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Abstract 

The Mamu Formation exhibits two types of shales, viz. grey and dark shales. The geochemical and mineralogical 

compositions of these shales were investigated using X-ray fluorescence (XRF) and Laser Ablation- Inductively 

Coupled Plasma Spectrometry (LA-ICPMS) and X-ray diffraction techniques. The basal part of the section is 

characterized by presence of quartz and kaolinite as the major crystalline minerals with minor quantity of 

hematite. The presence of hematite in the basal part of the shale sequence suggests oxidizing diagenetic 

environment of deposition. The second geochemically specific interval (upper part) is characterised by quartz 

and kaolinite as major crystalline minerals with traces of halloysite and grossite. The ternary plot of these major 

elements indicates the majority of shale samples examined are variably enriched with SiO2 relative to Al2O3 and 

CaO. The positive correlations of K2O, TiO2, and Na2O, with Al2O3 indicate that these elements are associated 

entirely with detrital phases. Some trace elements such as Cr, Ni, and V are positively correlated with Al2O3 

which suggest that these elements may be bound in clay minerals and concentrated during weathering. The 

K2O/Al2O3 ratio is close to the lower limit of clay mineral range, which suggests that kaolinite is the dominant 

clay minerals. The Al2O3/TiO2 and low Cr/Ni ratios suggest that felsic components were the main components 

among the basement complex source rocks. The geochemical indices such as Th/Cr, Cr/Th, Th/Co and Th/Cr 

ratios suggest that these shales were derived from felsic source rocks. The chemical index of alteration values 

indicates that these shales have experienced strong chemical weathering at the source area. In addition, the 

depletion of Na and Ca also illustrates an intense chemical weathering of the source rocks. The mineralogical 

index of alteration values of the studied shale samples indicates an intense to extreme weathering of 

mineralogical components. The shale units exhibits different degrees of trace-element enrichment, with the 

approximate order of enrichment relative to an average shale being Co > Pb > Ni > Zr > Cu > Rb > V > Cr > Ba > 

V > Sr > U. The inverse correlation between Eh, pH, EC and TDS in outcrop Maastrichtian shale samples 

suggests well oxygenated environment of deposition. In addition, based on previously established thresholds, 

V/Cr, Ni/Co, Cu/Zn and U/Th ratios support that these shales were deposited under oxidizing diagenetic 

environment.  

Keywords: mineralogy, geochemistry, paleo-redox conditions, trace element enrichments, shales, Mamu 

Formation, Anambra basin, Nigeria. 

 

1. Introduction 

Trace elements commonly exhibit considerable enrichment in laminated, organic- rich facies, especially those 

deposited under euxinic conditions and, conversely, little if any enrichment in bioturbated, organic-poor facies 

(Wedepohl, 1971; Calvert and Pedersen, 1993; Algeo and Maynard, 2004). The geochemical behaviour of trace 

elements in modern organic rich fine grained sedimentary rocks (i.e. shales) and anoxic basins has often been 

discussed (Brumsack, 1989; Calvert and Pedersen, 1993; Warning and Brumsack, 2000; Algeo and Maynard, 

2004). Redox-sensitive trace element (TE) concentrations or ratios are among the most widely used indicators of 

redox conditions in modern and ancient sedimentary deposits  (e.g., Calvert and Pedersen, 1993; Jones and 

Manning, 1994; Crusius et al., 1996; Dean et al., 1997, 1999; Yarincik et al., 2000; Morford et al., 2001; Pailler 

et al., 2002; Algeo and Maynard, 2004). Enrichments of redox-sensitive elements reflect the depositional 

environment of ancient organic carbon-rich sediments and sedimentary rocks as well and can, therefore, be used 

to elucidate the likely palaeoceanographic conditions leading to their formation (Brumsack, 1980, 1986; Hatch 

and Leventhal, 1992; Piper, 1994). 

Anambra Basin, the first area where intensive oil exploration was carried out in Nigeria, has about 12,000 metre 
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of sedimentary rocks which accumulated in its thickest part since the Cretaceous time (Agagu and Adighije, 

1983). The dominant lithologies comprise sandstones, shales, limestones and coal seams. The unrewarding initial 

oil exploratory effort in the basin led to its neglect by most researchers in favour of the nearby Niger Delta Basin 

which has been prolific in terms of oil and gas exploration and production. With less than 50 wells so far drilled 

(two discoveries; Anambra River-1, Ihadagu-1) and very scanty 2-D seismic information, Anambra Basin is 

under explored. Again, a simple statistical analysis of the literature review shows that more than ninety percent 

of the studies so far in the basin are in the southeast section (Unomah and Ekweozor, 1993; Akaegbobi and 

Schmitt, 1998; Adebayo and Ojo, 2004; Ojo et al., 2009; Chiaghanam et al., 2012). 

Since the search for crude oil in commercial quantity in the basin still remained a source of concern for oil 

companies and research groups, a better understanding of the paleo-redox and paleogeographic conditions of the 

outcrops will benefit the oil companies that had secured concession blocks in the basin; and those that may wish 

to use this information for deep-water exploration in the Niger Delta Basin. This is because some of these 

outcrops packages are said to be equivalent to the lithostratigraphic units within the subsurface of the Niger 

Delta (Short and Stauble, 1967). 

In this study, we present the inorganic geochemical data for Maastrichtian shale outcropped at Auchi-Igarra road, 

Anambra Basin, Nigeria. This is to determine the provenance, redox conditions of depositional environment, and 

element enrichments of the studied Maastrichtian shale sequence. The purpose of this paper is in two folds; (1) to 

contribute and discuss a wide range of  trace metal to the geochemical data set of the Maastrichtian shale outcrop 

which are lacking in the current literature (2) to assess the use of well known geochemical proxies (i.e. Ni/Co, 

V/Cr, Cu/Zn and U/Th) for discerning paleogeographical conditions of the shale sequence. 

 

2. Geological setting of Anambra basin 

Anambra Basin is located in the southeastern part of Nigeria. It is bordered in the south by the Niger Delta 

Complex, to the west by the West African massif, to north by Bida Basin and Northern Nigerian massif, and 

delimited in the east the Middle Benue Trough and Abakaliki Anticlinorium (Figure 1). The basin lies between 

longitudes 6.3
0
E and 8.0

0
E, and latitudes 5.0

0
N and 8.0

0
N. Anambra Basin in Nigeria is considered by some 

authors as the Lower Benue Trough, a NE-SW trending, folded, aborted rift basin that runs obliquely across 

Nigeria (Figure 1). Hence its origin was linked to the tectonic processes that accompanied the separation of the 

African and South American plates in the Early Cretaceous (Murat, 1972; Burke et al., 1996). The rift model had 

been supported by evidence garnered by structural, geomorphic, stratigraphic and paleontologic studies 

(Reyment, 1969; Burke et al., 1972; Benkhelil, 1989; Guiraud and Bellion, 1995). The evolution of the basin 

represents the third cycle in the evolution of the trough and its associated basins when the Abakaliki Trough was 

uplifted to form the Abakaliki Anticlinorium whilst the Anambra Platform was downwarped to form the 

Anambra Basin (Murat, 1972; Weber and Daukoru, 1975) resulting in the westward displacement of the trough’s 

depositional axis. Its sedimentation trend is patterned by the shifting of depocentres.  

A great deal of work had been done to elucidate the age, paleoenvironment, paleogeography, sedimentary 

tectonics, origin of the deposits, the litho- and biostratigrapy and hydrocarbon (or fossil fuel) potentials of the 

basin (Reyment, 1965; Murat, 1972; Salami, 1983; Agagu et al., 1985; Allix, 1987; Akande et al., 1992; 

Nwajide and Reijers, 1996, Akande, 2007). The sequence of depositional events suggests a progressive 

deepening of the basin from lower coastal plain and shoreline deltas to shoreline and shallow marine deposits 

(Arua, 1986; Anyanwu and Arua, 1990; Fayose and Ola, 1990). The resulting succession comprises the Nkporo 

Group, Mamu Formation, Ajali Sandstone, Nsukka Formation, Imo Formation and Ameki Group (Table 1). The 

detailed stratigraphic description of these formations is available in several publications (Petters, 1978; Agagu et 

al. 1985; Reijers, 1996). The rich coal deposits of Late Campanian – Early Maastrichtian ages suggest brackish 

environment during their deposition. 

 

3. Methodology/research approach 

3. Materials and method 

3.1 Sampling technique 

Exposed Maastrichtian shale outcrop located at Auchi-Igarra road, Edo state, Nigeria (07º 05.071'N, 

006º14.826E; 162.72m above sea level) (Fig. 2) was sampled. 500 grams of shale samples were collected at an 

interval of 0.2m from the shale sequence. All the 10 shale samples were immediately stored in zip lock 

polyethylene bag and preserved at room temperature. The samples were dried at 60ºC, crushed to fine powder 

and homogenized in an agate ball mill. The pulverized shale samples were analysed with XRD, XRF and LA-

ICPMS techniques. 

3.2. XRF and LA-ICPMS analyses 

The elemental data for this work have been acquired using X- ray fluorescence (XRF) and Laser Ablation- 

inductively coupled plasma spectrometry (LA-ICPMS) analyses. 
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The analytical procedures are as follows; 

Pulverised shale samples were analysed for major element using Axios instrument (PANalytical) with a 2.4 

kWatt Rh X-ray Tube. Further, the same set of samples were analysed for trace element using LA-ICPMS 

instrumental analysis. LA-ICP-MS is a powerful and sensitive analytical technique for multi-elemental analysis. 

The laser was used to vaporize the surface of the solid sample, while the vapour, and any particles, were then 

transported by the carrier gas flow to the ICP-MS. The detailed procedures for sample preparation for both 

analytical techniques are reported below. 

3.2.1. Fusion bead method for Major element analysis 

• Weigh 1.0000 g ± 0.0009 g of milled sample 

• Place in oven at 110 ºC for 1 hour to determine H2O
+
 

• Place in oven at 1000 ºC for 1 hour to determine LOI 

• Add 10.0000 g ± 0.0009 g Claisse flux and fuse in M4 Claisse fluxer for 23 minutes. 

• 0.2 g of NaCO3 was added to the mix and the sample+flux+NaCO3 was pre-oxidized at 

700 °C before fusion. 

• Flux type: Ultrapure Fused Anhydrous Li-Tetraborate-Li-Metaborate flux (66.67 % Li2B4O7 + 32.83 % 

LiBO2) and a releasing agent Li-Iodide (0.5 % LiI). 

3.2.2. Pressed pellet method for Trace element analysis 

• Weigh 8 g ± 0.05 g of milled powder 

• Mix thoroughly with 3 drops of Mowiol wax binder 

• Press pellet with pill press to 15 ton pressure 

• Dry in oven at 100 ºC for half an hour before analysing. 

These analytical methods yielded data for eleven major elements, reported as oxide percent by weight [SiO2, 

TiO2, Al2O3, Fe2O3, MgO, MnO, CaO, Na2O, K2O, Cr2O3 and P2O5] and 21 trace elements [Ni, Cu, Zn, Ga, 

Rb, Sr, Y, Zr, Nb, Co, V, Pb, Th, U, Ti, Cr, Ba, La, Ce, Nd and P] reported as mg/kg (ppm). 

3.3. Loss on ignition determination 

Loss on Ignition (LOI) is a test used in XRF major element analysis which consists of strongly heating a sample 

of the material at a specified temperature, allowing volatile substances to escape or oxygen is added, until its 

mass ceases to change. The LOI is made of contributions from the volatile compounds of H2O
+
, OH

-
, CO2, F

-
, 

Cl
-
, S; in parts also K

+
 and Na

+
 (if heated for too long); or alternatively added compounds O2 (oxidation, e.g. FeO 

to Fe2O3), later CO2 (CaO to CaCO3). In pyro-processing and the mineral industries such as lime, calcined 

bauxite, refractories or cement manufacturing industry, the loss on ignition of the raw material is roughly 

equivalent to the loss in mass that it will undergo in a kiln, furnace or smelter. 

3.4 Mineralogical analysis 

Pulverised shale samples were analysed for mineralogical composition by X-ray diffraction (XRD) analysis. A 

Philips PANalytical instrument with a pw 3830 X-ray generator operated at 40 kV and 25 mA was used. The 

pulverised samples were oven dried at 100 °C for 12 h to remove the adsorbed water. The samples were pressed 

into rectangular aluminium sample holders using an alcohol wiped spatula and then clipped into the instrument 

sample holder. The samples were step-scanned from 5 to 85 degrees on 2 theta scale at intervals of 0.02 and 

counted for 0.5 sec per step. 

3.5 pH of the interstitial pore water of the shales 

The pH of interstitial/pore water was determined using 1:10 shale: water ratio. Ten grams of each of the shale 

samples were weighed and put in a beaker and suspended in 100 ml of ultra pure water. The mixture was then 

agitated thoroughly for 30 min, and allowed to settle for 15 min. The pH, EC, TDS and Eh of the supernatant 

were recorded. The filterate was analyzed for anions using ion chromatography and cations using inductive 

coupled plasma optical emission spectroscopy (ICP-OES). Triplicate analysis was carried out in each case. 

3.6 Data treatment and multivariate statistical methods 

Multivariate statistical method was applied on the bulk chemical data obtained from the XRF analysis of the 

studied shale samples using SPSS-17.0 statistical software. Varimax rotated factor analysis was performed on 

correlation matrix of the reorganized data of the samples. The variance, cumulative, and extraction sums of 

square loadings of the variables with Eigen-values were computed. Rotation of the axis defined by factor 

analysis produced a new set of factors, each one involving primarily a sub-set of the original variables with a 

little overlap as possible, so that the original variables were divided into groups.  

The factor analysis of these data set was further sorted by the contribution of the less significant variables (< 0.4 

factor score). A varimax rotation (raw) of the different varifactors of eigen-value greater than 1, were further 

cleaned up by this technique and in varifactors original variables participated more clearly. Liu et al. (2003a) 

classified the factor loading as “strong”, “moderate”, and “weak”, corresponding to absolute loading values of > 

0.75, 0.75–0.50, and 0.50–0.40, respectively. Factor and cluster analyses were combined to assess the degree of 

major component matrix dissolution and determination of chemical processes. Hierarchical agglomerative 
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clustering was performed on data normalized to z scores and unit variance using squared Euclidean distances as 

the measure of similarity (Massart et al., 1988). Wards method was selected because it possesses a small space 

distorting effect, uses more information on cluster contents than other methods (Helena et al., 1999), and has 

been proven to be an extremely powerful grouping mechanism (Willet, 1987). This multivariate statistical 

approach enables the description of the best discriminatory parameters of the studied shale units on the basis of a 

simultaneous approach of geochemical and mineralogical data. 

 

4. Results and discussion 

4.1. Lithological description 

In the outcrop section, on the Auchi-Igarra road (Figure 2 & 3) the argillaceous units are not well exposed. The 

approximately 1.6m thick sequence exposed along Auchi-Igarra road (Figure 2 & 3) consists predominantly of 

shales and mudstones. At the basal part of the section is prominent shale bed with an average thickness of 0.2m, 

it is dark greyish with brownish specs, fine grained in texture, highly fissile with tracks. The shale unit within 

depth interval of 0.4-1.0m is dark greyish coloured with brownish specs, fine grained in texture which are 

rhythmically interbedded with concretional to massive, bioturbated mudstones. The upper part of the outcrop 

section (1.2-1.6m) is light greyish, brownish with reddish brown specs. The shales are fine grained, mixed with 

clay and mudstones and contains abundant woody fragments and plant remains. The argillaceous sediments 

(shales and mudstones) in this section are interpreted to have been deposited in a low-energy setting, probably in 

a restricted body of water (Braide, 1992). The abundance of land derived woody and plant materials suggest 

freshwater conditions (Obaje et al., 2011). The fine-grained argillaceous sediments and sandstones in the upper 

part of the section are interpreted as shelf or flood plain deposits (Garrels and Makenzie, 1971). 

4.2. Mineralogical composition 

The mineral composition of the shale samples are predominantly characterized by quartz and kaolinite, which 

were found in all samples. X-Ray diffraction analyses show little mineralogical variation between shale samples 

within geochemically specific intervals. The first interval is from 0.0 to 0.2m depth. It is characterized by the 

presence of quartz and kaolinite as the major crystalline minerals with minor quantities of hematite (Figure 4a). 

The second geochemically specific interval is at the depth of 0.6 - 2m, and is characterised by quartz and 

kaolinite as major crystalline minerals with minor quantities of halloysite and grossite (Figure 4b). Kaolinites are 

indicators for its detrital origin in continental sediments (Kassim, 2006). Furthermore, Weaver (1960) stated that 

kaolinite is dominant in sediments of fluviatile environments.  

Kaolinite is known to be concentrated in many near-shore sediments and to decrease in abundance with distance 

from the shoreline as other clay minerals increase (Parham, 1966). Robert and Kennett (1994) reported that 

increased kaolinite contents in marine sediments resulted either from increased runoff, which could be caused by 

sea level falls, or from increased rainfall. Kaolinite is formed under a good drainage system where the water 

travel distance was much greater, less rapid flushing of sediments and less removal of silica (Berner and Berner, 

1996). Halloysite, which consists of a poorly ordered arrangement of kaolinite-like units, with variable amounts 

of water between the layers, generally between 0.6 to 4H2O per formula unit, and often with a tabular form. 

Hematite is the oxidation products of weathered ferrous minerals and constitutes a major source of detrital iron 

in sediments. During diagenesis limonite may be dehydrated to hematite. In order for this to happen, the original 

sediment would have to be relatively free from decomposable organic matter so a high enough 

oxidation/reduction potential (Eh) can be maintained to stabilize hematite. As a result, organic matter is 

generally abundant in marine sediments; almost all hematite are non marine (Berner, 1971). Consequently, the 

presence of hematite in the bottom layers of the shale sequence suggest non marine environment of deposition. 

4.3. pH, EC and Eh of interstitial pore water 

The mean pH measured in the Maastrichtian shales was 6.3, and range of variation was 5.9 - 8.1 (Table 2). A 

simple correlation analysis revealed that the pH values were very closely correlated with electrical conductivities 

(EC), total dissolved solids (TDS), Ca, Mg, Na, K and F. The inverse correlation between Eh and pH, EC and 

TDS in the samples suggests well oxygenated environment of deposition. Similarly, Eh showed inverse 

correlation with Ca, Mg, Na, K and F (Table 2). 

4.4. Major and trace elements characteristics and provenance 

Marine shales and mud rocks can be regarded as an admixture of three end-member oxides: SiO2 (detrital quartz 

and/or biogenic silica), Al2O3 (clay fraction) and CaO (carbonate content) (Ross and Bustin, 2009). The ternary 

plot of the major elements indicate that majority of the shale samples examined are enriched with SiO2 relative 

to Al2O3 and CaO (Fig. 5). 

The studied shale samples show high content of SiO2 with small variations (~51.83 – 92.00) (Table 3). The 

Al2O3 content shows low concentrations with large variations (~3.42 – 26.46). Aluminium concentration is a 

reasonably good measure of detrital flux (Nagarajan, 2007), the positive correlations of K2O, TiO2, and Na2O, 

with Al2O3 (linear correlation coefficient r = 0.98, 0.79, and 0.14, respectively, number of samples (n) = 10) 
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indicate that these elements are associated entirely with detrital phases. Some trace elements such as Cr, Ni, and 

V are positively correlated with Al2O3 (r = 0.155, r = 0.009, and r = 0.043 respectively) which suggest that these 

elements may be bound in clay minerals and concentrated during weathering ( Fedo et al., 1996; Nagarajan et al., 

2007). 

The SiO2/Al2O3 ratio of the studied shale samples is shown in the Table 3. Felix (1977) established that the 

SiO2/Al2O3 ratio for pure montmorillonite ranges from 2.80 to 3.31 while for pure kaolinite it is about 1.18. The 

SiO2/Al2O3 ratio for these shale samples varies between (1.96 and 26.95) which are higher than that of pure 

kaolinite and montmorillonite. Perhaps, this indicates that the clay mineralogy of the studied shale samples 

consists mainly kaolinite and/or a mixture of kaolinite and halloysite. This is confirmed by mineralogical 

analysis results (Figure 4b). 

The K2O/Al2O3 ratio of sediments can be used as an indicator of the original composition of ancient sediments. 

The K2O/Al2O3 ratios for clay minerals and feldspars are different (0.0 to 0.3, 0.3 to 0.9, respectively; Cox et al., 

1995). The K2O/Al2O3 ratios vary from 0.04 – 0.05 in the studied shale samples (Table 3). In most of the shale 

samples, the K2O/Al2O3 ratios are close to the lower limit of clay mineral range, which suggests that kaolinite is 

the dominant clay minerals in these samples as revealed by XRD spectra analysis (Figure 4). The abundance of 

Si, Al, Ti and K in shales may be perturbed from parent material by weathering, transport and depositional 

processes (Nesbitt et al. 1980). According to Gill and Yemane (1996) the Na2O/K2O ratios indicate salinization 

by intense weathering or extreme leaching. The studied shale samples show low Na2O/K2O ratios (Table 3), 

which indicate no evidence of salinization. 

The geochemical signatures of clastic sediments have been used to find out the provenance characteristics 

(Condie et al., 1992; Cullers, 1995; Madhavaraju and Ramasamy, 2002; Armstrong-Altrin et al., 2004; 

Nagarajan, 2007). Al2O3/TiO2 ratios of most clastic rocks are essentially used to infer the source rock 

compositions, because the Al2O3/TiO2 ratio increases from 3 to 8 for mafic igneous rocks, from 8 to 21 for 

intermediate rocks, and from 21 to 70 for felsic igneous rocks (Hayashi et al., 1997). In the studied shale samples, 

the Al2O3/TiO2 ratio ranges from 11.96 - 24.06 (Table 3).  

Accordingly, the Al2O3/TiO2 ratios suggest that intermediate to felsic granitoid rocks must be the probable 

source rocks for the shale samples in the present study. The abundance of Cr and Ni in siliciclastic sediments are 

considered as a useful indicator in provenance studies. According to Wrafter and Graham (1989) a low 

concentration of Cr indicates a felsic provenance, and high contents of Cr and Ni are mainly found in sediments 

derived from ultramafic rocks (Armstrong-Altrin et al., 2004). Chromium and nickel concentrations are low in 

the studied shale samples (Table 3). Consequently, the low Cr/Ni ratios (i.e. 3.76 – 27) indicate that felsic 

components were the main components among the basement complex source rocks. Ratios such as La/Sc, Th/Sc, 

Th/Co, and Th/Cr are significantly different in felsic and basic rocks and may allow constraints on the average 

provenance composition (Wronkiewicz and Condie, 1990; Cox et al., 1995; Cullers, 1995). The ratios of Th/Cr 

(~0.036 – 0.09), Cr/Th (~8.1 – 14.15), Th/Co (~0.006 – 0.68) and Th/Cr (~0.036 – 0.09) suggests that the shale 

samples in the present study were derived from felsic source rocks (Cullers, 1994; 2000; Nagarajan, 2007).  

The chemical index of alteration (CIA) defined as CIA = 100 x Al2O3/ (Al2O3 + CaO + Na2O + K2O) have been 

established as a general indicator of the degree of weathering in any source regions (Nesbitt and Young, 1982; 

Fedo et al., 1995). In the equation, CaO* is the amount of CaO incorporated in the silicate fraction of the studied 

shale samples. Correction for CaO from carbonate contribution was not done for the studied shale samples since 

there was no CO2 data. Thus, to compute for CaO* from the silicate fraction, the assumption proposed by Bock 

et al. (1998) was adopted. In this regard, CaO values were accepted only if CaO ≤ Na2O; consequently, when 

CaO >Na2O, it was assumed that the concentration of CaO equals that of Na2O (Bock et al., 1998). However, 

only one brownish coloured shale sample (C2.0m) showed CaO contents higher than Na2O. High values (i.e.76-

100) indicate intensive chemical weathering at the source area whereas low values (i.e., 50 or less) indicate 

unweathered source areas. The CIA values (Table 3) indicate that the studied shale samples have experienced 

strong chemical weathering (CIA > 90) at the source area. In addition, the depletion of Na and Ca illustrates an 

intense chemical weathering of the source rocks. As Al2O3, CaO, Na2O and K2O are related with CIA, they 

reveal variations between the investigated samples reflecting variable climatic zones or rates of tectonic uplift in 

source areas. The mineralogical index of alteration indicates the degree of weathering for each analysed sample, 

independent of the depth of sampling. The calculation of the mineralogical index of alteration (MIA), according 

to Voicu et al., (1997) is: MIA = 2*(CIA-50). 

These ranges of MIA values indicate incipient (0-20%), weak (20-40%), moderate (40-60%), and intense to 

extreme (60-100%) weathering. The value of 100 % means complete weathering of a primary material into its 

equivalent weathered product (Voicu and Bardoux, 2002). The MIA value of the studied shale samples range 

from 83.49 – 90.03 (Table 2), therefore indicating an intense to extreme weathering of the mineralogical 

components of the source rock. 
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4.5. Paleo-redox conditions and trace element enrichments 

Some trace element ratios such as Ni/Co, V/Cr, Cu/Zn and U/Th have been used to evaluate paleoredox 

conditions (Hallberg, 1976; Jones and Manning, 1994). The ratio of uranium to thorium may be used as a redox 

indicator with U/Th ratio being higher in organic rich mudstones (Jones and Manning, 1994). U/Th ratios below 

1.25 suggest oxic conditions of deposition, whereas values above 1.25 indicate suboxic and anoxic conditions 

(Jones and Manning, 1994; Nath et al., 1997). The present study shows low U/Th ratio (~0.13), which indicate 

that these shale samples were deposited in an oxic environment. A few numbers of authors have used V/Cr ratio 

as an index of paleooxygenation (Dill, 1986; Dill et al., 1988; Nagarajan, 2007). Bjorlykke (1974) reported the 

incorporation of Cr in the detrital fraction of sediments and its possible substitution for Al in the clay structure. 

Vanadium may be bound to organic matter by the incorporation of V
4+

 into porphyrins, and is generally found in 

sediments deposited in reducing environments (Shaw et al., 1990). According to Jones and Manning (1994), the 

V/Cr ratios above 2 indicate anoxic conditions, whereas values below 2 suggest more oxidizing conditions. In 

the present study, the V/Cr ratios of all the shale samples vary between 1.01 and 1.91, which indicates that they 

were deposited in an oxic depositional environment. 

Several authors have used the Ni/Co ratios as a redox indicator (Dypvik, 1984; Dill, 1986; Nagarajan, 2007) 

Jones and Manning (1994) showed that the Ni/Co ratios below 5 indicate oxic environments, whereas ratios 

above 5 suggest suboxic and anoxic environments. The Ni/Co ratios in this study vary between 0.11-1.04 (Table 

2) suggesting that these shale samples were deposited in a well oxygenated environment. The Cu/Zn ratio is also 

used as a redox parameter (Hallberg, 1976). According to Hallberg (1976) high Cu/Zn ratios indicate reducing 

depositional conditions, while low Cu/Zn ratios suggest oxidizing conditions. Therefore, the low Cu/Zn ratios in 

the studied shale samples (Table 3) indicate that they were deposited under oxidizing conditions.  

The enrichment factors (EF) were determined by normalizing each trace element to Al, which is understood to 

suggest the detrital influx, and comparing these ratios to those of normal shale. The enrichment factor (EF) is 

equal to (Element/Al) / (Element/Al) shale, where the ratio in the numerator is that for the shale in question, and 

the ratio in the denominator is that for a‘‘typical’’ shale (using data from Wedepohl, 1971). This approach has 

been used by several authors to evaluate trace-element enrichments in modern and ancient sediments (e.g., 

Calvert and Pedersen, 1993; Arnaboldi and Meyers, 2003; Rimmer, 2004). The trace elements data in the studied 

shale samples show different levels of enrichment (Table 4).  

Based on enrichment factor (EF) values, the magnitude of enrichment differs, with Co (~0.06-41.82) and Pb 

(~0.61-30.05) peaked at the bottom in the shale sequence. The enrichment factor levels of Ni (~0.07-5.49) and Zr 

(~0.33-3.59) peaked at the thickness of 0.8m and bottom respectively. The enrichment factor levels of Cu 

(~0.11-2.05) and (~0.21-1.60) show maxima at 0.4m and 0.2m thickness respectively in the shale sequence. 

Enrichment factor values of V (~0.43-1.55) and Cr (~0.71-1.52) has the highest magnitude levels at the bottom 

in the shale sequence. The enrichment factor levels of Ba (~0.28-1.31) and Zn (~0.18-1.30) peaked at 0.60m 

thickness in the shale sequence. The enrichment factor levels of Sr (~0.22-1.19) and U (~0.00-0.46) show 

maxima at 0.6m and 0.2m thickness respectively in the shale sequence. The estimated order of enrichment 

relative to typical shale is Co > Pb > Ni > Zr > Cu > Rb > V > Cr > Ba > V > Sr > U (Table 4). 

4.6. Factor analysis of the geochemical data 
The varimax rotated factor loadings matrix and communalities were obtained from principal component analysis 

(PCA). PCA is a statistical tool used to assess metal behaviour in earth materials (Liu et al., 2003b). The PCA is 

applied to detect the concealed structure and associations of elements in the data set, in an attempt to explain the 

influence of latent factors on the data distribution (Simeonov et al., 2000; Krishna et al., 2011). Factor analysis 

had been used to identify the parameters that control trace metal distributions in the Mejillones Bay surface 

sediments (Loring, 1991; Selvaraj et al., 2004).  

Table 5 shows Varimax rotated factor matrix results. Five components explained 95.85 % of the total variance in 

the 10 shale samples analysed. Component 1 accounts for 47.38 % of the total variance and group rare elements, 

MnO and all the trace elements except Co, P and U. This possibly indicates organic flux through the hydraulic 

transport is an efficient mechanism for non- detrital metal in the studied shale samples. The second component 

represents 22.37 % of the total variance and comprises of Co and all the major elements except SiO2, CaO and 

Fe2O3. The strong association of these major elements indicates some degree of continental influence, especially 

kaolinite and halloysite minerals which were present at the bottom of shale sequence (Figure 3). The third 

component accounts for 13.38 % of the total variance and show association of CaO, Fe2O3, Na2O, SiO2, P2O5, P 

and Pb. This suggests the calcification of the shale sequence within the column of the ocean leading to the 

formation of grossite. The fourth component represents 6.99 % of the total variance and consists of SiO2, Ni, Sr 

and P indicating the presence of detrital minerals such as quartz in the shale samples. 

The fifth component represents 1.89 % of the total variance and comprises of Fe2O3, Na2O, CaO and U. This 

indicates the presence of hematite minerals at the bottom of the shale sequence as revealed by XRD spectra 

results (Figure 4). This agrees with enrichment factor and paleo-redox indicators results that suggest oxidizing 
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environment of deposition. 

 

5. Summary and conclusions 

Based on the analysis of mineralogy and geochemical paleo-redox indicators for the Maastrichtian shales of 

Mamu Formation, southern Nigeria, the following conclusions may be drawn: 

1. The basal part of the shale outcrop is characterized by quartz and kaolinite as the major crystalline minerals 

with traces of hematite. Similarly, the upper part consists of quartz and kaolinite as major crystalline minerals 

but with minor quantity of halloysite and grossite. The presence of hematite in the basal part of the shale outcrop 

suggests oxidizing diagenetic environment of deposition. 

2. The ternary plot of the major elements shows that the shales are variably enriched with SiO2 relative to Al2O3 

and CaO. The positive correlations of K2O, TiO2, and Na2O, with Al2O3 suggest that these elements are 

associated entirely with detrital phases. 

3. The K2O/Al2O3 ratio is close to the lower limit of clay mineral range, which suggests that kaolinite is the 

dominant clay minerals. The geochemical parameters such as Al2O3/TiO2, low Cr/Ni, Th/Cr, Cr/Th, Th/Co and 

Th/Cr ratios suggest that felsic components dominated basement complex source rocks.   

4. The CIA values indicate that these shales have experienced strong chemical weathering at the source area. In 

addition, the depletion of Na and Ca also illustrates an intense chemical weathering of the source rocks. The 

MIA values of the studied shale samples indicate an intense to extreme weathering of the mineralogical 

components. 

5. The studied shales exhibit different degrees of trace-element enrichment, with the approximate order of 

enrichment relative to average shale being in the order: Co > Pb > Ni > Zr > Cu > Rb > V > Cr > Ba > V > Sr > 

U. The inverse correlation between changes in the oxidation state of the environment (Eh), pH, EC and TDS in 

studied shales may indicate oxygenated environment of deposition. Furthermore, the trace element redox indices 

ratios such as V/Cr, Ni/Co, Cu/Zn and U/Th infer that these shales were deposited under oxidizing diagenetic 

environment.  
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Figure 1. Geological sketch map of the Anambra Basin, Nigeria. 

 
Figure 2. Maastrichtian shale facies of Mamu Formation exposed at Auchi-Igarra Road. 
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Figure 3. Lithologic section of Maastrichtian shale outcrop at Auchi-Igarra Road, Nigeria. 
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Figure 4. Characteristic X-ray diffraction spectra of shale samples from (a) first geochemically specific interval 

(i.e. 0.0 -0.2 m) and (b) second geochemically specific interval (i.e. 0.6 
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ray diffraction spectra of shale samples from (a) first geochemically specific interval 

0.2 m) and (b) second geochemically specific interval (i.e. 0.6 – 2m). 

                                                    www.iiste.org 

 

ray diffraction spectra of shale samples from (a) first geochemically specific interval 
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Figure 5. Ternary diagram showing relative proportions of shale/mudrock major elements SiO2 (quartz), Al2O3 

(clays) and CaO (carbonates). Average shale also shown as checked box (after Wedepohl, 1971). 

Table 1. Correlation Chart for Early Cretaceous-Tertiary strata in southeastern Nigeria (modified from Nwajide, 

1990). 

 
Table 2. Pearson’s coefficient correlations for all geochemical parameters measured in extracted interstitial pore 

water of the Cretaceous shales 

 
Significant values (p < 0.05) are shown in bold. 

pH Ec  TDS Eh Ca Mg Na K F Cl

pH 1

Ec  0.85 1

TDS 0.85 0.99 1

Eh -0.83 -0.86 -0.861 1

Ca 0.93 0.96 0.96 -0.84 1

Mg 0.94 0.95 0.95 -0.81 0.99 1

Na 0.41 0.29 0.29 -0.21 0.37 0.45 1

K 0.75 0.77 0.77 -0.61 0.80 0.86 0.81 1

F 0.85 0.90 0.90 -0.84 0.93 0.93 0.57 0.88 1

Cl 0.07 0.04 0.04 0.00 0.08 0.15 0.92 0.60 0.34 1
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Table 3. Major elements (wt %), trace elements (mg/kg) and element ratios in the studied shales  

 
Average shale data from Wedepohl (1971, 1991); Brumsack, 2006. 

 
 

  

Sample name Average shale  C 0.0m    C 0.2m  C 0.4m C 0.6m C 0.8m  C 1.0m  C 1.4m    C 1.6m    C 1.8m   C 2.0m 

Al2O3 16.7 3.42 19.56 21.49 14.82 26.46 23.25 24.86 20.01 nd 24.22

CaO 2.20 0.08 0.02 0.02 0.04 0.06 0.02 0.04 0.04 nd 0.07

Cr2O3 nd 0.00 0.02 0.02 0.01 0.03 0.02 0.02 0.02 nd 0.02

Fe2O3 6.90 3.15 3.56 1.55 2.75 2.26 1.62 1.94 1.46 nd 1.67

K2O 3.60 0.15 1.00 1.07 0.74 1.41 1.00 1.20 0.97 nd 1.20

MgO 2.60 0.10 0.25 0.27 0.20 0.35 0.22 0.29 0.22 nd 0.30

MnO nd 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 nd 0.00

Na2O 1.60 0.08 0.10 0.06 0.08 0.07 0.06 0.06 0.05 nd 0.05

P2O5 nd 0.10 0.11 0.09 0.10 0.17 0.07 0.12 0.08 nd 0.07

SiO2 58.9 92.20 63.62 62.48 72.77 51.83 61.22 56.52 64.49 nd 58.27

TiO2 0.78 0.29 1.42 1.57 1.09 1.10 1.55 1.33 1.61 nd 1.41

LOI nd 1.81 10.79 11.15 7.92 16.16 11.52 13.84 10.45 nd 12.70

Sum Of Conc. nd 101.37 100.45 99.77 100.53 99.90 100.56 100.23 99.39 nd 99.97

Sample name Average shale  C 0.0m    C 0.2m  C 0.4m C 0.6m C 0.8m  C 1.0m  C 1.4m    C 1.6m    C 1.8m   C 2.0m 

Ni 68 0.00 8 6 5 49 9 28 nd 34 7

Cu 45 1 8 18 13 14 12 9 nd 12 12

Zn 95 19 35 29 26 35 29 23 nd 25 26

Ga nd 4 25 28 24 34 28 26 nd 24 32

Rb 140 6 55 59 46 79 54 53 nd 54 66

Sr 300 24 100 106 87 155 92 100 nd 101 96

Y nd 8 50 56 48 56 51 53 nd 55 53

Zr 160 117 355 424 401 234 350 397 nd 380 302

Nb nd 7 28 30 30 24 31 30 nd 32 28

Pb 22 136 151 154 149 163 152 152 nd 152 149

Th nd 1.00 16 20 16 13 17 20 nd 19 14

U 3.7 nd 2.00 nd nd nd nd nd nd 0.00 0.00

Ti nd 1991 10495 10970 10812 8089 10844 10787 nd 11278 10009

V 130 42 235 248 239 185 247 242 nd 253 223

Cr 90 28 144 162 135 184 168 127 nd 140 161

Co 19 159 51 36 47 47 25 45 nd 39 40

Ba 580 34 233 274 247 346 272 267 nd 271 268

La nd 13 63 71 71 89 78 93 nd 92 78

Ce nd 11 203 212 133 210 190 245 nd 215 228

Nd nd 15 73 84 60 97 75 100 nd 99 97

P nd 639 520 480 311 720 311 382 nd 403 288

Sample name  C 0.0m    C 0.2m  C 0.4m C 0.6m C 0.8m  C 1.0m  C 1.4m    C 1.6m    C 1.8m   C 2.0m 

CIA 91.75 94.60 94.95 94.54 94.53 95.57 95.01 95.01 nd 95.10

MIA 83.49 89.20 89.89 89.08 89.06 91.14 90.03 90.01 nd 90.21

SiO2/Al2O3 26.95 3.25 2.91 4.91 1.96 2.63 2.27 3.22 nd 2.41

Na2O/K2O 0.51 0.10 0.06 0.11 0.05 0.06 0.05 0.05 nd 0.04

K2O/Al2O3 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.05 nd 0.05

Al2O3/TiO2 11.96 13.74 13.71 13.57 24.06 14.96 18.73 12.46 nd 17.19

Ni/Co n.d 0.36 0.16 0.17 0.11 1.04 0.62 nd 0.87 0.18

V/Cr 1.50 1.47 1.63 1.53 1.77 1.01 1.91 nd 1.81 1.39

U/Th nd nd 0.13 nd nd nd nd nd nd nd

Cr/Ni nd 18 27 27 3.76 18.67 4.54 nd 4.12 23.00

Cr/Th 28 9 8.1 8.44 14.15 9.88 6.35 nd 7.37 11.50

Th/Co 0.006 0.31 0.56 0.34 0.28 0.68 0.44 nd 0.49 0.35

Th/Cr 0.036 0.11 0.12 0.12 0.07 0.10 0.16 nd 0.14 0.09

Cu/Zn 0.053 0.23 0.62 0.50 0.4 0.41 0.39 nd 0.48 0.46

Trace elements (mg/kg)

Major elements (wt %)

Major and trace elements ratios
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Table 4. Enrichment factors for some selected trace elements in the studied shale samples 

 
a 
Calculated average shale data (Wedepohl , 1971, 1991; Rimmer, 2004; Brumsack, 2006. Nagarajan et al., 2007). 

b
Mean Al content for average shale: 8.84% (Wedepohl, 1971). 

 

 

 

 

 

 

 

 

 

 

 

  

Element Average shale  C 0.0 m    C 0.2 m  C 0.4 m C 0.6 m C 0.8 m  C 1.0 m  C 1.4 m    C 1.6 m    C 1.8 m   C 2 m 

Ni (ppm) 68 0.00 8 6 5 49 9 28 0.00 34 7

(Ni/Al)*10
4

7.7 0.00 0.77 0.53 0.64 3.50 0.73 2.13 0.00 0.00 0.55

EF 0.00 0.10 0.68 1.21 5.49 0.21 2.91 0.00 0.00 0.07

Co (ppm) 19 159 51 36 47 47 25 45 0.00 39 40

(Co/Al)*10
4

2.1 87.82 4.93 3.16 5.99 3.36 2.03 3.42 0.00 0.00 3.12

EF 41.82 0.06 0.64 1.89 0.56 0.61 1.68 0.00 0.00 1.49

Cu (ppm) 45 1 8 18 13 14 12 9 0.00 12 12

(Cu/Al)*10
4

5.1 0.55 0.77 1.58 1.66 1.00 0.98 0.68 0.00 0.00 0.94

EF 0.11 1.40 2.05 1.05 0.60 0.98 0.70 0.00 0.00 0.18

Zn (ppm) 95 19 35 29 26 35 29 23 0.00 25 26

(Zn/Al)*10
4

11 10.49 3.38 2.55 3.31 2.50 2.36 1.75 0.00 0.00 2.03

EF 0.95 0.32 0.75 1.30 0.75 0.94 0.74 0.00 0.00 0.18

V (ppm) 130 42 235 248 239 185 247 242 0.00 253 223

(V/Al)*10
4

15 23.20 22.70 21.80 30.46 13.21 20.07 18.39 0.00 0.00 17.39

EF 1.55 0.98 0.96 1.40 0.43 1.52 0.92 0.00 0.00 1.16

Cr (ppm) 90 28 144 162 135 184 168 127 0.00 140 161

(Cr/Al)*10
4

10.2 15.47 13.91 14.24 17.20 13.14 13.65 9.65 0.00 0.00 12.56

EF 1.52 0.90 1.02 1.21 0.76 1.04 0.71 0.00 0.00 1.23

Ba (ppm) 580 34 233 274 247 346 272 267 0.00 271 268

(Ba/Al)*10
4

66 18.78 22.50 24.08 31.48 24.70 22.10 20.29 0.00 0.00 20.90

EF 0.28 1.20 1.07 1.31 0.78 0.89 0.92 0.00 0.00 0.32

Rb (ppm) 140 6 55 59 46 79 54 53 0.00 54 66

(Rb/Al)*10
4

16 3.31 5.31 5.19 5.86 5.64 4.39 4.03 0.00 0.00 5.15

EF 0.21 1.60 0.98 1.13 0.96 0.78 0.92 0.00 0.00 0.32

Sr (ppm) 300 24 100 106 87 155 92 100 0.00 101 96

(Sr/Al)*10
4

34 13.26 9.66 9.32 11.09 11.07 7.48 7.60 0.00 0.00 7.49

EF 0.39 0.73 0.96 1.19 1.00 0.68 1.02 0.00 0.00 0.22

Zr (ppm) 160 117 355 424 401 234 350 397 0.00 380 302

(Zr/Al)*10
4

18 64.62 34.29 37.27 51.10 16.71 28.44 30.18 0.00 0.00 23.55

EF 3.59 0.53 1.09 1.37 0.33 1.70 1.06 0.00 0.00 1.31

Pb (ppm) 22 136 151 154 149 163 152 152 0.00 152 149

(Pb/Al)*10
4

2.5 75.12 14.58 13.54 18.99 11.64 12.35 11.55 0.00 0.00 11.62

EF 30.05 0.19 0.93 1.40 0.61 1.06 0.94 0.00 0.00 4.65

U (ppm) 3.7 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(U/Al)*10
4

0.42 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EF 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 5. Varimax Rotated Factor Loadings Matrix and Communalities Obtained from Principal Component 

Analysis for the Studied Major, Trace and Rare earth Elements in the shale samples 

 
  

Variables Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp.5 Communalities

MnO 0.54 0.52 0.43 0.79

K2O 0.98 0.99

Cr2O3 0.98 0.99

Al2O3 0.98 0.99

LOI 0.97 0.99

MgO 0.95 0.99

TiO2 0.89 0.98

P2O5 0.66 0.65 0.93

Fe2O3 0.83 0.40 0.96

Na2O 0.41 0.73 0.44 0.99

SiO2 0.70 -0.50 0.99

CaO 0.67 -0.55 0.90

Ni 0.41 0.88 0.95

Co -0.53 0.80 0.96

V 0.98 0.99

Cr 0.94 0.96

Cu 0.90 0.86

Zn 0.85 0.95

Pb 0.88 0.42 0.99

Rb 0.89 0.97

Sr 0.86 0.42 0.99

Ba 0.93 0.99

Nb 0.98 0.99

P 0.72 0.49 0.93

Ti 0.97 0.99

Y 0.97 0.99

Th 0.94 0.96

Zr 0.94 0.96

U 0.89 0.84

La 0.93 0.97

Ga 0.92 0.98

Nd 0.91 0.96

Ce 0.91 0.94

EV 15.64 7.38 4.42 2.31 1.89

VAR (%) 47.38 22.37 13.38 6.99 5.72

CVAR (%) 47.38 69.75 83.13 90.13 95.85
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