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Abstract 

This paper presents nonlinear modulation of wave propagation in spherical shell model (SSM) and modified 

Zhang model (MZM) using free space model (FSM) as a bench-mark. A typical non-linearity is the change in the 

dielectric constant due to electromagnetic (EM) wave field that propagates through a medium. By modulation, 

we mean the characteristic departure of EM waves’ propagation in both media as opposed to the free space 

propagation. Maxwell’s equations were used to derive the basic equation that govern the propagation of 

electromagnetic waves in nonlinear media. The equations of the models were found to be nonlinear and their 

solution were obtained numerically using Runge-Kutta scheme implemented in Matlab software. The spatial EM 

wave profile graphic displays were supplemented by the symmetric spatial Fast Fourier Transform (FFT) 

analysis. The symmetric implementation of the FFT meant that the actual number of modes present in any 

solution was half the number of observed spikes. The free space model (FSM) showed periodic propagation for 

all frequencies (
��� , f�, 10f�, and	25f��	examined corresponding to a wavenumber per frequency. The result only 

serves to give some level of confidence that the algorithm performed well. The MZM supports a variety of 

characteristics. There are amplitude amplifications or wave steeping, lossless or solitary propagation and 

multiplicity of modes for all frequencies examined. However, at the fundamental frequency	f� � 47.7 � 10�Hz, 

the SSM is capable of exhibiting amplitude amplification without attenuation. The EM wave propagation 

characteristics of the MZM and SSP showed that materials which could be fabricated according to this model 

would be very useful as EM wave guides as they could support waves without losses as opposed to the present 

known commercial optical fibers. 

Keywords: Nonlinear modulation, Wave propagation, Spatial Electromagnetic wave. 

 

1.0 Introduction 

The study of electromagnetic wave propagation in free space has been well known and documented [1]. Many 

applications such as radio, television, radar and microwave transmissions are examples of free space propagation. 

Telecommunication is already transformed with the help of nonlinear optics and similar impact is expected very 

soon on technology that involves computer science. Nonlinear methods cover a wide region of different 

applications now, such as harmonic generations and frequency sum [2]. In free space the wave amplitude and 

hence the energy remains constant in space and time [3]. However, the power density decreases in accordance 

with the inverse square law. This leads to eventual fading of signals from transmission sources. When the waves 

are guided, it is possible to achieve transmission in which the power density is constant [4]. Apart from resistive 

losses, signals on wave guides are supposed to be pure and clear over the whole length of the guide. The 

important property of a medium which alter or modulate wave propagation through it is the dielectric tensor or 

the refractive index in the case of isotropic assumption [5]. The rapid development in the field of quantum optics 

and nanotechnology has made it possible to manipulate the dielectric constants of some media [6].  

The nonlinear propagation of strong interacting electromagnetic fields which is explored by the 

standard theoretical way is based on the nonlinear solution of the equation for a specific nonlinearity (quadratic, 

cubic, etc.) [7]. But in many experiments the laser field’s intensity is very high that the conventional expansion 

of the nonlinear polarization in a Taylor series over the electric field strength stops to be a good approximation, 

and the corresponding language of susceptibilities is no longer valid [8]. It is also a common view that for future 

use more sophisticated understanding of the basic mechanisms underlying non-linear phenomena of this kind 

will be required. This motivates us to explore nonlinear modulation of wave propagation in model media where 

details of material properties can been manipulated so that it can guide optical signals with much purity. In the 

light of this anticipation, models of field dependent materials can be assumed and the nature of EM wave’s 

propagation in them can be studied. 

It is therefore very important to study computationally how media property will modulate 

electromagnetic wave propagation in them. If a particular model gives an interesting and useful wave modulation, 

it will open up experimental challenges on how to realize the materials with such model properties. The problem 

of how media properties alter or modulate the electromagnetic wave propagation in them remains an open one. 

The exact solution of the electromagnetic wave equation for model media shall be investigated by numerical 
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techniques in this study. 

For an understanding of the nonlinear modulation of wave propagation in model media, it is necessary to 

consider the theory of electromagnetic wave propagation normal to the plane of propagation with respect to a 

material medium [9].  

 

2.0 Theoretical Consideration 

2.1 Maxwell’s Equations 

The propagation of electromagnetic waves is determined by Maxwell’s equations [10]. That is: 

 � � ��� � � ����       (1) 

    � �  ��� � !�" �#�����       (2) 

                                           �. $��� � %�                                                     (3) 

                                          �. &�� � 0                                                        (4)  

where E��� is the electric field vector and H	���� is the magnetic field vector. $	���� is the electric flux density and B��� is the 

magnetic flux density. The current density vector is J	��. The flux densities $��� and &�� appear in response to the 

electric and magnetic fields ���  and  ���  propagating inside the medium and are related to them through the 

constitutive relations given [11] by  

                                 $��� � *���� " +��                                                     (5) 

                                 &�� � ,� ��� " -���                                                    (6) 

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, +�� is the induced electric polarization and -��� 
is the induced magnetic polarization. 

 

2.2 Assumptions of the model  

The basic equations that govern propagation of electromagnetic waves can be obtained from Maxwell’s 

equations which describe the time and space evolution of magnetic and electric fields [12]. Here, time 

discretization is completely irrelevant since time must disappeared in the final equation as treated in accordance 

with Helmholtz decomposition. A number of assumptions are necessary to realize the computation that follow 

and to arrive at a good results without time.  

(a) We shall assume a rectangular symmetry so that Cartesian coordinates	.,/, 0 can be used. (b)The direction of 

propagation of the EM waves is the . direction.  

(c)The electric and magnetic vectors of the EM waves are in the / and 0 directions respectively, and that they 

vary only in the . direction, i.e. � � �12.�3,  �  42.�5, where 3 and 5 are unit vectors in / and 0 directions 

respectively.  

(d)The media are perfect dielectrics and non-magnetic. 

 (e)The electric and magnetic fields are harmonic in time.  

(f)The dielectric properties of the media respond to the spatial component of the electric field only and that it is 

nonlinear only in the . direction. 

 

2.3 Derivation of the working equations 

 Recall Faraday equation (1)  

                                               � � �=� ����  
The Faraday equation in rectangular coordinates is given by 

� � � �	 6 7 3 5��8 ��1 ��4�8 �1 �46 � 9
�:;�1 � �:<�4 = 7 " 9�:>�4 � �:;�8 = 3 " 9�:<�8 � �:>�1 = 5   

                                         � �9��>�� 7 " ��<�� 3 " ��;�� 5= 
This means that 9�:;�1 � �:<�4 = 7 " 9�:>�4 � �:;�8 = 3 " 9�:<�8 � �:>�1 = 5  � �9��>�� 7 " ��<�� 3 " ��;�� 5=                               (7) 

By assumption (c) the surviving terms are: 

                                      
�:<�8 � � ��;��                                      (8)                                            

Similarly, the Ampere equation (2) 

                                        � �  �J"	�#��  
Can be expressed in rectangular coordinates as: 
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� �  � 	 6 7 3 5��8 ��1 ��4 8  1  46 � 9
�?;�1 � �?<�4 = 7 " 9�?>�4 � �?;�8 = 3 " 9�?<�8 � �?>�1 = 5   

                                          � 9!8 " �#>�� = 7 " 9!1 " �#<�� = 3 " 9!4 " �#;�� = 5 

Or  9�?;�1 � �?<�4 = 7 " 9�?>�4 � �?;�8 = 3 " 9�?<�8 � �?>�1 = 5 � 9!8 " �#>�� = 7 " 9!1 " �#<�� = 3 " 9!4 " �#;�� = 5                                                                                                    

(9) 

By assumption (c) and (d; J=0), the surviving terms are: �?;�8 � � �#<��                                          (10) 

For a material medium the constitutive relations enables us to express (9) and (10) as: �:<�8 � � �@?;��                                            (11) �?;�8 � � �A:<��                                        (12) 

By assumption (d), the medium being non-magnetic, we have (11) as �:<�8 � �,� �?;��                                        (13) 

And by assumption (f), we can write (12) as �?;�8 � �* �:<��                                           (14) 

Elimination of  4 between (13) and (14) leads to wave-like equation: �B:<�8B � ,�* �B:<��B                                            (15) 

Assumption (f) is restricted to .-coordinate only, so * � *2�2.��. In this case the time harmonic assumption (e) 

for electric fields: �2., C� � D2.�EFGH�                                   (16) 

where, D2.� is y-component of electric field that depends on .-coordinate, gives the equation IBJI8B " ,�KL*2M�D � 0                              (17) 

Mathematically, the solution of (15) consists of finding the solution of (17) and substituting in (16), but spatial 

modulation of waves is what is of practical importance, so we do not need to go back to  �2., C�;D2.� is just 

what we need.  

 

2.4 Models of Dielectric Function 

The behavior of material towards electric field using free space model (FSM), spherical shell model (SSM) and 

modified Zhang model (MZM) is modelled by the following equations: 

FSM               *2M2.�� � *�                                                            (18) 

SSM             *2D2.�� � *� 91 " ODPQ=                                         (19) 

MZM            *2M2.�� � A2��RSFTJBUV WX                                                  (20) 

where, O is an attenuation parameter that depends on the thickness of the spherical shell material with outer 

radius, a in meters and inner radius b in meters. D � �S in Zhang’s model, however since our field is EM, D � D2.�, hence *2D� is a functional, Y is a parameter that plays the role of making the units consistent. 

 

2.5 Numerical Solution of the Models 
The solutions of the models were obtained using Runge-Kutta 4

th
 order method. The second order ordinary 

differential equation was reduced into a system of two first order ordinary differential equation. The ODE45 

module in Matlab which is built based on Runge-Kutta 4
th

 and 5
th

 order method was used to implement Runge-

Kutta Algorithm in Matlab. The equations were converted as follows: 

A substitution of FSM into equation (17) gives 

                           
IBJI8B " 2,�KL*��D � 0                                          (21)                                       

                                but, KL � 4ZL[�L 

So that, equation (21) becomes 

                               
IBJI8B " 4ZL[�L*�,�D � 0                                    (22) 

                               
IBJI8B " 5�D � 0                                                   (23) 

                where  5� � 4ZL[�L*�,�                                                     (24) 
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We let D � +S2.� and D\ � IJI8 � +L2.� then we obtain the system  

                               
IJI8 � +L ⟹ I V̂I8 � +L.  

and 

                               
II8 _IJI8 ` " 5�D � 0  

                               
I B̂I8 " 5�+S � 0  

                               
I B̂I8 � �5�+S   

Hence our new system of equations is given by 

                              
I V̂I8 � +L                                                                   (25) 

                              
I B̂I8 � �5�+S                                                            (26) 

A substitution of SSP into equation (17) gives 

                             
II8 _IJI8 ` " ,�KL*� 91 " ODPQ= 	D � 0                      (27) 

                             
II8 _IJI8 ` � �,�KL*� 91 " ODPQ= 	D                           (28) 

        Or,                
II8 _IJI8 ` � �5� 91 " ODPQ= 	D                                   (29) 

Let D � 5S; 	D\ � 5L and 

                             
IJI8 � 5L ⟹ I4VI8 � 5L  and we have  

                             
IaVI8 � 5L                                                                       (30) 

                             
IaBI8 � �5� 91 " O5SPQ= 5S	                                           (31) 

 Also a substitution of MZM into equation (17) gives 

                            
II8 _IJI8 ` " ,�KL A2��RSFTJBUV WX 	D � 0                                (32)                           

                           
II8 _IJI8 ` � � @bHBA2��RSFTJBUV WX 	D  

        since, *20� � *�  

   we have,         
II8 _IJI8 ` � � abRSFTJBUV WX 	D                                               (33) 

Let D � 0S2.�;	D\ � 0L2.� and 

                           
IJI8 � 0L ⟹ I4VI8 � 0L  and we have  

                           
I4VI8 � 0L                                                                           (34) 

                          
I4BI8 � � abRSFTJBUV WX 0S	                                                       (35) 

Table 1: Parameters used in the simulation. 

Parameter       Value 

Fundamental EM wave, [�																																																										47.7 � 10� 0 

Permittivity of free space, *� 																																																					8.854 � 10FSLdeFS 

Permeability of free space,	,�	 																																																		12.566 � 10FghiFS 

Wave frequency,K																																																																								2Z[� 

Alpha, Y																																																																																											0.005 

Gamma, O																																																																																									0.005    

Outer radius of the shell, j																																																											0.5e 

Inner radius of the shell, k																																																												0.003e 

The solution of equations (25) and (26) are found in the interval 0 m . m 100 , with step size of 0.001(FSM). 

The solutions of equations (30), (31), (34) and (35) are considered in the interval 0 m . m 200 (SSM and MZM) 

with step size of	0.001. The EM wave propagation is varied by [ � [�, 10[�, 25[�, 30[�, jno	50[� for our entire 

models. 

Propagation of EM waves from free- space medium to other media models is considered with a boundary region 

from 20 m . m 100� to	2100 m . m 300�, with the step size of  0.001. 

In general, the electric field of the EM wave propagation is 

                   D2.� � +S2.� � 5S2.� � pS2.�	                               (36) 

The output of the ODE45 solver (Electric field W(x)) is introduced into FFT-codes as we transform from wave 

position domain to wavenumber domain. 

 



Journal of Natural Sciences Research                                                                                                                                                www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 

Vol.7, No.3, 2017 

 

19 

3.0 Results and Discussion 

 
Figure 1. Sketch of free space model. 
 

 

Figure 2(a): Electric field of EM waves q2r� along x-direction in free-space model for s= st, h=0.001, 

L=100. 
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Figure 2(b): Transformation from wave position (using FFT) to wave number for free space model for s � st. 

 

 

Figure 3(a): Electric field of EM waves q2r� along x-direction for free-space model for s= uvst, 
h=0.001, L=100. 
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Figure 3(b): Transformation from wave position (using FFT) to wave number for free space model for s � uvst. 

 

 
Figure 4: Sketch of spherical shell model. 
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Figure 5(a): Electric field of EM waves q2r� along x-direction for Spherical shell model for f = st, 
h=0.001, L=200. 

 
Figure 5(b): Transformation from wave position (using FFT) to wave number for Spherical shell 

model for s � st. 
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Figure 6(a): Electric field of EM waves q2r�  along x-direction for Spherical shell model for f = wtst, h=0.001, L=200. 

 

 
Figure 6(b): Transformation from wave position (using FFT) to wave number for Spherical shell 

model for s � wtst. 
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Figure 7: Propagation from free-space medium to Spherical Shell medium at same frequency, s �st/y. (sz{|	t m r m wtt	}{	wtt m r m ytt.), h=0.001, ~ � t. ttv, a=0.5, b=0.003. 

 
Figure 8. Sketch of modified Zhang model 
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Figure 9(a): Electric field of EM waves q2r� along x-direction for modified Zhang model for s= st, 
h=0.001, L=200. 
 

 
Figure 9(b): Transformation from wave position (using FFT) to wave number for modified Zhang 

model for s � st & � � t. ttv. 
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Figure 10(a): Electric field of EM waves q2r� along x-direction for modified Zhang model for s= uvst, h=0.001, L=200. 

 
Figure 10(b): Transformation from wave position (using FFT) to wave number for modified Zhang 

model for s � uvst & 
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Figure 11: Propagation from free-space medium to modified Zhang model at same frequency s � st (sz{|	t m r m wtt	}{	wtt m r m ytt�  with step of h=0.001 and 			� �t. ttv. 

Figure 1 shows the behavior of material modelled by equation (18) towards electric field. The sketch 

tells us that, no matter the value of electric field, the permittivity of the medium remains unchanged. This means 

the permittivity is independent of electric field. The amplitude variation of the EM wave in such a medium is 

expected to be periodic in space. This corresponds to the well-known straight line propagation in the geometric 

optic approximation. The symmetric spatial Fourier transform of such a wave ought to show two peaks which 

are just mirror image of each other. Our simulation results reproduce these well-known facts. Figure 2(a) is a 

sinusoidal EM wave of one wavelength, �.	The periodic nature is of the same amplitude all through along the 
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image within the range	22950 � 3130��jo/e. In Figure 11, the propagation of wave from free space medium 

has constant amplitude; however, the behavior is completely different on crossing to medium of modified Zhang, 

as the periodic nature increases in amplitude with respect to the direction of propagation of EM waves. This 

shows that the model material has the ability to amplify the intensity of the wave at the given incident wave 

number. This behavior is very important for high quality transmission of data over long distances with wave 

guides having the model property. 

 

4.0 Conclusion 

The propagation of a wave in nonlinear media governed by the wave equation was derived from Maxwell’s 

equations for an inhomogeneous, dielectric media properties with some assumptions. A typical non-linearity is 

the change in the dielectric constant due to electromagnetic (EM) wave field that propagates through a medium. 

An investigation of the three models studied using non-linear wave equation reveals that dielectric properties of 

the media respond to spatial component of EM wave’s propagation in them and they are inhomogeneous only in 

x-direction. Apart from FSM, the SSM and MZM supports a variety of characteristics. There are amplitude 

amplifications or wave steeping, lossless or solitary propagation and multiplicity of modes for all frequencies 

examined. The EM wave propagation characteristics of the SSM and MZM, showed that materials which could 

be fabricated according to this model would be very useful as EM wave guides as they could support waves 

without losses as opposed to the present known commercial optical fibers. 
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