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Abstract 

Pulp and paper mills generate wastewater with high organic content expressed in chemical oxygen demand (COD). 

The organic material can be converted into biogas/methane at the Wastewater Treatment Plant (WWTP) through 

an anaerobic process. Besides being used to improve the quality of wastewater, WWTP can also produce energy. 

This study aimed to develop a model of the wastewater treatment process using the principles of COD balance and 

carrying out energy recovery. Model development started from COD balance analysis, energy potential calculation, 

and wastewater treatment process system design with a closed system to fulfill energy independently. The 

calculation was based on waste volume of 2,500 m3/day which can produce 1,313 kg of methane (1,970 m3) equal 

to 4,398.25 kg COD. By-product in the form of primary sludge was 19,897 kg equal to 3,979 kg of COD containing 

2,250 kg of solids equal to 404.84 kg of COD. The resulting effluent has a COD content of 638.37 kg/day equal 

to  255.35 mg/l and still below the regulatory threshold of 350 mg/l. Methane gas and primary sludge are used as 

fuel for boiler to generate total actual steam of 43,105 kg/day. The produced energy is able to meet the needs of 

steam and electricity of WWTP at 773 kg/day and electricity of 1,290 kW respectively with an excess of 827 kW 

(64.12% surplus).   

Keywords: anaerobic process, COD, energy recovery, self-sufficient energy, pulp and paper mill 

 

1. Introduction 

The pulp and paper mills (PPM ) is one of the world's polluting factories (Thompson et al. 2001; Sumanthi and 

Hung 2004; Azimvand and Mirshokraie 2016) which produce large amounts of wastewater of 50 m3/ton of paper 

product (Pokhrel and Viraraghavan 2004 ) with the content of organic matter expressed in chemical oxygen 

demand (COD ) of 4,060.7 mg/l (Frijns et al. 2013; Lee et al. 2014; Kamali et al. 2016). This wastewater also 

contains toxic compounds and compounds that are difficult to degrade (based on the production process used) 

(Frijns et al. 2013), and highly polluted and dangerous. Therefore, the wastewater needs to be treated at a 

Wastewater Treatment Plant (WWTP) before being released into the surrounding environment (Pontual et al. 

2015). 

The wastewater contains energy bearing materials and has the potential as a source of chemical energy in the 

form of organic carbon that can be converted into biogas in sludge processing (Frijns et al. 2013). It contains 

almost five times the amount of energy needed for wastewater treatment processes (Werf et al. 2014), so that the 

WWTP can be designed to improve effluent quality while reducing energy consumption (Zakkour et al. 2002). 

According to Tao and Chengwen (2012) the average electricity demand of 1,856 WWTPs in China is 0.254 

kWh/m3. Some 55% of energy used is for aerobic processes, 20% for pumps, 8% for lighting, 5% for clarifiers, 

and 12% for others (Loera 2016). 

WWTP with anaerobic process technology can produce methane gas that can be converted into energy 

(Pontual et al. 2015; Kamali et al. 2016). The use of Blanked Upflow Anaerobic Sludge (UASB) reactor in the 

effluent of PPM produced 734.40 m3 CH4/day (8.846 kcal/m3) or equivalent to 650 kg of fuel oil (10,000 kcal/kg) 

(Berni et al. 2014),  520 l biogas/kg of reduced COD (Chinnaraj and Rao 2006), and  for pre-hydrolysate liquor 

produced 0.31-0.33 m3 of biogas/kg of reduced COD (Rao and Bapat 2005). 

WWTP can generate a surplus upto 80% of its energy needs (Nowak et al. 2014). East Bay Municipal Utility 

District (EBMUD ) in Oakland, California with a wastewater flow rate of 264,979 m3/day produces a total of 11 

MW of electricity (120% of electricity needs) (Shen et al. 2015). The Sheboygan Regional Wastewater Treatment 

Facility is able to supply almost 100% of its own energy needs, which meets 90% of annual electricity needs and 

meet 85% of annual heat requirements using co-digestion (Sheboygan Regional Wastewater Treatment Facility 

2012).  

A closed system is a system that is interconnected with a cycle, namely the output of the first system will be 

the second system input, and the second system output becomes the input of the first system (Astrom and Murray 

2009). The closed system is stated in mass and energy balance that is integrated flow of material in the system 

(Ramadhani 2016). According to Bantacut and Novitasari (2016), a closed system can be applied to agriculture 

product based industries that process materials containing relatively high carbohydrates, fiber, wood, oil and fat. 

The purpose of this research was to design and develop a model of the wastewater treatment process using 

the COD balance principle and to carry out the recovery energy contained in the waste. The steps taken were 
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calculating the COD balance in the WWTP, calculating the energy needs of the wastewater processing and the 

energy potential for WWTP byproducts, and designing and developing a model of energy independent wastewater 

treatment plant of the pulp and paper mill. 

 

2. Method  

2.1 Type and Source of Data  

The secondary data was used and obtained from literature studies namely books, journals, theses, electronic articles, 

and other scientific articles. These data include COD flow and waste processing technology, energy requirements, 

and energy potential of COD flows. 

 

2.2 System Boundary 

This research was limited to the treatment process of wastewater generated by pulp and paper mill (raw wastewater) 

to clear wastewater while producing sludge and gas (biogas/methane). This study focused on processing raw 

wastewater from the paper production process of corrugated board type. The pulp and paper mills wastewater 

treatment processes to consist of nine main compartments: fine screener, primary clarifier, equalization tank, 

anaerobic process, aerobic process, secondary clarifier, thermo-alkaline, hydrolysis tank, separator-belt press filter, 

and liquid portion tank. The main input is wastewater produced from 50 tons of paper production per day. 

 

2.3 Model Description 

The COD equilibrium model was developed based on process flows and compartments that describe wastewater 

treatment. The model development was based to clear wastewater production according to quality standards and 

recovering generated energy. Input as independent variable and output as dependent variable. The data used in 

modeling was the ratio (efficiency coefficient) of the value of dependent and independent variables based on the 

principle of linear equations. Balance model for analyzing energy potential and independency has been undertaken 

for many agro-based industries such as white sugar production (Bantacut and Novitasari 2016), rice mill (Bantacut 

and Nurdiansyah 2017), Crude Palm Oil production (Bantacut and Pasaribu 2015), and corn flours industry 

(Bantacut and Zuriel 2018). These research results showed that mass balance supported the energy requirement 

analysis and development of closed production process. 

 

2.4 COD Balance Development 

The first step in developing a COD equilibrium model is to identify the compartment. The next important step was 

formulating the model equation that linking input of raw wastewater, and output of clear wastewater output and 

by-product of each compartment. The simplest model assumed that the overall process occurs only to one 

compartment (Figure 1). COD equilibrium general equation: 

 

 

 

 

 

 

 

 

 

 

Input (I) = Product (P) + By-product (W)     (1.1) 

By-product in the form of waste is assumed to be recoverable. Secondary data used are in the form of COD flows 

in the pulp and paper mills wastewater treatment. This data was used to identify efficiency equations. The 

efficiency factor value (variable value ratio) can be determined after identifying the COD equilibrium and 

efficiency equation. 

 

2.5 Energy Potency 

Based on the equilibrium model that is suitable for wastewater processing, the converted COD mass into methane 

and primary sludge were calculated using the following equation (Lobato 2011): 

� =
� � � � (�	
��)

� � ���� � �,���
       (1.2) 

V = Volume of methane (m3) 

M = COD Mass (kg) 

R  = Gas constant (0.08206 atm L mol-1 K-1) 

T  = Reactor operation temperature (oC) 

P 
Pulp and Paper Mill 

Wastewater Treatment 

W 

I 

Figure 1. The simplest model  Model of COD Balance   

Where: I = input; P = product; W = by-product 
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P  = Atmospheric pressure (1 atm) 

Kcod = COD in 1 mol CH4 (0.064 kg COD CH4 mol-1) 

The volume of  gas produced is converted to methane gas in kg. Primary sludge mass is obtained from the ratio of 

the amount of organic matter, minerals, and in the primary sludge according to Bajpai (2015). Energy potential 

can be calculated using the following equation: 

Energy potency (kcal) = mass (kg) x Calorific value (kcal/kg) 

The COD calorific value is obtained from literatures and mass from the COD equilibrium calculation. Data from 

the literature, namely: 

(1).   Methane gas mass gravity  = 0.666 kg/m3 (Air Products and Chemicals 2017) 

(2).   Methane calorific value   = 56 MJ/kg (Lam dan Lee 2001) 

(3).   Primary sludge calorific value = 4,200 kJ/kg (Clarke dan Guidotti 1995)  

 

3. COD Balance Model   

The COD balance model was developed into two parts, namely a simple model and a complex model. The simple 

model was based on the assumption that the wastewater treatment system is a single compartment with input 

(wastewater) and output (products and waste). The complex model were based on detailed steps of the wastewater 

treatment processes. 

 

3.1 The Simple Model   

A balance occurs when the total input are equal to output. Efficiency reaches 100% if all materials in wastewater 

were converted into products and by-products. There is no perfect conversion, but the efficiency is between 0 and 

100% intervals. Based on equation (1.1), the ratio equation (efficiency) is: 

Efficiency (a) = 
�

�
  (2.1) 

This simple model used the basis of calculation of 2,500 m3/day of wastewater (production of 50 ton paper/day, 

50 m3 wastewater/ton of paper) and equal to 10,151.75 kg COD (content of waste is 4,060.7 kg/m3). 

Ekama et al. (2006) have conducted an experiment to calculate the anaerobic digester output concentration on 

37 °C with a residence time of 60 days. The results of this study were converted to kg COD using Lobato formula 

(2011) resulted methane COD of 1,241.40 kg or 12.23% of incoming wastewater COD. The output of the simple 

COD balance model can be seen in Table 1. 

Table 1. The simple model output of  COD Balance (Basis 50 ton paper/day, wastewater 2,500 m3/day) 

Component  (%) COD (kg) 

Input   

Raw wastewater  100 10,151.75b 

Output   

COD of Gas   

COD of methane gas 12.23a 1,241.40c 

COD of non-methane gas 7.94a 806.31c 

COD of clear wastewater 65.27a 6,626.02c 

Total output  8,673.73 

Unidentified mass  1,478.02 

Efisiensi of system 85.44  
aEkama et al. (2006); bCOD total in 2,500 m3 wastewater (COD concentration is  

4,060 mg/L); cout of total COD input 

The system has an efficiency of 85.44%. which needs to be detailed to find the COD mass flow that is not identified. 

 

3.2 The Complex Model  

Development of the COD balance complex model after the steps described below. 

3.2.1 Model Description  

The complex model are developed based on the previous model and follows detailed wastewater processing stages 

(Figure 2 ). This model uses the main process as the compartment. 
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Figure 2. Complex model of COD balance 

 

 

 

Table 2. Compartment of  COD complex balance model 

Symbol Description 

1 Fine screener 

2 Primary clarifier 

3 Equalization tank 

4 Feed and mixing compartment 

5 Fluidized bed compartment 

6 First recirculation system (RS-1) 

7 Polishing compartment 

8 Second rercirculation system (RS-2) 

9 Three-phase separator 

10 Aerated tank 

11 Secondary clarifier 

12 Thermo-alkali hydrolysis tank 

13 Separator-belt press filter 

14 Reserve tank for separated liquid portion of wastewater 
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Notes: Compartment 1, 3, 4, 6, 8, 9, 12, and 14 (doted lines) are neglectable because no mass 

flow out the system. Symbol explanations are in Tabel 2 and 3.  
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Table 3. Variable of complex COD balance model 

Symbol Description 

I1 COD of influent raw wastewater 

I12 NaOH solution 

X1 COD of screened wastewater   

X2 COD of wastewater after primary settling 

X3 COD of wastewater after equalization 

X4 COD wastewater enter fluidized bed compartment 

X5.1 COD of methane enter first recirculation system (RS-1) 

X5.2 COD of wastewater enter polishing compartment 

X5.3 COD of sludge from IC reactor 

X6 COD of methane enter three-phase separator 

X7.1 COD of methane enter second rercirculation system (RS-2) 

X7.2 COD of wastewater out of anaerobic process 

X8 COD of methane enter three-phase separator 

X9 Circulating water and sludge to feed and mixing compartment 

X10 COD of aerated wastewater  

X11.1 COD of waste activated sludge (WAS) 

X11.2 COD of recycled activated sludge (RAS) 

X12 COD of sludge after hyrdolysis 

X13 COD of liquid portion out of separator-belt press filter 

X14 COD of liquid portion recirculated to primary clarrifier 

W1 Solid and impurities (big size) 

W2 COD of primary sludge 

W10 COD of CO2 emission  

W11 COD of clear wastewater 

W13 COD of solid portion after separator-belt press filter 

P9 COD of methane gas 

The COD complex balance model has 26 variables, consisting of 2 independent variables (I1 and I12) and 24 

dependent variables (X1, X2, X3, X4, X5.1, X5.2, X5.3, X6, X7.1, X7.2, X8, X9, X10, X11.1, X11.2, X12, X13, X14, W1, W2, 

W10, W11, W13 and P9). I12 is ignored because it does not affect the amount of COD in the waste, and only 13 

dependent variables are used, namely X2, X5.1, X5.2, X5.3, X7.1, X7.2, X10, X11.1, X13, W2, W10, W11, and W13 because 

these variables affect the calculation. Therefore 13 equations are needed to solve the probems that consisting of 6 

COD equilibrium equations (according to the number of compartments) and 7 efficiency equations. 

3.2.2 Equation of COD Balance  

There are 6 mass balance equations (3.1-3.6) representing main process stages of wastewater treatment, and 7 

efficiency equations (3.7-3.14) that were created by linking certain input and output of each processing stage in 

the form of ratio. 

COD Balance Equations  
Compartment 2 : I1+X13-X2-W2               = 0                                        (3.1) 

Compartment 5  : X2-X5.1-X5.2-X5.3               = 0                   (3.2) 

Compartment 7 : X5.2-X7.1-X7.2  = 0      (3.3) 

Compartment 10 : X7.2-X10-W10  = 0       (3.4) 

Compartment 11 : X10-X11.1-W11               = 0                   (3.5) 

Compartment 13 : X12-X13-W13  = 0      (3.6) 

Efficiency Equations 

Compartment 2 

COD of primary sludge (a1) 

a1 = 
�


��
 = 

��� �� �� !"�# $%&'()

��� ��  �"* *"$+)*"+)�
                    (3.7) 

 

The efficiency of reducing COD content of primary clarifier is 39.20% (Yeshi et al. 2012); the value of a1 is 0.392. 

Compartment 5 

Ratio of COD sludge in the reactor IC to COD wastewater to fluidized bed (a2) 

a2 = 
,-.�

,/ 
 = 

��� �� $%&'() �&+ �� �� �)"0+��

��� �� *"$+)*"+)� )1+)� 1( �%& ' 2)' 3)' 0�!�"�+!)1+
               (3.8) 

The amount of COD converted to sludge in the anaerobic reactor is 11.4% (calculated using the formula of Lobato 

2011); the value of a2 is 0.114. 

Compartment 5 

COD methane entering RS-1 (a3) 
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a3 = 
,-.�

,/ 
 = 

��� �� !)+4"1) )1+)� 1( � �$+ �)0 �0&%"+ �1 $#$+)! (567�)

��� �� *"$+)*"+)� )1+)� 1( �%& ' 2)' 3)' 0�!�"�+!)1+
                 (3.9)  

 

Flow through the first recirculation system (RS-1) includes a large portion of methane, water, and sludge (Phan et 

al. 2017). The amount of COD methane that passes through RS-1 is 54.9% (calculated using the formula from 

Lobato 2011); the value of a3 is 0.549. 

Compartment 7 

COD methane enter RS-2 (a4) 

 

a4 = 
,�.�

,-.
 
 = 

��� �� !)+4"1) )1+)� +4) $)0�1' �)�0 �0&%"+ �1 $#$+)! (567
)

��� �� *"$+)*"+)� )1+)� +4) ��% $4 1( 0�!�"�+!)1+
                (3.10) 

 

COD mass flow through the second recirculation system (RS-2) includes a small portion of methane, water, and 

sludge (Phan et al. 2017). The results of calculations using the Lobato formula (2011), the amount of COD methane 

that passes through the RS-2 compartment is 13.7%; the value of a4 is 0.137. 

Compartment 10 

COD reduction efficiency in aerated tanks (a5) 

 

a5 = 
,-

,/ 
 = 

��� �� *"$+)*"+)� �&+ �� ")��3 0 +�)"+!)1+

��� �� *"$+)*"+)� �&+ �� "1")��3 0 +�)"+!)1+
     (3.11) 

 

In the aerobic process 50-60% of COD content is found in sludge, 10-12% of COD content is contained in the 

effluent, and the rest is lost (Van Lier et al. 2008); the value of a5 is 0.66. 

 

Compartment 11 

COD in sludge formed at the aerated tanks (a6) 

 

a6 = 
,8.�

,-
 = 

��� ��  *"$+) "0+ 9"+)' $%&'() (�:6)

��� �� *"$+)*"+)� �&+ �� ")��3 0 +�)"+!)1+
     (3.12) 

 

According to Van Leur et al. (2008), as much as 50-60% of COD content is converted to biomass in aerobic 

process; the value of a6 is 0.55. 

 

Compartment 13 

COD reduction in liquid portion in separator-belt press filter (a7) 

 

a7 = 
,;

,8.�
 = 

��� �� % <& ' ���+ �1 �&+ �� 4#'��%#$ $

��� ��  *"$+) "0+ 9"+)' $%&'() (�:6)
      (3.14) 

Kaluza et al. (2014 ) reported that thermo-alkaline hydrolysis processed waste activated sludge has a high level of 

solubility (sCOD / tCOD> 0.9). Separation process produces a liquid portion of 70-80% COD content; the value 

of a7  is 0.75. 

Table 4 summarizes the coefficient value of each equation. Microsoft Excel was used to calculate values of 

dependent variables. 

Table 4. Equation coefficient  

Symbol Value Reference 

a1 0.392 Yeshi et al. (2012) 

a2 0.114 Authors calculation (Appendix 1) 

a3 0.549 Authors calculation (Appendix 1) 

a4 0.137 Authors calculation (Appendix 1) 

a5 0.660 Van Lier et al. (2008) 

a6 0.550 Van Lier et al. (2008) 

a7 0.750 Kaluza et al. (2014) 

 

4. Result and Discussion  

The results of this study are the COD equilibrium model, energy requirements, and closed systems of pulp and 

paper mill wastewater processing. 

 

4.1 COD Balance 

The complex balance model was developed after the wastewater treatment process as the compartment and 

identifying detailed flows in each compartment. The output of the complex balance model is shown in Table 5. 
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COD methane produced from the complex model is 43.33%, greater than simple model. The increase in the amount 

of methane due to reprocessing of wastes namely WAS (X7.2) and sludge of the anaerobic process (X5.3) which are 

fed back to the initial processing. The by-product is treated with a thermo-alkaline hydrolysis, then separation of 

the solid and liquid portion. The liquid portion (X13) is fed back to Compartment 2 to be mixed with raw wastewater. 

All flows were identified and generate 100% system efficiency. COD contained in clear wastewater is 638.37 

kg/day equal to 255.35 mg/l. This value is below the threshold standard of 350 mg/l (Figure 3). 

Table 5. Output of the complex balance model  

(50 ton paper/day, 2,500 m3 wastewater/day) 

Component Mass (kg COD) (%)b 

Raw wastewaterc 10,151.75 

Output  

COD of methane gas 4,398.26a 43.33 

COD of clear wastewater 638.37a 6.29 

COD of primary sludge 3,979.49a 39.20 

COD of solid portion 404.84a 3.99 

COD of CO2 emission 730.79a 7.20 

Total output 10,151.75  

Unidentified mass 0  

System Efficiency  100 
                                    aAppendix 2, bPercentage (%) to raw wastewater; cBased on Table1  

 
 

 

 

 

4.2 Energy Harvesting  

The products of WWTP wastewater treatment are methane gas, primary sludge, and solid portion resulting from 

thermo-alkaline hydrolysis (TA-H). Several studies explain further handling of these materials such as landfill, 

composting, incineration, recovery of raw material, animal feed, anaerobic digestion, and others (Bajpai 2015). 

The most potential use is as an energy source of anaerobic digestion and incineration. However, not all byproducts 

can be converted into energy for several special reasons. 

Methane is a strong greenhouse gas with a global warming potential 34 times higher than CO2, produced in 

the anaerobic process, can be used as an energy source (Ashrafi et al. 2015). The complex Balance model 

calculated the yield of 1,313 kg of methane gas with a volume of 1,970 m3 equal to 4,398.25 kg of COD. The 
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Figure 3. Output of complex model (kg COD/day) 

Notes: Compartments 1, 3, 6, 7, 8, 9, 12, and 14 were ignored due to no mass flow out the system  
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model results are similar to Borja and Banks (1994), namely the yield of methane is 0.395 m3/kg COD, equal to 

1,737.30 m3 methane/day. 

Methane (55-75% of biogas) can be used for heating processes, converted to other natural gas, and used to 

heat  co-generators to generate electricity (De Mes et al. 2003). The calorific value of methane is 1,384.34 kcal 

/kg (Lam and Lee 2001). Methane gas can be converted to electricity through boiler heating with 80% combustion 

efficiency (Yingjian et al. 2011). 

Primary sludge (50% dry solid) has 40% organic matter and 60% mineral material (CEPI 2011), has a heating 

value of 4,200 kJ/kg (Clarke and Guidotti 1995) equal to 1,003.38 kcal/kg at 63% moisture content and 20% ash 

content. Primary sludge can be burned to heat a steam-producing boiler which then generates electricity at 

efficiency of 73% (Bora and Nakkeeran 2014). The complex model calculated 19,897 kg of primary sludge equal 

to 3,979 kg of COD per day. 

Solid portion is separated dregs in the separation process. This solid is used again in the corrugated board 

production process as raw material for middle layer fillers (Kaluza et al. 2014). The complex model calculated 

2,250 kg of solid portion which is equal to 404.84 kg of COD per day. 

Methane and primary sludge are used as boiler fuel. The resulting steam is flowed to the turbine to drive a 

generator that produces electric current. The single stage conversion turbine will convert 20 kg of hot steam to 1 

kW of electrical energy (Bantacut and Pasaribu 2015). The methane gas and primary sludge produced 43,105 kg 

steam/day. 

The energy produced is used to meet the energy needs of the wastewater treatment process. The need for 

electric and steam energy in pulp and paper wastewater treatment for production capacity of 50 ton paper/day and 

wastewater capacity of 2,500 m3/day is 1,290 kW and 773 kg respectively. WWTP energy needs are 0.52 kWh/m3. 

This value is in the range of energy requirements for wastewater treatment according to Tao and Chengwen (2014) 

namely 0.26-2.5 kWh/m3. 

Some compartments use the gravitational force to drain wastewater, ie flow into equalizing tanks and aerobic 

tanks, clear wastewater flows out of the secondary clarifier into the environment, and waste streams enter the 

separator-belt press filter. Equipment in the waste source compartment should be placed in a higher position than 

the waste recipient compartment, so that wastewater can flow. This is to save energy cunsumption. 

Calculations using complex model showed that the energy produced is greater than the energy requirements 

of the wastewater treatment process. The energy produced is 2,117 kW (after being reduced by steam 

requirements), the conversion results from 42,332 kg of steam, while the total electricity required is 1,290 kW 

(Table 6). The system is able to meet the needs of steam and electricity per day with a surplus of electrical energy 

of 827 kW or 64.12% . 

Table 6. Electrical energy needs in wastewater treament plant 

Treatment Equipment 
Volume 

(m3/day) 

Power 

(kW)b 

No.  of 

equipment 

Energy 

(kW) 

Energy of each 

process (kW)c 

Time of one cycle 

process (hour)d 

Fine screener 
influent pump 2,500 a 22d 2 44 289.47 6.58 

Motor 2.836 b 1.1e 1 1.1 7.24 6.58 

Primary clarifier (PC) 
influent pump 2,497.1633 22d 2 44 289.15 6.57 

primary sludge pump 10.9027 b 1.5f 1 1.5 1.64 1.09 

Equalizing tank influent pump 2,486.26 0 - 0 0 - 

IC reactor influent pump 2,486.26 22d 1 22 287.8 13.10 

Aerobic tank 
influent pump 2,486.26 0 - 0 0 - 

Aerator 2,486.26 - - - 122g - 

Secondary clarfier 

influent pump 2,486.26 22d 3 66 287.8 4.37 

effluent pump 2,476.30 0 - 0 0 - 

RAS pump 4.98h 0.37f 2 0.74 0.74 1.00 

Thermo-alkaline 

hydrolysis tank (TA-H) 

WAS pump 4.9846b 0.75f 3 2.25 0.75 0.19 

NaOH pump 0.0399b 0.37f 2 0.74 0.0059 0.33 

IC sludge pump 2.583b  0.37f 1 0.37 0.38 1.03 

Separator 

input pump to belt 

press filter 7.6074 0 - - 0 - 

solid portion pump 1.959b 0.37f 1 0.37 0.29 1.52 

Belt press filter 7.6074 0.37h 1 0.37 0.57 0.78 

Tank liquid portion 

input liquid portion 

pump 5.4899 1.5f 2 3 0.85 0.28 

input liquid portion 

to PC pump 5.4899 1.5f 2 3 0.85 0.28 

Total 1,290  

Notes:  Power consumption 0 (zero) means that  wastewater flow using gravity. 

                    aWastewater based volume; bAuthor calculation; cEnergy multiplied with time per cycle; dXylem Water Systems Australia Pty.Ltd (2012); eJiangsu BOE 

Environmental Protection Technology Co., Ltd (2017) ; fABEL Pump (2017); gLarsson (2011); hFRC System International, LLC (2015). 

 

4.3 Closed System Model of Wastewater Treatment Process of Pulp and Paper Mills 

Energy generated from the utilization of by-products of wastewater treatment of the pulp and paper mill with a 
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capacity of 50 ton/day and 2,500 m3/day of wastewater can meet the needs of steam and electricity with a surplus 

of 827 kW. Therefore, the WWTP of pulp and paper mill can be developed into an energy independent system 

(Figure 4). 

 
Figure 4. Closed system model of pulp and paper wastewater treatment plant of pulp and paper mill (red and blue  

lines denote water and energy flows and green line denotes energy surplus) 

 

5. Conclusion and Recommendation  

5.1 Conclusion 

The complex mass balance model was chosen as the basis of calculating energy potential for the WWTP product 

and by-product because it produced the largest yield of methane. WWTP products in the form of methane gas is 

1,313 kgs or 1,970 m3 equal to 4,398.25 kg COD. In addition, the WWTP produced a byproduct of 19,897 kg of 

primary sludge equals to 3,979.49 kg COD and a solid portion of 2,250 kg equal to 404.84 kg COD. The total 

calories produced from methane and primary sludge is 37,535,014.85 kcal/day with actual steam of 43,105 kg/day 

equal to 2,155 kW. The electricity and steam energy requirements on WWT is 1,290 kW and 773 kg of steam per 

day respectively. The energy produced is able to meet the needs of steam and electricity  with an electricity surplus 

of 827 kW or 64.12% per day. Therefore, the processing of wastewater of the pulp and paper mill can be developed 

into an energy-independent system. 

 

5.2 Recommendation  

Some continuing and advancing researches are recommended, such as:  

a. Modeling with anaerobic reactor technology and other method of sludge processing technology to check best 

use of mass and energy generation.  

b. Research to corrugated board with higher content of COD is recommended to proof that the higher COD will 

generate higher energy.  

c. The use of other electricity generating technology such as gas turbine is recommended future research to find 

a better way of producing energy. 

d. Calculation of economic benefit (profitability) would give better consideration for development of closed 

wastewater processing technology. 
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Appendix 1. Calculation of efficiency factor of complex balance model (using formula ofLobato 2011) 
Description Equation Value Unit Reference 

Wastewater volume  2,500 m3/day  

COD mass removal from system per 

day  

CODremoved = Q x ECOD 
4,937.8

11 
kg COD/day 

Appendix 2 
Q = CODinfluent (COD of entering 

wastewater) 

6,172.2

64 
kg COD/day 

ECOD = COD removal efficiency 80 % 
Speece 

(1996) 

Converted COD to sludge/biomassa 

per day 

CODsludge = CODremoved x Ycod                                                  

Ycod = Y x Ktvs-COD 

701.169 

 
kg CODsludge Foladori et 

al. (2010); 

Tchobanogl

ous et al. 

(2003a) 

*Ycod = sludge yield  

as COD 
0.142 

kg CODsludge / 

kg CODremoval 

Y = sludge yield as Total Volatile 

Solid (TVS) 
0.1 

kg TVS/kg 

CODremoved 

Ktvs-COD = Conversion Factor (1 kg 

TVS = 1.42 kg CODsludge) 
1.42 

kg CODsludge/ 

kg TVS 

Lobato 

(2011) 

Converted COD to methane per day  

CODCH4 = CODremoved - CODsludge – 

CODSO4 

4,236.6

4 
kgCODCH4/day 

 

Methane generation/day   

QCH4 = (CODCH4 x R x (273+T)/(P x 

Kcod x 1,000) 

1,645.9

5 
m3/day 

 

 
R = gas constant 0.0820 atm.L.mol-1.K-1 

Lobato 

(2011) 

 
T = reactor temperature 30 oC 

Cruz et al. 

(2016) 

 
Kcod = COD of one mol CH4 0.064 

kgCODCH4. per 

mol 

Lobato 

(2011) 

 

Appendix 2. Model output of COD flows 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Variable Description Value  (kg COD/day) 

X2 COD of wastewater out of primary settling 7,386.79 

X5.1 COD of methane out of first recirculation system (RS-1) 4,056.23 

X5.2 COD of wastewater entering ke polishing compartment 2,491.42 

X5.3 COD of sludge out of  IC reactor 839.14 

X7.1 COD of methane out of  second rercirculation system (RS-2) 342.02 

X7.2 COD of wastwater out of anaerobic process 2,149.40 

X10 COD of wastewater out of aeration 1,418.60 

X11.1 COD of waste activated sludge (WAS) 780.23 

X13 COD of  liquid portion out of separator-belt press filter 1,214.53 

W2 COD of primary sludge 3,979.49 

W10 COD of CO2 emission 730.79 

W11 COD of clear wastewater 638.37 

W13 COD of  solid separated portion  404.84 

 


