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Abstract 

Several research activities were conducted to improve the productivity of degraded and less fertile soils of 

Ethiopian, among the most crop yield-limiting essential nutrients phosphorus is the major ones next to nitrogen 

moreover which is sourced from non-renewable natural resource and its limited reserve will vanish within few 

decades if the world fertilizer consumption will continue as it is.  Phosphorus deficiency and losses problem is 

more sensitive in acidic soils which are widely spread in southern, western, southwestern, northwestern, and 

most of central Ethiopia its level becomes even more worst. Consequently, seeking multiple ways of improving 

the nutrient use efficiency and minimizing losses to the environment should be considered. Several forms of 

phosphorus fertilizers were commonly used which includes organic and inorganic forms it has its own merits and 

demerits on the efficient uses of phosphorus for crop production. Optimizing soil pH is crucial for acidic soil by 

using lime (CaCO3) and other different liming materials like farmyard manure, vermicompost, and biochar as an 

alternative it’s also possible to improve soil pH by direct application of rock phosphate and partially acidulated 

fertilizer products on acidic soils which minimize the cost which was incurred for acidulation process on 

industrial fertilizer production. On the other hand, using blended lime with the most limiting essential nutrients 

based on soil fertility status will improve both efficiency and application costs with other multiple advantages 

over the classic ones.  
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INTRODUCTION 

Among major Essential Nutrients which needs special attention for the welfare of all life forms on Earth, 

phosphorus takes leading line since its demand were vastly increasing whereas the supply or it’s reserve become 

depleted which is non-renewable by its nature D.Cordell et al., (2009). On the other hand, edaphic factors like 

soil fertility degradation erosion and soil acidity aggravation has a vital role in malfunctioning of healthy 

biogeochemical cycle of phosphorus. Phosphate fertilizers are produced from rock phosphate (RP). About 80% 

of the RP mined annually is used for fertilizer production and, considering the current level of worldwide 

consumption, it is expected that reserves will vanish in three centuries time (Roberts et al. 2015; USGS, 2019). 

Most of the remaining phosphate rock reserves are controlled by Morocco, China and US. Mining, transporting 

and consumption of RP will be more challenging. The possibility of exhaustion of this resource may compromise 

global food production (Jarvie et al. 2015). 

Most tropical regions soils have usually low levels of plant available P, which is a result of adsorption and 

precipitation reactions, and its high affinity with soil constituents Shen et al. (2011) which leads to limited 

phosphorus availability, almost all agricultural production is highly dependent on the use of phosphorus 

fertilizers. This nutrient is absorbed by plants in the soil solution as a monovalent anion orthophosphate (H2PO4 
-) 

and divalent (HPO4 2-), each representing equal proportion of total phosphorus at a pH close to neutral. Whereas 

at acidic soil pH from 4-6, the monovalent H2PO4
 ֿ◌ is represented nearly all of the total phosphorus in soil 

solution Ana paula et al. (2020) due to higher concentration of H+ ion in acidic soil solution.  

The most used phosphate sources in agriculture are those that are highly water soluble, with fast dissolution 

in the soil which favors precipitation and adsorption. Approximately three days after the application of these 

sources in the soil, a large part of their P is transformed into non-labile forms (pagliari et al. 2010; Rajput et al. 

2014) substantially reducing their efficiency when applied to crops. Consequently, looking for a sort of 

approaches which can cop up with such harsh acidic soil conditions for the country like Ethiopia is important to 

reduce the adverse effect which becomes aggravated due to different anthropogenic and natural factors; to 

optimize the expense which were spent for acquiring and transporting such bulky liming materials and fertilizers, 

with regard to sustainable soil fertility restoration and optimal natural resource utilization with environmentally 

sound approaches. 
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1. SOIL ACIDITY AND ITS WORLDWIDE DISTRIBUTION 

It is estimated that acid soils occupy about 3.95 billion ha of land area, i.e., about 30% of the ice-free land area of 

the world (Uexkull and Mutert, 1995). In FAO soil classification system (FAO, 1988) acid soils are grouped 

under Feralsol and Acrisols and to a lesser extent to Plinthisols, Alisols and Nitisols they are covered more than 

one third of Sub Saharan Africa SSA (Valentin et al., 1991). Acidity is defined as the ability of chemical 

compounds to split out of protons in solution. Correspondingly the concept of the "acidity of soils" may be 

defined as soils' peculiarity to sustain a certain number of protons in solution or the concentration of hydrogen 

ions in the soil solution (Fageria and Baligar, 2003). The concentration of H+ comes in units of milligram-

equivalents and is measured on the pH scale, as the negative logarithm of H+ activity in a solution (Foth, 1984). 

Exchangeable acidity is the amount of acid cations (Al3+ and H+) occupied on the cation exchange capacity (CEC) 

which is a total amount of cation, capable of equivalent exchange with cations contained in a solution that 

interacts with soil (Fenton and Helyar, 2007). It comes in units of mg-eq per 100 grams of soil or per 1 kg of soil. 

Exchangeable positions of loamy minerals are formed mainly through isomorphic substitution Si4+ for Al3+ (on 

tetrahedron silicate clay) and/or Al3+ for Mg2+ (on octahedron structure) their quantity does not depend on the 

medium reaction. Exchangeable acidity is calculated during the treatment of soil with a neutral salt solution Al 

(Allen et al, 2007). 

SAC) H+ + KCls → SAC)K + HCls   

SA)Al3+ + KCls → SAC)K + AlCl3s + 3H20 → Al(OH)3 + 3HCls.   

Where: SAC soil adsorption complex, s - soil solution   

 

2.1. State of Soil Acidity in Ethiopia 

Perilous increase on soil acidity in Ethiopia leads to reduced crop yields, poor plant vigor, stunted root growth, 

poor nodulation of legumes, uneven crop and pasture growth, dominance of acid-tolerant weed species like 

Geranium, increased incidence of diseases and abnormal leaf color (Duffera and Robarge, 1999). Acid soils 

occur widely in Ethiopian highlands, where the rainfall intensity is high and crop cultivation has occurred for 

many years (Taye and Höfner, 1993). Crops differ in their susceptibility to soil acidity, the pH ranges of soils for 

best crop yields is considered to be between 6.5 and 7.0. Wheat, barley, maize, clover and beans grow well on 

neutral to mildly acid soils with a pH of 6–7 (IFA, 1992). Soil quality degradation with respect to acidity is 

mainly an inherent problem due to the weathering process of the soil as opposed to problems caused by man-

made. However, sub-soil acidity as a result of the removal of surface soils by erosion is most common in warm, 

humid areas where soils are disturbed by humans (Schlede, 1989). Soil surveys of Ethiopia show that the soils of 

large areas of western and south western Ethiopia are acidic, with pH values below 5.5 (EthioSIS, 2014). The 

extent of acid soils is estimated to be 28% of the total area, and those that are strongly acidic (with a pH of 4.1 - 

5.5) are estimated to be 7 % of the total area and 21 % of it was moderately acidic soil with pH ranges from 5.6 - 

6.5.  

 

2.2. Acid Soil Management  

Soil amendments are anything mixed into topsoil to promote healthy plant growth, they function in several ways, 

for example, they may moderate the pH of soil or supply nutrients (Fageria and Baligar, 2007). Soil conditioners 

like composted manure, improves soil structure by binding soil particles into larger aggregates. This increases 

the amount of pore space and enhances air exchange, water movement, and root growth (Bell and Bessho, 1993). 

The forms of aluminum are mostly exchangeable Al3+ under very acidic conditions (pH<4.5) to aluminum-

hydroxyl ions at higher pH (4.5–6.5) (Carson and Dixon, 1979). The exchangeable Al3+ precipitates as insoluble 

Al hydroxyl species as pH increases and is reported to decrease thousand-fold for each unit increase in pH. 

However, at pH values greater than 6.5, Al becomes increasingly soluble as negatively charged aluminates form 

(Haynes, 1984). The Al(OH)3 species is of minor importance and exists over only a narrow pH range. Research 

has shown that with liming and proper use of organic amendments, marginal lands can be restored to high 

productivity (Hornick and Parr, 1987). Soils with a pH of <5.5 usually have problems of Al toxicity or 

acidification, but they can be improved with lime, compost or organic manure (Scherr and Yadav, 1996). Up on 

liming many authors have reported decreases of Al in the soil solution as well as in the exchangeable complex 

(Alvarez et al., 2009), improve soil structure, significant yield increases (Buri et al., 2004), increase in p uptake 

by plants (Fageria and Baligar, 2003).  

Different crop species have varied range of pH optima, legume crops are relatively sensitive for acidity than 

cereal crops whereas cereals by itself have different pH optimal ranges and soil acidity tolerance as maize > 

rye > triticale > wheat > barley (Polle and Konzak, 1985). It now seems quite straight forward to try to adjust pH 

in a given soil to meet this specific requirement of the plant population that we seek to optimize the growth 

conditions for. However, it is far from being that simple adjustment of soil pH is always a compromise between 

soil aggregate stability (texture), plant requirement and the economic cost/benefit of liming all these factors have 

to be considered. Integrated approach involving liming, cultural practices and plant tolerance will probably be 
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necessary, particularly where the acidification potential is high and its effect likely to extend into the subsoil 

(Bolan and Hedley, 2001).  

Soils rich in organic material and clay soils represent the extremes with ideal pH values of 5-6 and 7.5-8, 

respectively. If we try to grow e.g. barley on both soils, we would probably succeed most likely not with the 

same good results but still we would obtain different grain yields. We should not try to adjust soil pH to 5.9 

which is the optimum for barley in the clay soil with e.g. pH 7.5 and a humus rich soil with e.g. pH 5. It would 

require huge amounts of lime or acidifying material and destroy soil structure in the clay soil (Haynes and 

Naidu,1998). Thus, liming is basically intended for a fine tuning of soil pH in light and moderately light soil and 

should only in rare occasions and with extreme care be implemented in the more extreme soils outside these 

texture classes. In addition, soil amelioration (liming) is always a compromise where we will rarely be able to 

adjust to the optimal conditions for the plant population and soil texture and at the same time pay attention to the 

economic costs and benefits of the soil amelioration (Foth, 1984).  

The molecular weight of CaCO3 is 100.05 g/mol and each mole carbonate neutralizes two H+ equivalents 

which implies that we need 3 mmol CaCO3 being equal to 300 mg CaCO3 per 100 g soil or 3 kg CaCO3/1000 kg 

soil. If we assume that the plough-layer contains 2000 t soil ha-1 we should apply 6 t lime ha-1 in order to raise 

the pH from 4.5 to 6.5. Liming begins with the neutralization of H+ in the soil solution (the active acidity) by 

adding a base (usually CO3
2- or OH-) originating from a natural source of lime material 

The rate of the reaction is directly related to the rate at which the H+ ions are neutralized in solution. As 

long as sufficient CaCO3 is available, H+ will be converted to H2O. The continued removal of H+ from the soil 

solution will ultimately result in the precipitation of Al3+ as Al (OH)3 and replacement on the CEC with Ca2+. 

Thus, as soil pH increases, BS% also increases. Practically, different approaches are available in order to predict 

the limestone rate required to attain an adequate level aiming to avoid Al toxicity towards plant growth. One of 

the methods for predicting the lime requirement is to monitor the evolution of exchangeable Al. The base 

enrichment especially of Ca2+ ions in this soil will neutralize exchangeable Al thus enhancing root growth 

(Franco and Munns, 1982; Bell and Bessho, 1993). 

The most abundant liming materials are Ca and Mg oxides, hydroxides, carbonates, and silicates (Dick et al., 

2000). The accompanying anion must neutralize H+ in solution and hence Al3+ in solution and on the CEC. Other 

neutral salts that are not liming materials include CaSO4.2H2O, MgSO4⋅7H2O, KC1, CaCl2, and MgCl2, NaOH 

could be considered a liming material except for addition of Na on the CEC which is not recommended due to 

the adverse effects of Na on soil physical properties (Basta, 2000). 

Table 1. Basic properties of the most common liming materials (QL, HL, DL and LM). 

 
Source Brady and Weil (2002). Expressed as a weight percentage of pure CaCO3. 

Calcium Oxide (CaO) is the only material to which the term lime may be correctly applied. Also known as 

unslaked lime, burned lime or quicklime, CaO is a white powder, shipped in paper bags because of its caustic 

properties (Chan and Heenan, 1998). It is manufactured by roasting CaCO3 in a furnace, driving off gaseous CO2. 

CaO is the most effective of all liming materials with a calcium carbonate equivalent (CCE) of 179%, compared 

with pure CaCO3. If for some reason unusually rapid results are required, either CaO or Ca (OH)2 should be used. 

Calcium carbonate equivalents of liming materials (CCE), the value of a liming material depends on the quantity 

of acid that a unit weight of lime will neutralize, which is related to the chemical composition and purity (Dick et 

al., 2000). Pure CaCO3 is the standard against which other liming materials are measured, and its neutralizing 

value is considered to be 100%. CCE is defined as the acid-neutralizing capacity of a liming material expressed 

as a weight percentage of CaCO3. Consider the following reactions:  

CaCO3 + 2H+ ↔ Ca2+ + CO2 + H2O  

Ca (OH)2 + 2H+ ↔ Ca2+ + 2H2O  

In each reaction, 1 mole of CO3
2- will neutralize 2 moles of H+. The molecular weight of CaCO3 is 100 

g/mole, whereas that of Ca (OH)2 is only 74 g mole-1; thus, 74 g of Ca (OH)2 will neutralize the same amount of 

acid as 100 g of CaCO3 (Rengel, 2003). Wide amounts of PRs are added directly to soils mainly as a source of P. 

Unlike high grade soluble P fertilizers, such as TSP, PRs can also have a liming value in addition to supplying P 

and Ca (Bolan et al., 2003). The liming action of PRs can occur through two processes. Firstly, most PRs contain 

some free CaCO3 which itself can act as a liming agent. Secondly, the dissolution process of the P mineral 
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component (i.e., apatite) in soils consumes H+, thereby reducing the soil acidity. It is estimated that every 1 kg of 

P dissolved from PRs generates a liming value equivalent to 3.2 kg CaCO3. The liming values of various PRs are 

varying from 450 to 560 kg CaCO3 ton-1 depending on their P and free CaCO3 content. 

 

Other liming materials 

Although the exact CCE or relative liming effect was not determined there were several inputs which are used to 

modify the soil pH with their chelating and buffering impacts beyond their soil ameliorating effects. dominantly 

known sources are biochar and organic fertilizer sources like compost, vermicompost and farm yard manures. 

 

Biochar as liming material 

Biochar is a wide range of materials produced from the thermal treatment of organic matter (usually plant 

material but sometimes municipal waste or animal manure) under reduced or zero oxygen D. S. Powlson, et al. 

(2011).  It can be produced as a co-product of pyrolysis designed to produce liquid biofuels and local energy for 

heating. Biochar could potentially become available in large quantities and cheaply it is a very stable material, 

with lifetimes estimated to be in the range of centuries to millennia (Lehmann, 2007). Biochar has an alkaline pH 

that can act as a liming treatment with consequences for the cycling of Carbon and other essential nutrients. It is 

also necessary to investigate possible inputs and bioavailability of pollutants such as polyaromatic hydrocarbons 

that can be present in biochar. In addition to the possibility of direct impacts on SOC, there is evidence that 

addition of biochar to some soils increases retention of nutrients and water and improves soil physical 

characteristics and crop growth (Liang et al., 2006; Major et al., 2010; Sohi et al., 2010). If these effects are 

widespread they will, indirectly, contribute to climate change mitigation by decreasing the quantity of N 

fertilizer required to achieve a given yield. 

Table 2. Fertility characteristics of Norfolk Ap soil + percent biochar mixtures on 0- and 67-day incubations 

(Mehlich 1 extractant) 

 
Source: Lippincott Williams & Wilkins 2009 

From these study results after adding 2% biochar were presented because this treatment caused the most 

significant soil fertility variations compared with the untreated soil. The treated Norfolk Ap soil pH was become 

suitable for most crop production after biochar addition through a 38% reduction in monomeric Al species on 

exchange sites (lower exchangeable acidity values). Soil Ca and K concentrations had marked increases (+58 

and + 106%, respectively) implying that biochar additions can increase those essential nutrients (Lippincott et al. 

2009). Likely study in southern acidic soil of Ethiopia showed that the application of biochar significantly 

reduced, soil bulk density and exchangeable acidity when compared with untreated ones (Abewa et al., 2013). 

Also, the total soil porosity, soil pH, total nitrogen, soil organic carbon, available phosphorus, and potassium 

were significantly increased in the soil (Tariku B. et al., 2017). The addition of 12 t ha–1 of Lantana camara 

biochar reduced exchangeable acidity to 2.24 cmol (+) kg–1, comparatively from untreated entry which have 

exchangeable acidity result of 6.7 cmol (+) kg–1. similarly soil pH value increased by 0.5 and 1.5 units in all of 

the biochar treated soils.  

 

Vermicompost as acid soil amendment 

Soil organic matter or organic carbon concentration is firmly related to soil quality and vegetation productivity 

(Bruun T et al. (2012) which is due to several contributions to soil physical, chemical and biological properties 

like improvement of soil structure and water retention, provision of cation exchange capacity and supply of plant 

nutrients through mineralization (Lal, 2008). To improve SOC as well as an amendment of severe acidic 
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properties of soil organic fertilizer sources like compost, vermicompost and farmyard manure were used. Among 

those common organic inputs vermicompost was known to have good soil pH improvement with best quality 

mineralized nutrient supplies like NO3.  

Vermicompost is a product from biodegradation of organic matter through interaction between earthworms 

(mostly vermi-worm Eisenia fetida spps.) and microorganisms (Edwards et al., 1988). Vermicompost could be 

used as an excellent soil amendment for raising nursery species plants as well as for main fields. Vermicompost 

are characterized by high in porosity, drainage, water holding capacity and microbial activity which make them 

excellent soil conditioners for plant growth and development.  These are rich source of nutrients such as nitrates, 

phosphates and exchangeable calcium and soluble potassium (Orozco et al., 1996). 

The pH of vermicompost by itself varies depending on its sources of input and content of raw materials. For 

example, the pH of sheep manure vermicompost was 8.6 which is relatively greater than other vermicompost 

derived from organic sources Dhakal, Gyanendra. (2013). On the other hands vermicompost prepared from cattle 

manure had a pH 6.0 (Jordao et al., 2000) and 6.7 (Alves et al., 2001) whereas that derived from pig manure had 

pH 5.3 (Atiyeh et al., 2002) and 5.7 (Atiyeh et al., 2001). Vermicompost derived from sewage had pH of 7.2 

(Masciandaro et al., 2000). These differences in pH are related to raw materials used for vermicomposting 

(Alves et al., 2001).  

Study shows that phosphate activity obtained from vermicompost of cow dung was exhibited the highest 

acid phosphate activities (200.45 µg p-nitrophenol g-1 h-1) followed by vermicompost from grasses (179.24 µg p-

nitrophenol g-1 h-1) and aquatic weeds (174.27 µg p-nitrophenol g−1 h−1) whereas alkaline phosphatase activity 

was highest in vermicompost obtained from aquatic weeds followed by cow dung and grasses (679.88, 658.03 

and 583.28 µg p-nitrophenol g-1 h-1 respectively) which is without application of lime and microbial inoculation 

Vinotha et al. (2000). Related to soil acidity attributes vermicompost also had respectable response as reported 

by Wael et al. (2011) stated that vermicompost was used to increase the pH in acidic soils and reduce Al and Mn 

toxicity because of its alkalinity. Study in the western Ethiopia acidic soil showed that Vermicompost 

application at different application rate had gave significant effects (Abdissa et al., 2018), on soil acidity features 

like soil pH, exchangeable acidity and soil acid saturation percentage which was positively affected like other 

soil physicochemical properties due to application of vermicompost which was prepared from most preferred 

raw materials.   

 

2.3.  Research Achievements on Soil Acidity Management in Ethiopia 

The current acid soil management research in Ethiopia has two major strategies which cops with soil and 

cultivated crops (Temesgen et al., 2019). On the soil management part, it deals with different amendment 

practices like lime, biochar, organic fertilizer application and other practices which improve the productivity of 

such soils whereas the second strategies relays on the improvement of crops to cope with acidic soil condition 

recently both strategies were given due attention to alleviate productivity problem in such areas. The planting of 

acid tolerant crop species and varieties allows production to continue on the acidic soils but does not change the 

soil acidity status (Marschner, 1995; Somani, 1996). In many soils, the best results are obtained from the 

combined use of tolerance crop species and/or variety with the use of appropriate rates of lime. Whereas many 

plants can tolerate pH ranges of 5.2–7.8, most plants grow best in mineral soils when soil pH is between 6.0 and 

7.0.  

Several research achievements were found in the use of lime with application of essential nutrient sources 

specially p fertilizers also on the use of integrated acid soil amendments like organic corrections to recover the 

productivity of acidic soil of the country (Getachew and Taye, 2005). With those research findings it’s possible 

to confirm that adding lime or other liming materials can raise or moderate the soil pH to the optimal range for 

crop production, create an environment for the healthy functioning of microbes, and increase levels of calcium or 

magnesium ions (Abera, 1994). 

 

3. PHOSPHORUS IN SOIL AND ITS FUNCTION FOR PLANTS 

After nitrogen, phosphorus (P) has more widespread influence on both natural and agricultural ecosystems than 

any other essential plant element (Brady and Weil, 2002). It’s classified as a macro nutrient because of the 

relatively large amount of p required by the. It contributes to numerous vital functions in plants such as 

photosynthesis, energy transfer, respiration, and cell division. Dissolution rates of P minerals differ depending on 

the soil reaction (Pierzynski et al., 2005; Oelkers and Valsami-Jones, 2008). There are several forms of P in the 

soil, which are in complex equilibrium with each other and can convert from stable to plant available forms 

(Shen et al., 2011). P is limiting factor to plant productivity on an estimated 40% of the world’s arable soil. 

Phosphorus enhances a good development of the root system particularly of the fibrous and lateral rootlets, a 

route through which the other nutrients can be made available to plants.  

Phosphorus is chemically reactive in soils and over 170 mineral forms (Holford, 1997), as well as many 

organic forms, have been identified. Inorganic P usually accounts for 35% to 70% of total P in soil (calculation 
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from Harrison, 1987). Primary P minerals including apatite, strengite, and variscite are very stable, and the 

release of available P from these minerals by weathering is generally too slow to meet the crop demand though 

direct application of phosphate rocks (i.e. apatite) has proved relatively efficient for crop growth in acidic soils. 

phosphorus compounds formed depend on the chemistry of a particular soil, and the solubilization-precipitation 

reactions involving these compounds are strongly pH-dependent. 

Inorganic p entering the soil solution, by mineralization or fertilizer additions, is rapidly converted into less 

available forms. Sorption and precipitation reactions are involved. The sorption of inorganic P from solution is 

closely related to the presence of amorphous Fe and Al oxides and hydrous oxides and the amounts of CaCO3 

(Bolt and Bruggenwert, 1978). Hydrous oxides and oxides of Al and Fe often occur as coatings on clay mineral 

surfaces, and these coatings may account for a large portion of the P sorption associated with the clay fraction of 

soils. Levels of P deficiency, sufficiency, and excess have been determined in solution culture and in greenhouse 

and field experiments. Total phosphorus content of a selected plant part at a certain growth stage is used for most 

crops. However, many standards developed for vegetable crops are based on a 2% acetic acid extraction (Allen 

and David, 2007). Diagnostic standards for Barley crop are summarized in Table 3 from research studies. 

Table 3. Different levels of Phosphorus in Barley plat tissues on several plant growth stages GS. 

 
Source: Allen and David (2007)  

Phosphorus deficiency in crop plants is a widespread problem in various parts of the world, especially in 

highly weathered acidic soils. Worldwide applications of phosphate fertilizers now exceed over 48.2 million 

metric tons annually (FAO, 2019). The deficiency of this element is related to several factors (Epstein and 

Bloom, 2005). These factors are low natural level in some soils, high immobile or fixation capacity of acidic 

soils, uptake of modern crop cultivars in large amount, loss by soil erosion, and use of low rate by farmers in 

developing countries (Faye et al., 2006). Biotic stresses such as crop infestation of insects, diseases, and weeds 

also reduce P use efficiency in crop plants. 

 

3.1. Correlation Between Phosphorus and Soil Acidity 

Many acid soils are naturally low in phosphorus (P) and require applications of P fertilizer to achieve economic 

yields. In addition, they are usually highly P-fixing (Marschner, 1995). When P fertilizers are applied to 

replenish soil fertility of these soils, about 70–90% of the P fertilizer is adsorbed and becomes locked in various 

soil P compounds (residual P) of low solubility without giving any immediate contribution to crop production 

(Holford, 1997). Acid soils with high P-fixing capacities are the Alfisols, Andosols, Oxisols, and Ultisols. 

Concentrations of inorganic P in the soil solution of many acid soils are low, typically 1-5 mmol m−3 or less, and 

even in fertile agricultural soils seldom exceed 10 mmol m−3 (Bieleski, 1973). Consequently, most acid 

agricultural soils require fertilizer P to provide soluble P close to the roots to meet plant requirements, (Sharpley, 

1985; Mc Laughlin et al., 1988) but the recovery of this P by plants in the season of application is often only 10 

to 20%.  

Different manures and fertilizers result in different pools of P (Schimidt et al., 1996) depending mainly on 

the rates of P applied, removal by crops, inherent soil properties, and climatic conditions. Furthermore, the 

solubility and type of fertilizers also determines the fractions and pools, because only a small proportion of the 

fertilizer has been found to dissolve in the soil (Perrott et al., 1992). Consequently, PRs are expected to exhibit 

higher residual effectiveness than triple super phosphate (TSP). Nevertheless, conflicting results have been 

reported; for instance, TSP was reported to be most effective in the year of application and declined at varying 

rates in different sites, while the PRs were less effective than TSP and effectiveness declined with increasing 

rates of application (Bolland and Gilkes, 1995). 

 

3.2. The Status of P and Factors Affecting Its Availability on Acidic Soils of Ethiopia 

The main Essential nutrients that become depleted and therefore seriously limit soil productivity in Ethiopian 

crop production system are nitrogen and phosphorus (Duffera and Robarge, 1999). The relatively weathered red 

soils are limited more by a lack of phosphorus, Nationwide fertilizer trials with cereals have indicated that more 

than 25% of the soils are highly responsive to the addition of phosphorus, in addition the nutrient status of most 

soils is decreasing between 70% and 75% of the agricultural soils of the highland plateau area of Ethiopia are 

deficient in phosphorus.  
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The solubility and availability of important nutrients to plants is closely related to the pH of the soil 

(Somani et al., 1996). The effects of high acidity in a soil cause a shortage of available P, Ca and Mo on the one 

hand, and an excess of soluble Al, Mn and other metallic ions. In soil pH 6–7, P fixation is low and its 

availability to plants is higher. This pH range seems to promote a ready availability of plant nutrients. Study on 

the two important plant growth limiting nutrients nitrogen and phosphorus shows that acid soils dominate most 

of the southern and south western parts of Ethiopia and generally have low P content (Hailu, 1998). Soils in the 

south and southwestern parts, including Sidamo, Illubabor and Keffa, have high N and low P contents.  

 

3.3.  Phosphatic Fertilizer Sources and Type 

In organic or chemical fertilizers are typically less expensive (per unit of nutrient) and more readily available for 

plant growth than organic fertilizers (Osinama, 1995). However, organic fertilizers often supply other nutrients 

in addition to N-P-K, release nutrients slowly over the growing season and may double as soil conditioners. 

Inorganic P fertilizers come from phosphate rock (PR) which is a naturally occurring sedimentary rock 

composed largely of calcium phosphate minerals (apatite). Phosphate ores contain one or more phosphate 

minerals suitable for commercial use, such as fluorapatite (Ca5(PO4)3F). (IAEA, 2004) Hence, the mineralogy of 

phosphorus rich rocks is complex and there are more than 200 known phosphate minerals.  

Phosphate ores are divided into three groups according to their P2O5 content: low-grade ores (12–16% 

P2O5), intermediate grade ores (17–25% P2O5), and high-grade ores (26–35% P2O5). Deposits that could be 

mined and processed economically to give about 28–38% P2O5 are considered commercial phosphate deposits 

(Sengul et al., 2006). However, phosphate rocks decomposition by sulfuric acid remains the most widely used 

method (Sinirkaya et al., 2014) and over 90% phosphoric acid produced worldwide is manufactured by digestion 

of phosphate rocks with sulfuric acid (Calmanovici et al., 1997). The phosphate rocks are decomposed by 

sulfuric acid in the manufacturing units of phosphate fertilizers according to the following reaction (Becker, 

1989):  

CaF2.3Ca3(PO4)2 + 10H2SO4 + 20H2O →10CaSO4·2H2O + 6H3PO4 + 2HF 

The phosphoric acid is further reacted with ammonia (ammoniation) to produce ammonium phosphate 

fertilizers such as diammonium phosphate (DAP) and mono-ammonium phosphate (MAP). Production of 

ammonium polyphosphate fertilizer (APP) requires dehydration and polymerization of phosphoric acid prior to 

ammoniation. This polymerization is accomplished by the dehydration of phosphoric acid (Calmanovici et al., 

1997). The most common commercially available inorganic P fertilizers are DAP, MAP, and APP. These 

sources have the advantage of high-water solubility-  

(≥ 90%) and high plant food content (Pagliari et al., 2010). Rock products of P have wide variety (e.g. black 

rock phosphate, soft rock or colloidal phosphate, super phosphate (SP). Be aware that the touted “immediately 

available” nutrients may refer to only a small percentage of the whole, while the rest will be released slowly. Not 

considered organic if treated with a chemical to increase nutrient solubility (Kim, 1998). Phosphate fertilizer 

demand, includes H3PO4 the world fertilizer outlook regional and sub-regional share of world increase 

(phosphoric acid) base fertilizer demand + non-H3PO4 fertilizer demand. The non-H3PO4 fertilizer demand 

includes P2O5 in single super phosphate, direct application phosphate rock (DAPR), nitric acid-based phosphate 

fertilizers, etc. The world phosphate fertilizer demand increased from 41.7 in 2013 to 42.7 million metric ton in 

2014, at a growth rate of 2.4% according to FAO, (2014) and it will exceed 50 MT by the 2024 with these 

growth rate of demands. Consequently, efficient uses and looking for varied phosphatic sources which might be 

less exploited before and a means of recycle uses should be considered since the major resource is limited.  

 

3.4. Fate of Phosphorus Fertilizer Added to Soils 

The phosphate in fertilizers and manure is initially quite soluble and available, when the fertilizer or manure 

phosphate comes in contact with the soil, various reactions begin occurring that make the phosphate less soluble 

and less available. The rates and products of these reactions are dependent on such soil conditions as pH, 

moisture content, temperature, and the minerals already present in the soil (Quang et al., 1996). As phosphate 

ions in solution slowly migrate away from the fertilizer particle, most of the phosphate will react with the 

minerals within the soil. Phosphate ions generally react by adsorbing to soil particles or by combining with 

elements in the soil such as Ca, Mg, Al, Fe and forming compounds that are solids. The adsorbed phosphate and 

the newly formed solids are relatively available to meet crop needs (Zhang et al., 2011). Gradually reactions 

occur in which the adsorbed phosphate and the easily dissolved compounds of phosphate form more insoluble 

compounds that cause the phosphate to be become fixed and unavailable over time this results in a decrease in 

soil test P.  

In acidic soils the first products formed would be amorphous Al and Fe phosphates (Quang et al., 1996). 

The amorphous Al and Fe phosphates gradually change into compounds that resemble crystalline variscite (an Al 

phosphate) and strengite (an Fe phosphate). Each of these reactions will result in very insoluble compounds of 

phosphate that are generally not available to plants (Harrold et al., 2006). Reactions that reduce P availability 
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occur in all ranges of soil pH but can be very pronounced in acidic soils (Morel et al., 1989). Adding to the 

active P pool through fertilization will also increase the amount of fixed P. Depleting the active pool through 

crop uptake may cause some of the fixed P to slowly become active P. The conversion of available P to fixed P 

is partially the reason for the low efficiency of P fertilizers (Dolui et al., 1984). Most of the P fertilizer applied to 

the soil will not be utilized by the crop in the first season. Continued application of more P than the crops utilize 

increases the fertility of the soil, but much of the added P becomes fixed and unavailable. 

The fixation capacity of a soil may also be indicative of possible adverse environmental effects. The P 

fixation in soils depends upon soil pH, organic matter content and mineralogical constitution of the colloids. 

Owusu et al. (1989) studied the phosphate sorption characteristics of some Ghanaian soils and found that the 

phosphate sorption maxima were highly correlated with the soil properties in the order: Al2O3, clay content, free 

Fe2O3 and organic carbon. Soon (1990) studied the solubility and retention of phosphates in soils of north 

western Canada prairies and found that correlations showed between P sorption capacity and clay content. Al-

organic matter complexes and amorphous iron oxides were significant (Palm et al., 2001). Maintaining soil pH 

between 6 and 7 will generally result in the most efficient use of phosphate. 

 

3.5. Properties of different specialized Phosphatic Fertilizer Products 

Different P specialty products are produced in the world fertilizer industry to meet specific requirements of 

different soil and crop types. Accordingly, some of the fertilizers fabricated for acid soils with different 

economical and additional ingredient to support productivity in such soil types. Which are differ by its 

acidulation level and incorporated liming materials with essential nutrients required for crop production on those 

acid soil prone areas. Some of common products includes partly acidulated rock phosphate, hyper organic 

phosphate and different blended fertilizer which granulated with calcium carbonate etc. 

3.5.1. Partly Acidulated Rock Phosphate (PARP) 

PARP has been considered to be a possible means of minimizing the P-fixing capacity of acid soils use of PARP 

is to economize on the cost of acid, by using less acid than the amount required to convert entire tricalcium 

phosphate of the rock to mono-calcium phosphate (Mclean and Ssali, 1977) their use can be best postulated 

under conditions of financial stringency for fertilizer use. Generally favorable plant response coupled with the 

economy of its production make partially acidulated rock phosphate as one of the most desirable ways of 

increasing the effectiveness of ground PRs and a possible alternative source of P to superphosphate for acid soils 

(Sinirkaya et al., 2014). For most crops the agronomic value of PAPRs depends on the availability to plants of P 

from both water-soluble P and P from unreacted PR, which in turn depends on a combination of fertilizer, soil 

and plant factors. 

The direct application of rock phosphate (RP) (granule or powder) without previous reaction with sulfuric 

and/or phosphoric acids may be a suitable, less-expensive, alternative to water-soluble P fertilizers. In addition, 

the slow solubilization of RP in acidic soils may also contribute to decrease environmental risks, such as the 

eutrophication of surface waters (He et al., 1999). PARP are suitable for direct application and are a possible 

alternative to more expensive soluble P fertilizers in agricultural fields (Hamadi et al., 2012). But the ability of 

the PRs to release phosphates in plant available forms depends on their particle size, chemical and mineralogical 

characteristics as well as the properties of the soil in which they are applied. Research has revealed that PAPR is 

as agronomically effective as superphosphate fertilizers on food crops (Chien et al., 2010) which have its own 

merit with respect to economic fertilizer production and environmental safety and also have its own role in 

reducing foreign exchange pressure on for sub Saharan countries like Ethiopia.  

3.5.2. Organic Hyper Phosphate (MOHP) 

Organic phosphate contains Coral Calcium, Phosphoric and Silicic acids that come from the dropping of sea 

birds, the remains of fish, seaweed, and various other kinds of minerals (http//: www. Menjingumine. com, 2017). 

Organic-phosphoric acid: About 70% of the citric acid is soluble and the rest of P is slowly released into the soil 

and constantly available in the soil. Continual P supply throughout plant growth period function cannot be found 

in chemical fertilizers such as superphosphate. Thus, organophosphates are proven to increase harvests compared 

to chemically treated phosphate fertilizers. Plants absorb organic phosphates very effectively because the 

phosphoric acid is absorbed at a lower temperature compared to other phosphoric acid fertilizers. The table 

below contains some comparison between the organic hyper phosphate fertilizers. 

Table 4. Absorption and fixation properties of different phosphorus sources in comparisons. 

Phosphoric Acid Fertilizer 
Absorption 

Temperature 

Absorption 

Rate (%) 

Fixation Rate 

(%) 

Fused Phosphate 

Super Phosphate / Ammonium Phosphate 

Minjingu Organophosphate + 

Steamed bone meal 

17oC 

10oC  

4oC  

6oC 

3-7 

5-9  

70-85 

60-70 

88-95 

90-97  

15-30 

15-25 
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The main component in organic phosphate is di-calcium phosphate, which has a low solubility and does not 

condense. This reduces problems caused by unstable densities. 

Calcium is an element that is usually used in calcium containing fertilizers and tends to be washed away 

easily, however, coral calcium does not it also rapidly neutralize soil acidity; however, when included in organic 

phosphate, it promotes healthier soil and enhances safety for plants; Coral Calcium is sponge like in nature it is 

porous and holds moisture. It promotes microorganisms in the soil and the calcium contained in Coral Calcium 

does not chemically react with other components in soil, making it is easier for plants to absorb (http//: www. 

Menjingumine .com, 2017). Silicic acid contained in organophosphate is produced from organic matter and thus 

does not harden and is easily absorbed. Calcium silicic acid, which is usually used as silicic fertilizer, is made 

from non- organic matter, and its solubility is deferent. Silicic acid enhances CEC and increases soil fertility. 

Lack of Silicic acid decreases the effects of calcium, and increases the risk of disease. 

Organic phosphate has high P content, quick and slow release component, citric soluble not water-soluble, 

guaranteed minimum 50% citric soluble, absorption starts at 4° C, very low fixation rate, very low cadmium and 

other dangerous metals level. It also increases CEC and helps microorganisms to reproduce and reduce soil 

degradation, improves water and nutrient holding capacity, acts as fertilizer and soil conditioner, adds organic 

matter into the soil, better metabolism of nitrate in plants, more P over the growing period, stronger cell walls 

and therefore flavor enhancement, resistance to fungi and mold attack, more upright stems & open leaves, 

enhanced photosynthesis, more fertile and viable seed production, increase in soil micro fauna, and longer shelf 

life of produce are the major advantages (http//:www.Menjingumine.com, 2017). 

3.5.3. Blended fertilizer products 

There are different kinds of blended fertilizer formulation depends on the soil type and crop nutrient 

requirements. OCP and NAFAKA products can be mentioned for acid soils. NAFAKA plus fertilizer are the 

complete planting fertilizer product of Menjingu mine and fertilizer LTD. Containing many essential nutrients 

and sufficient calcium oxide as remedy to acidic soil. The fertilizer contains organic phosphorus which is not 

prone to fixation for tropical crops; thus, the recommended rate of application varies from 50-100 kg acre-1 

depending on soil condition and crop requirements. NAFAKA plus fertilizer have eight essential nutrient sources 

including all macro and few micro essential nutrients. From primary macro nutrient nitrogen 9%, P2O5 16%, and 

K2O 16% and it contains CaO 25%, sulfur 5% and MgO 2% from secondary macro nutrients; whereas from 

micro nutrients it also has Zinc and Boron with 0.5% and 0.1% composition respectively. Its compound blended 

fertilizer with all nutrients in one granule which ensure uniformity in application of such fertilizer under field 

condition. Using such kinds of fertilizer with row planting method can utilize the fertilizer and liming material 

efficiency to the optimal.   

 

4. CONCLUSION 

A variety of solutions should be taken in account to adapt and mitigate soil fertility degradation specially soil 

acidity in Ethiopia, since it becomes a major limitation factor for agricultural productivities. Which can be done 

through multiple of approaches like developing and introducing acid soil tolerant crop species and varieties to 

adapt such harsh soil and environmental condition. On the other hands managing the soil with sustainable 

technologies is crucial with economic affordability for small scale farmers and environmental safety 

consideration.  

Application of lime, biochar, organic fertilizers like farm yard manure and vermicompost where most 

commonly known acid soil amelioration option which modify the soil pH and supplement other essential nutrient 

for crop growth and productivity. From the most limiting nutrients which supply will be dependent on soil pH 

phosphorus is the major ones. Phosphorus fertilizer majorly found from rock phosphate (apatite) which become 

depleted within short period of time so efficient and sustainable use of such resource was vital. Direct 

application of rock phosphate or partly acidulated phosphate have an advantage of used as liming material 

through its mineralization process and Ca content which is found in rock phosphate. Beyond N and P other 

nutrient application becomes most important in Ethiopia soil fertility survey conducted in Ethiopia confirmed 

there was also deficiency of S, B, and Zn nutrients specially on acid soil so blending such essential nutrients with 

calcium carbonate will improve the application efficiency and affordability of both fertilizer and lime at ones. it 

also improves the loss of P fertilizer through high fixation capacity of acid soils with proper placements as well. 

Use of Organic sources of fertilizers integrated with efficient fertilizer should be considered. 
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