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Abstract 

The migration of inorganic antimony from polyethylene terephthalate plastic bottles into waters stored in them 

was investigated using hydride generation atomic absorption spectrophotometry. Six popular brands of bottled 

water marketed in the greater Accra region of Ghana were used. These were held under various storage 

conditions and their dissolved Sb monitored over a period. In addition, the Sb in the plastic containers and some 

physicochemical properties of the waters were determined. The determined Sb in the plastic containers revealed 

amounts ranging from 123.46 to 146.45mg/kg. The determined physicochemical properties were pH (6.78-7.43); 

Ca2+ (1.61-12.39mg/L); Mg2+ (1.00-4.96mg/L); HCO3
− (6.18-55.41mg/L); and total dissolved solids (8.70-

70.40mg/L). Differences in the residual amounts of Sb showed dissimilarities existed in the quality of the 

plastics used in packaging. The physicochemical properties were seen to have no effect on migration. Sb levels 

in the water stored in the plastic containers were observed to increase with time under all the storage conditions 

for all the brands of plastic bottled water. The plastic bottled waters were, however, found not to have Sb 

exceeding the world health organisation maximum contaminant level within the period taking into consideration 

the specified limited time of expiry. 
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1. Introduction 

The global bottled water market has witnessed a tremendous annual growth for the past fifteen years, reaching a 

total value of about €66 billion in the year 2010. The United Kingdom alone observed an increase in 

consumption of bottled water from 1415 to 2275 million litres between 2000 and 2006, spending about £1 billion 

(Ward et al., 2009). China turned into the biggest marketplace in the intake of bottled water at 40 million tonnes 

in the year 2011 alone (Fan et al., 2014; Rani, Maheshwari, Garg, & Prasad, 2012). Italy tops as the greatest 

annual producer of bottled water, manufacturing about 10 billion litres per year with a consumption rate of 151 

litres per capita per year annually (Krachler & Shotyk, 2009). There is, therefore, an indication that, bottled 

water in a few years to come will most likely be the sole drinking water worldwide.  

In Ghana, the majority of the public consume drinking water that is packaged in “sachets” or plastic bottles. 

These “sachet” and plastic bottled waters are generally perceived to be clean, convenient, healthy and safer 

compared to tap water (Fan et al., 2014; Grant & Yankson, 2003; Osei, Newman, Mingle, Ayeh-Kumi, & Kwasi, 

2013; Westerhoff, Prapaipong, Shock, & Hillaireau, 2008). Therefore, to satisfy domestic Ghanaian demand for 

“sachet” and plastic bottled water, there has been a proliferation in the number of manufacturers on the market, 

most of whom are suspected not to have permits. This leads to difficulty in determining the exact number of 

“sachet” and bottled water manufacturers in the country. Nonetheless, there are leading brands of bottled water 

which are taken most by the public and thus, can represent a greater portion of consumers.  

The plastic material for packaging drinking water differ from country to country, but the common package 

material used is polyethylene terephthalate (PET) (Keresztes et al., 2009). This is due to its excellent material 

properties like unbreakability, good barrier properties towards moisture, high clarity, low migration trends for 

residual constituents and very low weight of the bottles compared with glass bottles of the same filling capacity 

(Fan et al., 2014; Sanchez-Martinez, Perez-Corona, Camara, & Madrid, 2013; Welle, 2011; Westerhoff et al., 

2008). It is made from the polymerization of petroleum monomers of terephthalic acid and ethylene glycol using 

antimony-, titanium-, or germanium-based catalysts (Westerhoff et al., 2008). Over 90% of globally 

manufactured PET utilize antimony-based catalysts, predominantly antimony trioxide (Sb2O3) with beneficial 

qualities like high catalytic activity, low tendency to catalyse side reactions, creates no colour in the final product 

and has low-cost price (Carneado, Hernandez-Nataren, Lopez-Sanchez, & Sahuquillo, 2015; Shotyk, Krachler, 

& Chen, 2006; Welle, 2011; Westerhoff et al., 2008). An estimated 150 billion plastic bottles are produced from 

PET resins annually (Shotyk et al., 2006). Commercialised PET resins produced from the use of Sb2O3 catalysts 

ordinarily have residual Sb ranging between 150-300mg/kg (Carneado et al., 2015; Hureiki & Mouneimne, 2012; 

Keresztes et al., 2009). These residual antimony amounts are very high and raise concerns, considering earlier 
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findings that, antimony was found to migrate into water and beverages stored in PET plastic containers over time 

(Carneado et al., 2015; Fan et al., 2014; Keresztes et al., 2009).  

Sb itself is a regulated drinking water contaminant and a non-essential element for plants and animals and 

has no known biological or physiological function and on a long-term exposure has been suspected to be 

carcinogenic (Carneado et al., 2015; Keresztes et al., 2009; Roberts & Orisakwe, 2011; Sanchez-Martinez et al., 

2013; Sayago, Beltrán, & Gómez-Ariza, 2000; Shotyk et al., 2006; Tostar, Stenvall, Boldizar, & Foreman, 2013; 

Westerhoff et al., 2008). In cases of acute intoxication, symptoms such stomach and muscle aches, diarrhoea, 

desiccation, shocks, anaemia and uraemia may arise. These lead to serious myocardial inflammation, shivering, 

necrosis and finally death (Keresztes et al., 2009). Other detrimental ailments associated with long-term 

exposure to this metalloid include pneumonitis, fibrosis, bone marrow damage and carcinomas (Sayago et al., 

2000).  

Several environmental factors have been found to affect the migration of antimony from the plastic 

container into the water stored inside. Effects of factors like temperature, sunlight, duration and physicochemical 

properties amongst others on migration have been studied in other parts of the world (Bach et al., 2013, 2014; 

Carneado et al., 2015; Hureiki & Mouneimne, 2012; Keresztes et al., 2009; Shotyk et al., 2006; Westerhoff et al., 

2008). Climatic conditions in our part of the world are very different and more severe with variations in seasons. 

Moreover, the source of water for bottling and the packing material differs from one manufacturing company to 

another. Thus, it is imperative that PET bottled water stored under prevailing conditions be studied to ascertain 

whether migration rates are high leading to contamination.  

 

2. Materials and Methods 

2.1 Samples 

PET plastic bottled water samples of six popular brands (displayed in Figure 2.1.1) distributed in the Greater 

Accra region were selected and purchased at source on the day of bottling. Bottling plants locations are 

geographically mapped out in Figure 2.1.2. All samples of a particular brand originate from the same batch of 

bottled water produced at that time of the day. All brands of bottled waters also had a transparent layer of PET 

material used in packaging and the waters stored in them had different degrees of mineral composition.  The 

container volume chosen was 0.5L for all the six brands of plastic bottled water samples. Bottled water samples 

were not of the same bottling date but were all package in the range of two weeks. The bottled water samples 

remained sealed in their unique containers until analyses and antimony analyses for each brand (water samples 

and PET plastic containers) were carried out in quadruplicate (n=4). Thus, the obtained results corresponded to a 

mean of four independent measurements for both water samples and plastic package material originating from 

bottled water samples of the same batch. 
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2.2 Reagents and standards 

The standards and reagents used in this study were prepared with ultrapure water (8-10MΩ.cm-1 at 24.5ºC) 

obtained from a Milli-Q water purification system. The 1mg/mL stock standard antimony(V) solution was 

prepared by dissolving 0.216g of potassium hexahydroxyantimonate (Sigma-Aldrich, 99%) in 100mL of 2.4M 

HCl. Antimony stock solutions were stored in polyethylene plastic bottles in refrigerator at 4ºC and working 

solutions were prepared daily by dilution. The sodium borohydride solution used was prepared from dissolving 

0.700g granular NaBH4 (to a 0.7% (w/v) concentration, KEM Light laboratory purpose reagent, >97%) in 0.4% 

(w/v) sodium hydroxide (prepared from dissolving 0.400g NaOH pellets (Merck, 99%). In the microwave 

digestion of the plastic container samples, concentrated HNO3 (Panreac, hyper-pure reagent grade, 69%) and 

H2O2 (Merck, 96%) were used. The 1M L-Cysteine solution used to reduce antimony(V) in the total antimony 

determination was prepared by dissolving 1.212g of L-Cysteine (97%, Sigma-Aldrich) in 10mL of HCl (2.4M).  

 

2.3 Instrumentation and operating conditions  

Agilent 240 FS AA spectrophotometer with an antimony cathode lamp was used in the determination of trace 

inorganic antimony. Background absorption was corrected using a deuterium lamp. The operating conditions of 

the spectrophotometer during the determination were the wavelength, 217.6nm; bandpass, 0.7mm; lamp current, 

14mA; flame, 11.5L/min air and 3.6L/min acetylene. Background absorption was corrected using a deuterium 

lamp.  Microwave digestion of the PET plastic container samples was performed using a Milestone ETHOS 

digester instrument.  

 

2.4 Sample preparation 

Before analysis, water samples were allowed to stand for an hour before treatment. This is to enable all the water 

samples held under the different storage conditions to acclimatise to the same experimental conditions before 

treatment and subsequent analysis.  Also, before digestion, the PET plastic containers were cut into 

approximately 5×5mm2 pieces using a ceramic blade. Each cut-out replicate of the PET plastic container 

weighed approximately 0.250g. 

 

2.5 Migration experiment 

To simulate the effect of storage conditions typical of bottled water usage on the migration of antimony from the 

plastic containers into the waters stored in them, bottled water samples were assigned into three storage 

groupings, each group comprising bottled waters from the six different brands. Each group (excluding bottled 

water samples for analysis on the day of acquiring sample - day one) was further divided into three subgroups. 
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The three subgroupings (consisting of 4 bottled water samples for each brand) represented four weeks, eight 

weeks and twelve weeks under a specified storage condition. One group was stored in a refrigerator at 4ºC; the 

second group exposed to high air temperatures and sunlight outdoor, and the third group in a closed cabinet away 

from sunlight indoor. The bottled water samples were held under these conditions for 12 weeks and antimony 

levels monitored at four weeks’ intervals. The temperatures of the bottled waters kept outside and indoors were 

monitored on a weekly basis using a mercury bulb thermometer and those in the refrigerator maintained at 4ºC. 

To establish the antimony levels in the source waters before bottling, determinations were made on some of the 

bottled water samples for each brand on the day of acquisition – within 12 hours of filling. The rest of the bottled 

water samples were then stored according to the group they were assigned into for the rest of the experimental 

period. 

 

2.6 Analytical procedure 

The analytical procedure used in the total inorganic antimony determination was adapted from the works of Apte 

and Howard (1986) and Feng, Narasaki, Chen, and Tian (1999). The pH of water samples (10mL) was adjusted 

to 2 by adding 10mL of 8M HCl, after which 5mL of 1M L-cysteine was added and allowed to stand 15 minutes 

to reduce all the antimony(V) to antimony(III). Solutions were then placed in the auto-sampler section of the 

atomic absorption spectrophotometer for analysis to begin. Prior to the commencement of total antimony 

analysis, a calibration curve was generated using pre-reduced (by 1M L-cysteine) working standards of 

antimony(V) prepared by serial dilutions of a stock antimony(V) standard. Blanks were also prepared and used 

to correct interferences originating from the matrices of the solutions. 

With regards to the total antimony determination in the PET containers, each cut-out replicate of the plastic 

package material was mixed with 10mL of concentrated HNO3 and 2mL of concentrated H2O2 and digested in 

Teflon closed vessels using the Milestone ETHOS digester instrument. The maximum temperature and pressure 

were 180ºC and ~250 psi respectively for 15-minutes using 50% of the digestion system’s maximum power of 

1000W. After digestion, 5mL of 1M L-cysteine was added to the digestates and solutions allowed to stand for 15 

minutes to reduce all the antimony(V) to antimony(III). Solutions were finally topped to 25mL with ultrapure 

water and analysed for antimony using the atomic absorption spectrophotometer. Calibration of the 

spectrophotometer was done using working standards of antimony(V) that were prepared from serial dilutions of 

the stock antimony(V) standard. Concentrated HNO3 and H2O2 were added and digested as in the determination 

of the unknown. Antimony(V) in these solutions are then pre-reduced using L-cysteine for the same time as in 

the unknown. Blanks were also prepared and used to eliminate interferences that may be originating from the 

matrices of the solutions. 

The pH of the water samples of the six brands of bottled water was taken using the basic benchtop pH meter. 

The meter was first calibrated with buffers at pH 4.70 and 10.01 at ambient temperature (24ºC). The probe of the 

meter was then inserted into specific volumes (10mL) of the water samples and readings taken from the screen. 

For validation purposes, the pH of 1M KCl solution was similarly determined (ASTM International, 2012). 

Total dissolved solids (TDS) refers to the inorganic salts and small amounts of organic matter present in 

solution in water. The principal constituents comprise of calcium, magnesium, sodium, and potassium cations 

and carbonate, hydrogen carbonate, chloride, sulphate, and nitrate anions (WHO, 2003). The total dissolved 

solids of the water samples were measured using the conductivity/TDS meter which was calibrated at ambient 

temperature (24ºC) using HANNA standards. The probe of the meter was inserted into specific volumes (20mL) 

of the water samples. Total dissolved solids readings are then taken from the screen (ASTM International, 2010).  

The calcium content of the water samples was determined spectrophotometrically at 422.7nm by atomic 

absorption. Aliquots of the water samples were first mixed with lanthanum chloride (LaCl3) solution and then 

aspirated into an air-acetylene flame. The absorbance was then measured and compared to identically-prepared 

standard and blank solutions from which the concentration was obtained (ASTM International, 2014). 

The magnesium concentration was determined by atomic absorption spectrophotometry (AAS) – direct 

aspiration. Aliquots (10mL) of water samples were mixed with 5 mL of 1M lanthanum chloride (LaCl3) solution 

and aspirated into an air-acetylene reducing flame. The absorbance was measured spectrophotometrically at 

285.2nm and compared to identically-prepared standard and blank solutions. From the absorbance, concentration 

is then obtained (ASTM international, 2014). 

Bicarbonate ion concentration was determined by titration. Aliquots (10mL) of bottled water samples were 

titrated with 0.5M sulphuric acid using phenolphthalein and mixed (bromocresol green and methyl red) 

indicators. The endpoints reached was used to evaluate the amount of hydrogen carbonate present in the water 

samples (ASTM international, 2015).  

 

3. Results and Discussion 

3.1 Quality assurance and quality control 

Quality assurance and control steps comprised blanks, replicate analyses, certified reference material and 
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calibrations. Reproducibility was calculated as %RSD of 4 measurements and this was <10% for 90% of 

measurements. Method validation for Sb in the water was undertaken using a certified reference material (CRM) 

- global environment monitoring systems (GEMS) water standard. The certified Sb content in the GEMS 

material used in validating the Sb determination procedure was 100µgSb/kg±2%. This standard reference 

material was analysed in quadruplicate (n=4) in order to validate the precision of the measurement. The 

quantified Sb concentration was in agreement with the certified value taking into consideration the associated 

uncertainty, reaching a value of 99.49µgSb/kg±2%. Spike and recovery were used to validate the determination 

procedure for Sb in the PET container cut-out samples. Spiked cut-out polyethylene container samples in the 

determination of Sb in the PET plastic containers had uncertainty within acceptable limits and recovery >95%.

  

3.2 Effect of different plastic types on migration 

Figure 3.2.1 displays the total Sb in the plastic containers the waters were stored in.  Differences were clearly 

shown in the residual Sb present in the PET containers. The antimony content ranged from 123.5mg/kg to 

146.5mg/kg. VER had the highest Sb (146.5mg/kg) and AQF had the least (123.5mg/kg). These were lower 

compared to those of PET bottles obtained in some previous studies (Carneado et al., 2015; Keresztes et al., 

2009; Tukur, Sharp, Stern, Tizaoui, & Benkreira, 2012). On the other hand, the amounts obtained were within 

the range (104-166mg/kg) obtained by Fan et al. (2014). Sanchez-Martinez et al. (2013) recorded higher Sb in 

the PET plastic containers used in their study.  

 
The presence of Sb in the plastic containers can be attributed to its likely use as a catalyst in the 

manufacturing process of the PET plastics. It is added as the glycolate or in the trioxide form (Sb2O3). When 

added in the trioxide form, it readily converts to glycolate and at the end of the manufacturing process, it stays 

attached to the polymer chain as glycolate complexes (Carneado et al., 2015). The Sb glycolate complexes then 

slowly dissolve – solubility of 5.8×10-5kmol/m3 at 298K (Casas, Crisóstomo, & Cifuentes, 2008) from the plastic 

bottles into the water contained inside.  Thus, this goes to support the view that the technology used in the 

manufacturing the PET plastics differ and as such variances can be observed in the final product. 

 

3.3 Effect of physicochemical properties on Sb migration  

Figure 3.3.1 displays the matrix plot of dissolved Sb in bottled water versus the physicochemical properties of 

the water. The properties considered were pH, bicarbonate ion concentration, calcium ion (Ca2+) concentration, 

magnesium ion (Mg2+) concentration, and total dissolved solids (TDS). These were measured at the end of week 

12. The pH of the six brands of bottled water ranged 6.78 - 7.43 with a mean and median value of 7.12 and 7.11 

respectively. The range obtained was similar to those obtained in literature (Hureiki & Mouneimne, 2012; 

Westerhoff et al., 2008). VOL recorded the highest pH value (7.43) and AQF the least (6.78). The rest of the 

brands had pH varying between 6.78 and 7.43. pH statistically registered insignificant positive correlations 

(P=0.066,0.091>0.05, 0.01) to Sb under indoor and outdoor conditions but not under refrigeratory conditions 

(P=0.049<0.05>0.01). This suggests that pH does not statistically affect Sb at the 0.05 and 0.01 significance 

level. Few literature have come to the same conclusion for Sb (Hureiki & Mouneimne, 2012; Westerhoff et al., 

2008).  
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The bicarbonate ion levels of the waters ranged from 6.18-55.41mg/L. This range is lower compared with 

those obtained by Hureiki and Mouneimne (2012) and Keresztes et al. (2009). The bicarbonate ion levels 

positively correlated Sb in the water under the three storage conditions. The correlations were, however, 

insignificant (P=0.444, 0.335, 0.295>0.05, 0.01) suggesting that, the bicarbonate levels statistically have no 

relationship with Sb content in the stored water. Hureiki and Mouneimne (2012) arrived at the same conclusion.  

The calcium content of the water ranged from 1.61mg/L to 12.39mg/L with a mean and median value of 

4.53mg/L and 3.36mg/L respectively. These were lower compared with those obtained by Hureiki and 

Mouneimne (2012) and Keresztes et al. (2009). The calcium content registered statistically insignificant positive 

correlation to Sb (P=0.222, 0.130, 0.147>0.05, 0.01) at 0.05 and 0.01 significance level. Thus, the calcium 

content does not appear to affect the changing levels of the Sb content in the stored water. Studies by Hureiki 

and Mouneimne (2012) and Keresztes et al. (2009) however revealed calcium had an effect on Sb. This 

difference may be due to the lower calcium levels obtained in this study. Thus, there is the likelihood calcium 

beyond certain limits will begin to induce Sb migration.  

The magnesium levels for the six brands of bottled waters ranged from 1.00mg/L to 4.96mg/L with a mean 

and median value of 2.87mg/L and 2.78mg/L respectively. This range is lower compared with those obtained in 

a study by Hureiki and Mouneimne (2012) and Keresztes et al. (2009). The magnesium levels statistically 

correlated Sb positively under the three storage conditions. The correlations were however insignificant 

(P=0.587, 0.550, 0.449>0.05, 0.01). Therefore, the magnesium levels did not statistically affect Sb in the waters 

at the respective significance levels. Similar findings were obtained by Hureiki and Mouneimne (2012).  

The TDS for the six brands of bottled water ranged from 8.78mg/L to 70.40mg/L with a mean a median of 

36.61mg/L and 36.10mg/L respectively. This range is lower compared to that obtained by Hureiki and 

Mouneimne (2012) and Keresztes et al. (2009). TDS was found to be positively correlated to Sb under the three 

storage conditions. The correlations were however found to be insignificant (P=0.377, 0.270, 0.240> 0.05, 0.01) 

suggesting that TDS does not statistically affect Sb in the waters at the respective significance levels. Contrary to 

that, Hureiki and Mouneimne (2012) and Westerhoff et al. (2008) found that higher TDS content accompanied 

in higher Sb in the bottled water. Cognisance must, however, be given to the fact that, the ionic composition of 

the water used in the study by Westerhoff et al. (2008) comprised the summation of the divalent ions, calcium 

and magnesium. That of Hureiki and Mouneimne (2012) used ionic composition of the water specified by the 

manufacturers of the bottled waters. The TDSs of the bottled water were not experimentally determined. 

 

3.4 Effect of storage duration and type on Sb migration 

Figure 3.4.1a and Figure 3.4.1b display the dissolved Sb of the water brands determined for twelve weeks at 

intervals of four weeks under the three selected storage conditions for the six brands of bottled water. The three 
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selected storage conditions (in a refrigerator [R] at 4ºC; indoor [I] at room temperature; and outdoor [O] exposed 

to direct sunlight and high air temperatures) were specific and typical of bottled water usage in Ghana. Five 

(AQF, BQA, ICP, VER and VOL) out the six brands of bottled water had some amounts of dissolved Sb present 

in them on the day they were acquired - week 0. The dissolved Sb levels ranged below the detection limit 

(0.05µg/L) for SPI to 13.77µg/L for VOL. BQA, VER, and VOL registered dissolved Sb greater than the MCL 

specified by US EPA and EU but lower than the maximum contaminant level specified by WHO for week 0. The 

detection of dissolved Sb in the water before storage was not strange. Some previous studies have published 

accounts of this phenomenon. For instance, in a study of ‘the influence of storage time and temperature on Sb 

migration from PET bottles into mineral water’, Carneado et al. (2015)   detected dissolved Sb in all tested water 

samples before storage. The detected dissolved Sb ranged from 0.3µg/L to 0.7µg/L. In another study by Tukur et 

al. (2012), levels ranging between 0.03µg/L and 6.61µg/L have been obtained for 47 freshly purchased British 

bottled contents. Westerhoff et al. (2008) in studying Sb leaching from PET plastics used for bottled drinking 

water equally discovered that, at the beginning of the study, the nine bottled water samples used contained some 

amounts of dissolved Sb (average dissolved Sb of the nine bottled waters 0.195±0.116ppb).  
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The presence of “substantial” amounts of dissolved Sb in some of the brands of bottled water samples 

determined on the day the waters were acquired was not likely to have originated from the PET plastic 

containers as, the contact time between the water and PET plastic containers was too minimal (less than 12 hours) 

to contribute to such “significant” amounts of dissolved Sb in brands BQA, VER, and VOL. This, therefore, 

places focus on the origin of the waters before bottling and the surrounding environment.  

The bottled water companies are in the same region (Figure 2.1.2) but the source of water for bottling differ from 

one company to another. A visit to the production facilities revealed the manufacturers of VOL, AQF, ICP, VER 

and SPI use water sourced deep underneath the ground rich in ions (aquifers) whilst producers of BQA use 

municipal water from Kpong.  

In precipitates from hot springs, boreholes and in geothermal waters, Sb levels ranging 500mg/L up to 

10wt.% have been recorded (Filella, Belzile, & Chen, 2002; Shotyk et al., 2006). Slow moving groundwater in 

contact with buried ore deposits dissolves and transport trace elements like Sb forming aqueous dispersions 

(Grimes, Ficklin, Meier, & McHugh, 1995). Treated waters from sources like these are bound to have more 

amounts of the metalloid dissolved. This is because most of the purification steps are focused on the elimination 

of bacteria and particulate matter but not dissolved heavy metal contaminants like Sb. Thus, the origin of the 

water could have accounted for the presence of the “substantial” amounts of Sb in AQF, BQA, ICP, VER and 

VOL water samples. No Sb was detected in SPI water samples on week 0. There is, therefore, a high possibility 

that the rock from which the water was sourced does not contain Sb minerals.  

The surrounding environment and treatment processes for the waters before bottling varies. Typical 

concentrations of dissolved Sb are usually very low – less than 1µg/L but in areas that are close to anthropogenic 

roots, levels can extend up to 100 times the natural levels (Dodd et al., 1996; Zheng, Ohata, & Furuta, 2000).  

AQF bottling plant is located in an industrial area whilst BQA bottling plant is in a semi-industrial environment. 

Bottling plants of VOL, ICP, VER and SPI are located in areas that are considered to be relatively free from 

industrial activities (Figure 2.1.2).  Generated airborne Sb compounds, especially in areas that have industrial 
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activities ongoing can find their way into water sources, thereby increasing dissolved amounts (Cavallo et al., 

2002). Thus, although manufacturers of BQA did not use water sourced from underground for production, the 

semi-industrial surrounding conditions could have contributed to the amounts of dissolved Sb determined in 

week 0.  

Water samples stored under the three selected conditions typical of bottled water usage evidently showed 

differences in time series linear graphical patterns (Figure 3.4.1a and Figure 3.4.1b). Those stored in the 

refrigerator witnessed an increase in Sb from week 0 to week 12 for all brands of bottled water. BQA recorded 

the highest Sb at the end of week 12 under refrigeratory conditions. This was reached because of a major 

contribution from Sb determined on week 0. Despite the increments observed, none of the brands of bottled 

water had dissolved Sb exceeding the MCL specified by WHO at week 12 under refrigeratory conditions. Water 

samples stored indoor saw increase in Sb from week 0 to 12 for all the six brands of bottled water. VOL 

recorded the highest Sb (16.86µg/L) indoors at week 12. The major contribution of Sb was from Sb determined 

on week 0. Bottled water brands BQA, VER and VOL had Sb greater than the MCL defined by EU and US EPA 

but less than WHO MCL at week 12. Sb of water samples stored outdoor exposed to sunlight and high air 

temperatures increased from week 0 to 12 for all brands of bottled water. At week 12, VOL recorded the highest 

Sb (23.88 µg/L) followed by BQA. AQF recorded the least Sb (8.63µg/L) at the end of week 12. Sb obtained on 

week 0 were taken into considerations to realise such high amounts. Bottled water brands VER, AQF, SPI and 

ICP had Sb exceeding MCL Specified by EU and US EPA but below WHO MCL at of week 12. VOL and BQA, 

however, had Sb exceeding WHO MCL at week 12. 

At least four out of the six brands of bottled waters under the three storage conditions saw a difference in 

means Sb exceeding 0.5µg/L from week 0 to 12. Moreover, this difference in mean was not uniform. Between 

the four weeks’ intervals of the twelve weeks’ period, the difference in means was below 0.5µg/L for one 

interval and sometimes above 0.5µg/L for the next interval. This difference of scientific significance 

undoubtedly reveals foremost: Sb may have been employed as the catalyst in the manufacture of the plastic 

bottles. Determined Sb in plastic bottles confirmed the preceding assertion (Figure 3.2.1). It is normally added as 

the glycolate or in the trioxide form. When added in the trioxide form, it readily converts to glycolate and at the 

end of the manufacturing process, it stays on attached to the polymer chain as glycolate complexes (Carneado et 

al., 2015).  Secondly, there is an indication that the residual Sb in the PET plastic containers is slowly dissolving 

– solubility of 5.8 × 10-5kmol/m3 at 298K (Casas et al., 2008) from the plastic bottles into the water contained 

inside and destabilising the equilibrium system. Thus, the equilibrium readjustments resulting in the non-

uniformity of differences in mean Sb realised between time intervals. 

 
The various migration rates of Sb into the bottled water during the period are represented by the slopes of 

the linear equations (Figure 3.4.1a and Figure 3.4.1b). Bottled water samples exposed to high air temperatures 

and sunlight outdoor had averagely higher migration rates compared to those stored in the refrigerator and 
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indoors (Figure 3.4.2). VER recorded the highest migration rate in the refrigerator and AQF the least. SPI 

recorded the highest migration rate both in indoor and outdoor. A similar migration phenomenon was observed 

by Bach et al. (2014) who saw an increase in Sb migration between 0 and 2 days on exposing ultrapure water in 

PET bottles to natural sunlight. It was however realised in a previous study by the same group (Bach et al., 2013) 

that, Sb migration is less affected by exposure to sunlight but rather, temperature and carbon dioxide contributed 

considerably to migration. As observed by researchers of previous studies, high temperatures accelerated the 

dissolution process of Sb from the PET plastic container resulting in high amounts of dissolved Sb in the water. 

This is likely as, at high temperatures, degradation of the polymer material can occur through thermo-oxidative 

and -mechanical means, leading to the faster release of chemical constituents like Sb which dissolve in the water 

(Bach et al., 2014; Carneado et al., 2015) In another study by Carneado et al. (2015), bottled waters stored at 

temperatures 4ºC and 20ºC were not subject to Sb migration whilst those stored at 40ºC and 60ºC saw a 

substantial increase in Sb. In contrast to that, our study saw significant increments (≥0.50µg/L difference after 10 

weeks) in Sb for bottled water samples stored under refrigeratory, indoor and outdoor conditions. 

Waters packaged in PET bottles tend to have increments in Sb over time (Hureiki & Mouneimne, 2012; 

Keresztes et al., 2009; Shotyk et al., 2006; Westerhoff et al., 2008). A comparable occurrence was observed for 

the six brands of plastic bottled water used in this study. 

Dissolved Sb of the six brands of bottled waters varied with storage time under the simulated storage 

conditions. Within the same time period of twelve weeks, at least four out of the six brands of bottled water 

under refrigeratory, indoor and outdoor conditions had time affecting dissolved Sb of the water. This implied 

that the contact time between the PET plastic containers and the water was critical to the migration process of the 

metalloid (Fleeger, Carman, & Nisbet, 2003). The longer the contact or storage time, the higher the dissolved Sb 

(Fan et al., 2014). A similar occurrence was observed by Hureiki and Mouneimne (2012) and Keresztes et al. 

(2009). Prevailing environmental factors like temperature and sunlight cannot be left out when looking at the 

time period bottled waters were stored. Comparing the three simulated storage conditions for a period of one 

year using the time series linear equations to extrapolate (Figure 3.4.1a and Figure 3.4.1b), water held outdoor 

exposed to sunlight and high air temperatures (average temperatures: 23.0ºC in the morning and 39.5ºC in the 

afternoon) took shorter times to reach stipulated maximum contaminant levels (Table 3.4.1). Similar results were 

obtained by Bach et al. (2013), Carneado et al. (2015) and Fan et al. (2014). They observed that an increase in 

storage temperature accelerates the migration of Sb from the PET plastic container into the water. Furthermore, 

natural sunlight was found to contribute to the migration of Sb from the PET plastic container into the water 

(Bach et al., 2014). Thus, these factors add up explaining why bottled water exposed to sunlight and high air 

temperatures recorded high Sb than their counterparts held under indoor and refrigeratory conditions. 

Table 3.4.1: Duration for dissolved antimony to reach stipulated maximum contaminant levels (MCLs) 

Storage Condition Bottled 

Water 

Weeks for TSb to 

reach EU MCL 

Weeks for TSb to 

reach US EPA MCL 

Weeks for TSb to 

reach WHO MCL 

Refrigeratory 

AQF 38 49 204 

BQA ** ** 23 

ICP 34 43 167 

SPI 32 39 133 

VER ** ** 42 

VOL ** ** 25 

Indoor 

AQF 18 24 104 

BQA ** ** 30 

ICP 18 23 88 

SPI 16 19 65 

VER ** ** 96 

VOL ** ** 24 

Outdoor 

AQF 6 7 31 

BQA ** ** 8 

ICP 6 7 25 

SPI 5 6 20 

VER ** ** 20 

VOL ** ** 8 

**: cannot be defined by the linear equation; TSb: Total dissolved antimony; MCL: maximum contaminant level. 

In summary, using the limited time before expiry (52 weeks for all the brands) quoted on the bottled water 

will render three (AQF, ICP and SPI) out of the six brands under the three selected storage conditions to have Sb 

not reaching the WHO MCL. For the other three brands (VOL, BQA and VER), MCLs were surpassed in 

comparatively shorter times because of major contributions from the sources. Thus, contamination via migration 

only will be improbable using the one-year limited time of expiry for the bottled water of these brands.  
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4. Conclusion 

The study showed antimony was already present in some of the water before they were packaged in their plastic 

containers. This goes to support the notion that, some of the natural sources of water for bottling may contain 

“substantial” amounts of Sb. Differences in the rate of migration of Sb were observed for the different kinds of 

PET plastics. This supports previous findings that, differences exist in the quality of the PET plastics used in 

packaging. Regression analysis showed that total antimony concentrations increased with storage time linearly 

for the period under study, for at least four of the brands used under the simulated storage conditions. This 

suggests that the contact time between the PET plastic container and water is critical to the migration of the 

metalloid. Longer contact times are usually associated with high antimony levels in the bottled water. The 

studied PET plastic bottled waters were found not to be exclusively contaminated with antimony leaching from 

their PET plastic containers within the limited time of expiry under WHO MCL specification. There is, however, 

evidence suggesting that, with time and the type of condition in which the bottled water is stored, Sb release is 

likely to be accelerated leading to contamination in a shorter time and subsequently harm to consumers. 
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