to ANW	Mmm	MMM	mm	www	www	MMM	mm	Mww	wwwww
REV 1. KL1_HC	TAATTGGTGA	TGATCA AA	100	110	AGC TCATGC	130	140	150	160	ITO	GAAATTGATT	190
	MM	MMM	Mww	WW	WWW	WWW	WWW	MMMM	hmm	WWW	MMM	MMMMM
FWD 2. KL1_LC	240	ТGАТСААА 250 стсатата	260	270	280	290	300	310	320	330	GAAATTGATT 340	350
Identity	240	250	260	270	280	290	300	310	320	330	340	350
	ALAAAAAA	Annan 1 Ma	think	MAAAAAAA	1. AAA AAAAAAA	MANANAN	Manhan	10000	AAAAAAAA	In MANAAAA	AMMAAAA	MANA A MANA
REV 1. KL1_HC	CTTGGAGCAC	CTGATATA 210	GCCTTTCC 220	230	ATA TAAGC T 240	TTTGATTACT 250	rectecttet	TTAACCCTCTT 270	ATTAATAAG. 280	AGAATTGTT 290	GAAAAAG GAG	SCTGGC ACAGGATG 310
	A.M.M.M.M.	TATA ANA	MMM	MAAAAAA	MAAAAA	MAMAAA	MANA	MMMMM	MMM.	MMMM	MMM	Manadan
FWD 2. KL1_LC	CTTGGAGC AC	CTGATATA 370	GCCTTTCC	CGATTAAATA 390	ATATAAGCT	TTTGATTACT	A20	TTAACCCTCTT 430	ATTAATAAG. 440	AGAATTGTT 450	GAAAAAGGAG 460	CTGGCACAGGATG 470
Consensus Identity	AACTGTTT AT	CCÁCCC TT.	AGC AGC TAI	ATGTEGÉCEAT	AGAGGÁGCC	IC TGTTGATC :	FAGC TAT TTT	TAGTE TŤEATA	TAGCAĠGTA	TTCTTCTAT	TCTAGGÁGCI	FATTAA TİTCATCT
	360	1.1.	380	390		410	420	430	440			410
REV 1. KL1_HC	AACTGTTTAT 320	CCACCC TT	AGC AGC TAR	ATGTCGCCCAT		CTGTTGATC	TAGC TAT TTT	TAGTC TTCATA		TTCTTCTAT	TCTAGGAGCT 420	
	XA. A. AAAA	1. 11.		11. 11.	M.M.M	A.A.A.A.A	. MAXAA MA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		MM.M.A.	M. M.M.M	10000 Man 100
FWD 2. KL1_LC	ACTGTTTAT	CCACCCTT.	AGC AGC TA	TGTCGCCCAT	AGAGGAGCC	TC TGTTGATC	TAGCTATTTT	TAGTC TTCATA	TAGCAGGTA	TTCTTCTAT	TCTAGGAGCT	ATTAATTCATCT
Consensus Identity	CTACAGCTAT	TAATATAC	GACCCTCAG	GTATATTT	TGACCGAAT	ATCCTTATT	STCTGAGCTG	таасааттаст	GC TATTTA	TATTATTAT	CTTTACC TG	TTCTAG CTGGAGCA
	480	490	500	510	520	530	540	550	560	570	580	590 UL CJ
REV 1. KL1_HC	CTACAGCTAT		GACCETCA	WWWW GTATATTTT	TGACCGAAT	WWWW ATCCTTATTT	GTCTGAGCTG	MMMMM TAACAATTACT	GC TATTTA		CTTTAC TGT	MMMMM TTC TAG CTG GAGCA
1851C-1	440	450	460	470	480	490	500	510	520	530	540	550
FWD 2. KL1_LC	CTACAGETAT		GACCCTCAC	GTATA TTTT	TGACCGAAT		GTCTGAGCTG		GC TATTTA	MWWW I TATTATTA T	CTTTACC TGT	TETAG C TGGAGE A
Consensus	600 ATCACTATAT	610 ТАТТА́АСА	620 GATCGA 441	630 ГАТТАА ТАСТИ	640 CATTTTTG	650 ATCCTGCTGG	660 Aggaggagati	670 CCCATTCTTA	680 TC AGC ATTT	690 TTTTGATTT	700 TTTGGTCGCC	709
laoning	800 T. A	610	620	630	640	650 A	660 1	670				
	WWW	MM	WWW	WWW	land	town	0.000	2003				
T. KLI_HG	560	570	580	590	600	610	620	630	640	650	660	669 1
FWD 2, KL1 LC			GATCGAAA		CATTTTG				MMMoto	MMM TTTTGATTT	TTTGGTCGC	ANT ANA

Figure 2b . Nigrogen base sequence of the gene CO1 KL1 read used Geneous Program 6.0

Consensus Identity	1 10 2 ТТТБСТС ААС <mark>АААТС</mark> АТААЛ	0 30 Agatattggaacccta:	40 TATTTTATTTTT TATTTTTT	50 ggtac ctgage.	60 70 аф датарс ар фта	80 .cc tc atta ag tat.	90 ATTA ÅTTCGAGCT	100 геалттасса	110 AGACC TGGATCT
,		0 30	40 '	50	60 70	80	90 '	100	110
REU 1 801 HCO ab1	MMMM	www.www.ww	<u>www.</u>	MMMM	MMMMM	MMMM	wwww	MMM	MMMM
New 1. 301_HCO.ab1	TILEVIC ANCAMPLE ATAM	WATATIOWACCCIA.	1 4	14	23 32	42	52	62	
500 2 801 L CO ab1			M?	De War	A Anna ho	Whomas	MMM	WWW	MAM MM
Consensus	120 130 	140 150 ГТТАТААТСТА АТТСТ	160 TACAGCTCATGC	170 TTTTATTATAA	180 190 TTTTTTCATAGTT	200 ATACCTATCATAA	210 TTGG AGGATTCG	220 AAATTG ATT	230 AGTTC CACTAAT
Identity	120 130	140 150	160	170	180 190	200	210	220	230
	11111111111111111111111111111111111111	MAAAM. MAAAAAA	A. A	MAAAAAAAAA	ANANA TAAAAAA	MaMaaMaaMa	MMMM	MANAAA	ANATATAAAAAA
REV 1. SG1_HCO.ab1	TTAATTGGTGATGATCAAAT 82 92	TTT ATAATGTA ATTGT 102 112	TACAGCTCATGC 122	TTTTATTATAA 132	TT TT 	ATACCTATCATAA 162	TTGG AGGATTCG C	AAATTGATT 182	AGTTCCACTAAT 192
	the att hallow	MAAAAA LAANK	M. timesta		M. M. M. M. M.	AAAAAAAAAA	MATTATA	MARAMAAA	MANAMA HAMAN
FWD 2. SG1_LCO.ab1	TTAATTGGTGATGATCARAT 240 250	260 270	TACAGCTCATGC	TTTTATTATAA 290	TTTTTTTCATAGTT 300 31	ATACCTATCATAA 0 320	TTGGAGGATTCGC 330	SAAATTGATT	AGTTC CACTAAT
Consensus Identity	ACTTGGA GCACCTGA TATAG	GCC TTTCCACG ATTAA	атаататаадст	TTTGÅTTACTT	CC TCCTTCTTTAAC	сс теттатта ата.	AGAAGAATTGTT	БАЛАЛА GAG	CTGGC ACAGGAT
	240 250	260 270	280	290	300 31	0 320	330	340	350
REV 1. SG1 HCO.ab1		WWWWWW		MMMM TTTGATTACTT	WWWWW	MMMMM CC TC TT ATTA ATA	MMMM AGAAGAATTGTT		CTGGC AC AGGAT
0.110.050		222 232	242	252	262 27	2 282	292	302	312
FWD 2. SG1 LCO.ab1		CC TTCCACG ATTAA		TTTGATTACTT	MMMMMM CETECTTCTTTAAC	MMMMMM CC TCTTATTAATA	AGAA GAATTGTT		TGGC AC AGGAT
Consensus	360 370 GAÁCTGTTTATCCACCCTT	380 390 AGC AGCTAATG TCGCC	400 CATAGAGGAGCC	410 тстбт тбатст.	420 4 AGCTATTTTTAGTC	30 440 ††¢ atatage ågg *	450 FATTTCTTCTATT	480 CTAGGAGCT	470 ATTAA TTTCATC
Identity	360 370	380 390	400	410	420 4	30 440	450	460 1	470
	MMMMM	MMMMM	MMMM	MMM	MMMMM	MMMM	www	WWW	mmm
REV 1. SG1_HCO.ab1	GAACTGTTTATCCACCCTT 322 332	GCAGCTAATGTCGCC 342 352	CATAGAGGAGCC	TCTGTTGATCT. 372	AGCTATTTTTAGTC 382 3	TTCATATAGCAGG 92 402	412	422	ATTAA TTTCATC 432
	MMMMM	handhan	MMMM	MMM	MMMMM	mmm	www	MMM	mmm
FWD 2. SG1_LCO.ab1	GAACTGTTTATCCACCCTT 480 490	AGC AGCTAATG TCGCCI 500 510	CATAGAGGAGCC	TCTGTTGATCT. 530	AGCTATTTTTAGTC 540	ТТСАТАТАGСАGG 550 560	570	580	ATTAA TTTCATC
Identity	490 400	500 510	FTCTGACCGAAT.	ATCCTTATTTG	540	550 580	570	SOD	TCTAGCTGGAGC
REV 1. SG1_HCO.ab1			TTCTGACCGAAT.	ATECTTATTTG	TC TGAGCTG TAACA	ATTACTGCTATT		TTTACC TGT	TC TAGCTGGAGC
	ALLAN A. MANANAMANA	M. AAAA	MA. MANJAN	AAAAA AAAAA		AAAA		LALAN L	14141.1/14
FWD 2. SG1_LCO.ab1	TCTACAGCTATTAATATAC	WWWWWWWWW FACCCTCAGGTATATT	TTCTGACCGAAT.	ATCCTTATTTG	TC TGAGC TG TAACA	WVVVW MVVW	VWY WWWW FATTATTATTAT	WWWWW TTTACC TGT	TCTAGCTGGAGC
Consensus Identity	BUU BIU AATCACTATATTATTAACAG	620 630 GATEGAAATATTAATA	CTACATTTTTTG.	ATCCTGCTGGA	660 GGAGGAGATCCCAT	670 680 TC TTTATCAG CAT	TATTTGATTT	TTGGTC ACC	CTGGA AGTTT
		620 630		650	662				
REU 1 801 HCO ab1	MMMMM	MMMMM	WM 20	Alanda	20000				
1.001_HC0.ap1	562 572	582 592	2 602	612	622	632 642	. 652	662	674
FWD 2 SG1 LCO ab1		MMMMMM		ATCETECTEC	MMMMMM			WWW	CTEEAAETT
2.001_L00.db1									

Figure 2c. Nigrogen base sequence of the gene CO1 SG1 read used Geneous Program 6.0

BLAST analysis results AR1 CO1 gene sequences showed the highest degree of similarity with *Rynchophorus vulneratus* accesion number [LN 612634.1][(Table 1). On the other hand partial CO1 gene sequences of KL1 and SG1 respectively showed the highest degree of similarity with *Rynchophorus cruentatus* accesion number [AY131113.1] (Table 2 and Table 3).

Table 1 The percentage of sequence similarity AR1 CO1 gene sequences compared with the top ten recorded in the NCBI gene bank (www.ncbi.nih.gov/blast.com)

Description	Max score	Total score	Query cover	E value	Ident	Accession
Rhynchophorus vulneratus mitochondrial partial COI gene for cytochrome oxidase subunit 1, isolate RV01A01	1024	1024	94%	0.0	98%	LN612634.1
Rhynchophorus vulneratus mitochondrial partial COI gene for cytochrome oxidase subunit 1, isolate RV01A02	1013	1013	96%	0.0	97%	LN612635.1
Rhynchophorus vulneratus mitochondrial partial COI gene for cytochrome oxidase subunit 1, isolate RV01A03	1000	1000	92%	0.0	98%	LN612636.1
Rhynchophorus vulneratus isolate RED1111 cytochrome c oxidase subunit I (COI) gene, partial cds; mitochondrial	664	664	61%	0.0	98%	KF311631.1
Rhynchophorus vulneratus isolate RED939 cytochrome c oxidase subunit I (COI) gene, partial cds; mitochondrial	664	664	61%	0.0	98%	KF311629.1
Rhynchophorus vulneratus isolate RED253 cytochrome c oxidase subunit I (COI) gene, partial cds; mitochondrial	664	664	61%	0.0	98%	KF311567.1
Rhynchophorus vulneratus isolate RED1144 cytochrome c oxidase subunit I (COI) gene, partial cds; mitochondrial	658	658	61%	0.0	98%	KF311633.1
Rhynchophorus vulneratus isolate RED935 cytochrome c oxidase subunit I (COI) gene, partial cds; mitochondrial	658	658	61%	0.0	98%	KF311628.1
Rhynchophorus vulneratus isolate RED843 cytochrome c oxidase subunit I (COI) gene, partial cds; mitochondrial	658	658	61%	0.0	98%	KF311621.1
Rhynchophorus vulneratus isolate RED823 cytochrome c oxidase subunit I (COI) gene, partial eds: mitochondrial	658	658	61%	0.0	98%	KF311617.1

Tabel 2. The percentage of sequence similarity KL1 CO1 gene sequences compared with the top ten recorded in the NCBI gene bank (www.ncbi.nih.gov/blast.com)

Description	Max score	Total score	Query cover	E value	Ident	Accession
Rhynchophorus cruentatus cytochrome oxidase subunit I (COI) gene, partial ods; mitochondrial gene for mitochondrial product	693	693	99%	0.0	86%	AY131113.1
Dinoptera collaris voucher GBOL_Col_FK_6727 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	669	669	99%	0.0	85%	KM445325.1
Dinoptera collaris voucher BFB_Col_FK_9033 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	664	664	99%	0.0	85%	KM439730.1
Nosodendron fasciculare voucher BFB_Col_FK_8752 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	662	662	100%	0.0	85%	KM452239.1
Myrmechixenus vaporariorum voucher ZMUO <fin>000424 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial</fin>	662	662	100%	0.0	85%	KJ961927.1
Pterostichus cristatus voucher GBOL_CoL_FK_5123 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	658	658	100%	0.0	85%	KM444764.1
Protapion ruficrus voucher GBOL_CoL_FK_3091 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	658	658	99%	0.0	85%	KM443977.1
Pterostichus cristatus voucher GBOL_CoL_FK_4257 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	654	654	100%	0.0	85%	KM440434.1
Protapion ruficrus voucher BFB_Col_FK_9071 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	652	652	99%	0.0	85%	KM445949.1
Tachinidae gen. tachJanzen01 sp. Janzen01 cytochrome oxidase subunit 1 (COI) gene, partial cds: mitochondrial	652	652	99%	0.0	85%	JQ576361.1

Tabel 3. The percentage of sequence similarity SG1 CO1 gene sequences compared with the top ten recorded in the NCBI gene bank (www.ncbi.nih.gov/blast.com)

Description	Max score	Total score	Query cover	E value	Ident	Accession
Rhynchophorus cruentatus cytochrome oxidase subunit I (COI) gene, partial ods; mitochondrial gene for mitochondrial product	693	693	99%	0.0	86%	AY131113.1
Dinoptera collaris voucher GBOL_Col_FK_6727 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	669	669	99%	0.0	85%	KM445325.1
Dinoptera collaris voucher BFB_Col_FK_9633 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	664	664	99%	0.0	85%	KM439730.1
Nosodendron fasciculare voucher BFB_Col_FK_8752 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	662	662	100%	0.0	85%	KM452239.1
Myrmechixenus vaporariorum voucher ZMUO <fin>:000424 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial</fin>	662	662	100%	0.0	85%	KJ961927.1
Pterostichus cristatus voucher GBOL_Col_FK_5123 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	658	658	100%	0.0	85%	KM444764.1
Protapion ruficrus voucher GBOL_Col_FK_3091 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	658	658	99%	0.0	85%	KM443977.1
Pterostichus cristatus voucher GBOL_Col_FK_4257 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	654	654	100%	0.0	85%	KM440434.1
Protapion ruficrus voucher BFB_Col_FK_9871 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	652	652	99%	0.0	85%	KM445949.1
Tachinidae gen. tachJanzen01 sp. Janzen01 cytochrome oxidase subunit 1 (COI) gene, partial cds: mitochondrial	652	652	99%	0.0	85%	JQ576361.1

Analysis of Sequences partial CO1 gene

Analysis of transition and transversion (R = 0.72) with a model Maximum likelihood used MEGA 6,0; obtained frequency of nucleotides A = 25 %, T = 25 %, C = 25 % and 25 % Guanine. The forms of nucleotide substitution are shown in Table 4.

Table 4. Nucleotides substitution form of partial CO1 gene of AR1, KL1 and SG1

tes substitution form of partial COT gene of ART, RET and SOT										
From\to	А	Т	С	G						
А	-	7.2727	7.2727	10.4546						
Т	7.2727	-	10.4546	7.2727						
С	7.2727	10.4546	-	7.2727						
G	10.4546	7.2727	7.2727	-						

According to table 5, the similarity of *Rhynchoporus sp.* showed that KL1 had 19,5 % different with SG1 and AR1 respectively. SG1 and AR1 based of the genetic distance analysis are the same species (Table 5). Table 5. Genetic distances among nucleotide sequences from *Rhynchophorus* spp. based on the

	pairwise analysis of CO1 gene. sequences.											
No.	Sample	1	2	3	4	5	6	7	8	9	10	
1	AR1	100										
2	KL1	80.5	100									
3	SG1	80.5	100	100								
4	Nosodendron fasciculare	78.6	84.7	84.7	100							
5	Dinoptera collaris	79.5	84.7	84.7	85.4	100						
6	Rhynchoporus palmarum	82.2	81.8	81.8	81.7	80.8	100					
7	Rhynchoporus bilineatus	91.5	81.2	81.2	78.4	76.2	83.7	100				
8	Rhynchoporus vulneratus 1	97.7	78.4	78.4	75.7	74.7	82.1	92.4	100			
9	Rhynchoporus vulneratus 2	98	80.7	80.7	78.5	79.2	82.3	92.2	98	100		
10	Rhynchoporus cruentatus	79.7	81.2	81.2	76.5	78.3	85	85.1	85.3	84.9	100	

Genetic variation in partial CO1 gene was supported by the results of previous studies, the morphometric analysis of KL1, AR1 dan SG1 were found some differences in morphometric characters among other forms of pronotum and color strip on the tip of the antenna on Rhynchoporus sp. thatch beige and Rhynchoporus sp. the black palm (Korua et al. 2015). Polimorfisme can occur in a population when more than one morphological variations at the same location and time (Ford, 1965, Abad et. Al. 2014). In case of random mating and every individual has the potential to mate, then morphological changes can take place in a population (Abad et. Al. 2014). Research conducted at Rhynchoporus Rhynchoporus ferrugineus Oliver and Rhynchoporus schach in the central and southern Philippines found that polymorhism were major factor morphology modifications of the Rhynchoporus sp. Morphological modifications are also found in Rhynchoporus phonicis in Cameroon (Abad et. al., 2014: Tambe et. al. 2013).

In previous studies conducted by the author had founded morphological modifications of imago Rhynchoporus sp. which livet on a palm tree, palm and sago palm in Minahasa, North Sulawesi Province (Korua, 2015). The results of this study imply that *Rhynchoporus sp.* has a high ability to adapt in their environment.

Reconstruction of Phylogenetic tree based partial COI gene.

Nucleotide sequences were used to construct this tree. Construction phylogeny performed using three models namely Maximum Likelihood (ML), Neighbor-Joining (NJ) and Minimum Evolution (ME) (Tamura et. al., 2013, Kimura, 1980) (Figure 3). Three models are used to determine whether there differences in phylogenetic relationships AR1, KL1 and SG1 when the tree phylogeny constructed with different models.

(c)

Figure 3. Comparison of Construction Phylogeny CO1 sequences AR1, KL1 and CO1 CO1 SG1 with three types of models (a) ME, (b) ML and (c) NJ

Reconstruction of the phylogeny tree was also performed using BLAST sequence results at www.ncbi.nih.gov/blast.com. Phylogeny tree constructed using the Neighbor Joining method using Geneous 6.0 program. KL1 and SG1 form one node but still be monophyletic with Rhynchoporus palmarum and Rhynchoporus cruentatus, But the phylogeny tree had formed, showed KL1 and SG1 closer relationship with Rhynchoporus palmarum. Different from KL1 and SG1, partial CO1 gene of AR1 had formed node with Rynchophorus

vulneratus (Figure 4).

0.04

Figure 4. Tree phylogeny Rhynchoporus sp. (KL1 = Coconut, SG1 = Rumbia 1, AR1 = Aren).

CONCLUSIONS

From the results of the present study, based on partial CO1 gene, note that *Rhynchoporus* living at the *Arenga pinata* is *Rhynchoporus palmarum* while living on Sago palm (*Metoxylan sagu*) and Coconut (*Cocos nucifera*) are *Rynchoporus* vulneratus.

REFERENCES

- Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology*. 3, 294-297.
- Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003. Biological identifications through DNA barcodes. *Proceedings of the Royal Society* London B 270 (2003) 313-321.
- K. Tamura, M. Nei, S. Kumar, Prospects for inferring very large phylogenies by using the neighbor-joining method, *Proceedings of the National Academy of Sciences* (USA) 101 (2004) 11030-11035.
- K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4:molecular evolutionary genetics analysis (MEGA)software version 4.0., *Molecular Biology and Evolution* 24(2007) 1596-1599.
- Mokosuli YS. 2013. Karakter Morfologi, Sumber Pakan dan Bioaktivitas farmakologis Racun lebah madu endemic Sulawesi Apis dorsata Binghami dan Apis nigrocincta Smith (Hymenoptera : Apidae). [Disertasi]. Program Pascasarjana Universitas Sam Ratulangi.
- Mokosuli YS, Worang RL, Paskhalina, Dimara A. 2016. Konstruksi Filogeni *Rhynchophorus spp*.Dari Tanaman Sagu di Sorong dan Kepulauan Raja Ampat Papu. Laporan Penelitian Penerapan Ipteks. Lembaga Penbelitian Universitas Negeri Manado.

- Rantung R, Rondonuwu ST, Tulung M, Mantiri FR, Mokosuli YS. 2015. Character of cytochrome oxidase 1 gene (CO1) in mitochondrial DNA Damselfly *Agriocnemis femina* from linow lake, tondano lake and moat lake at north Sulawesi. *Advances in Life Science and Technology* Vol. (38) : 40-53
- Tamura K, Stecher G, Peterson P, Filipski A and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular. Biology and Evolution. 30(12):2725–2729 doi:10.1093/molbev/mst197
- Warouw V, Salaki C, Mangindaan REP, Tulung M, Maramis RTD, Mokosuli YS. 2016. Isolation and Characterization of Partial Mitochondrial CO1 Gene from Marine Insect Gerridae, Stenobates biroi from Mokupa Beach Manado, North Sulawesi Indonesia *Journal of Biology, Agriculture and Healthcare* Vol.6, No.6, 2016