The Modified Hadamard Products of Functions Belonging to the Class $\mathbf{P}\left(\mathbf{j}, \lambda, \alpha, n, z_{-} 0\right)$

Huseyin Baba
Department of Mathematics, Hakkari Vocational School, Hakkari University
PO box 30000, Hakkari, Turkey
E-mail: huseyininmail@gmail.com

Abstract

The subclass $P(j, \lambda, \alpha, n)$ of starlike functions with negative coefficients by using the differential D^{n} operator and functions of the form $f(z)=z-\sum_{k=j+1}^{\infty} a_{k} z^{k}$ which are analytic in the open unit disk is considered. The subclass $P\left(j, \lambda, \alpha, n, z_{0}\right)$ for which $f\left(z_{0}\right)=z_{0}$ or $f^{\prime}\left(z_{0}\right)=1, z_{0}$ real is examined by Kiziltunc and Baba (Kiziltunc and Baba, 2012). The modified Hadamard products of functions belonging to the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$ has been obtained.

Keywords: Fixed point, Starlike, Salagean operatör, Hadamard product.

1. Introduction

Let \mathcal{A} denote the family of functions f of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=j+1}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

that are analytic in the open unit disk $\mathbb{U}=\{\mathrm{z} \in \mathbb{C}:|\mathrm{z}|<1\}\}$. A function $f \in \mathcal{A}$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq \alpha, \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

Let $S^{*}(\alpha)$ define the class of all such functions. Adititionally, a function $f \in \mathcal{A}$ is said to be convex of order $\alpha(0 \leq \alpha<1)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

Let $K(\alpha)$ define the class of all those functions which are convex of order α in \mathbb{U}.
Note that $S^{*}(0)=S^{*}$ and $K(0)=K$ are the classes of starlike and convex functions in \mathbb{U}, respectively.
Let $\mathcal{A}(j)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=j+1}^{\infty} a_{k} z^{k} \quad(j \in \mathbb{N}=\{1,2,3, \ldots\}) \tag{1.4}
\end{equation*}
$$

which are analytic in the open unit disk \mathbb{U}.
For a function $f(z)$ in $\mathcal{A}(j)$, the Sălāgean operator introduced by Sălāgean (Sălăgean, 1983) is as follows

$$
D^{0} f(z)=f(z)
$$

$D^{1} f(z)=D f(z)=z f^{\prime}(z)=z+\sum_{k=j+1}^{\infty} k a_{k} z^{k}$
$D^{2} f(z)=D(f(z))=z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)=z+\sum_{k=j+1}^{\infty} k^{2} a_{k} z^{k}$
and for $n=1,2,3 \ldots$ we can write

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right)=z+\sum_{k=j+1}^{\infty} k^{2} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{1.5}
\end{equation*}
$$

With the help of the differential operatör D^{n}, M.K.Aouf and H.M.Srivastava (Aouf and Srivastava, 1996) said that a function $f(z)$ belonging to $\mathcal{A}(j)$ is in the class $Q(j, \lambda, \alpha, n)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+1} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+1} f(z)}\right\}>\alpha \tag{1.6}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and $\lambda(0 \leq \lambda<1)$, and for all $z \in \mathbb{U}$. Additionally, $T(j)$ denoted the subclass of $\mathcal{A}(j)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=z-\sum_{k=j+1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0 ; j \in \mathbb{N}\right) \tag{1.7}
\end{equation*}
$$

Further, M.K.Aouf and H.M.Srivastava defined the class $P(j, \lambda, \alpha, n)$ by

$$
\begin{equation*}
P(j, \lambda, \alpha, n)=Q(j, \lambda, \alpha, n) \cap T(j) . \tag{1.8}
\end{equation*}
$$

For a function $f(z)$ in $P(j, \lambda, \alpha, n)$, M.K.A ouf and H.M.Srivastava define with

$$
D^{0} f(z)=f(z)
$$

$D^{1} f(z)=D f(z)=z f^{\prime}(z)=z-\sum_{k=j+1}^{\infty} k a_{k} z^{k}$
$D^{2} f(z)=D(f(z))=z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)=z-\sum_{k=j+1}^{\infty} k^{2} a_{k} z^{k}$
and for $n=1,2,3 \ldots$ we can write

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right)=z-\sum_{k=j+1}^{\infty} k^{2} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{1.9}
\end{equation*}
$$

In (Aouf and Srivastava, 1996), M.K.A ouf and H.M.Srivastava obtained coefficients inequalities, distortion theorems, closure thorems, and some properties involving the modified Hadamard products for functions belonging to the class $P(j, \lambda, \alpha, n)$. They also determined the radii of close-to-convexity, starlikeness, convexity for the class $P(j, \lambda, \alpha, n)$.

In order that prove our theorem, the following lemma is needed.

Lemma 1.1. (Aouf and Srivastava, 1996) Let the function $f(z)$ be defined by (1.7). Then $f(z) \in$ $P(j, \lambda, \alpha, n)$ if and only if

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} k^{n}(k-\alpha)\{1+(k-1) \lambda\} a_{k} \leq 1-\alpha \tag{1.10}
\end{equation*}
$$

$\left(a_{k} \geq 0 ; n \in \mathbb{N}_{0} ; 0 \leq \alpha<1 ; z \in \mathcal{U} ; 0 \leq \lambda<1\right)$.
In (Schild, 1974), Schild investigated the class of univalent polynomials of the form $f(z)=z-$ 20 | P a g e
www.iiste.org
$\sum_{n=2}^{\mathbb{N}} a_{n} z^{n}$, where $a_{n} \geq 0$ and in the disk $|\mathrm{z}|<1$. In (Silverman, 1975), Silverman dealt with functions of the form

$$
\begin{equation*}
f(z)=a_{1} z-\sum_{n=2}^{\mathbb{N}} a_{n} z^{n} \tag{1.11}
\end{equation*}
$$

where either

$$
\begin{equation*}
a_{n} \geq 0, f\left(z_{0}\right), \quad\left(-1<z_{0}<1 ; z_{0} \neq 0\right) \tag{1.12}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{n} \geq 0, f^{\prime}\left(z_{0}\right)=1, \quad\left(-1<z_{0}<1\right) . \tag{1.13}
\end{equation*}
$$

$S_{0}^{*}\left(\alpha, z_{0}\right)$ studied the subclass of functions starlike of order α that satisfy (1.12), and $S_{1}^{*}\left(\alpha, z_{0}\right)$ examined the subclass of functions starlike of order α that satisfy (1.13). Also defined by $K_{0}\left(\alpha, z_{0}\right)$ and $K_{1}\left(\alpha, z_{0}\right)$ the subclasses of functions convex of order α that satisfy, respectively, (1.12) and (1.13).

We denote by $P\left(j, \lambda, \alpha, n, z_{0}\right)$ the subclass of $P(j, \lambda, \alpha, n)$ involving any fixed point.
In order that prove our theorem, the following lemma is needed.
Lemma 1.2. (Kiziltunc and Baba, 2012) Let the function $f(z)$ be defined by (1.7). Then $f(z)$ is $P\left(j, \lambda, \alpha, n, z_{0}\right)$ if and only if

$$
\begin{equation*}
\sum_{k=j+1}^{\infty}\left[k^{n}\left(\frac{k-\alpha}{1-\alpha}\right)\{1+(k-1) \lambda\}-z_{0}^{k-1}\right] a_{k} \leq 1 \tag{1.14}
\end{equation*}
$$

$\left(a_{k} \geq 0 ; j \in \mathbb{N} ; n \in \mathbb{N}_{0} ; 0 \leq \alpha<1 ; z \in \mathcal{U} ; 0 \leq \lambda<1 ; z_{0} \in \mathbb{R}\right.$ fixed point $)$.
In (Kiziltunc and Baba, 2012), H.Kızıltunc and H.Baba, studied the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$ involving any fixed point and we determined coefficient inequalities for functions belonging to the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$. As special cases, the results of this paper reduced to Silverman (Silverman, 1975).

In the present paper, I shall prove that the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$ is closed under convex linear combinations. Then the modified Hadamard products of functions belonging to the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$ has been obtained.

2. Convex Linear Combinations

In this section, I shall prove that the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$ is closed under convex linear combinations.
Theorem 2.1. $P\left(j, \lambda, \alpha, n, z_{0}\right)$ is a convex set.
Proof. Let functions

$$
\begin{equation*}
f_{v}(z)=z-\sum_{k=j+1}^{\infty} a_{v, k} z^{k} \quad\left(a_{v, k} \geq 0 ; v=1,2\right) \tag{2.1}
\end{equation*}
$$

be in the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$. It is sufficient to show that the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z) \quad(0 \leq \mu \leq 1) \tag{2.2}
\end{equation*}
$$

is also in the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$. Since, for $0 \leq \mu \leq 1$,

$$
\begin{equation*}
h(z)=z-\sum_{k=j+1}^{\infty}\left\{\mu a_{1, k}+(1-\mu) a_{2, k}\right\} z^{k}, \tag{2.3}
\end{equation*}
$$

21 | Page
www.iiste.org
with the aid of Lemma 1.1, I have

$$
\begin{equation*}
\sum_{k=j+1}^{\infty}\left[k^{n}(k-\alpha)\{1+(k-1) \lambda\}\right]\left\{\mu a_{1, k}+(1-\mu) a_{2, k}\right\} \leq 1-\alpha \tag{2.4}
\end{equation*}
$$

which implies that $h(z) \in P(j, \lambda, \alpha, n)$. Further, the function $h(z) \in P(j, \lambda, \alpha, n)$ given by $h\left(z_{0}\right)=z_{0}$ is class of $P\left(j, \lambda, \alpha, n, z_{0}\right)$. Hence $P\left(j, \lambda, \alpha, n, z_{0}\right)$ is a convex set.

Teorem 2.2. Let functions $f_{j}(z)=z$ and

$$
\begin{equation*}
f_{k}(z)=z-\frac{1-\alpha}{k^{n}(k-\alpha)\{1+(k-1) \lambda\}} z^{k} \quad\left(k \geq j+1 ; n \in \mathbb{N}_{0}\right) \tag{2.5}
\end{equation*}
$$

for $0 \leq \alpha<1$ and $0 \leq \lambda<1$. Then $f(z)$ in the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$ if and only if it can be expressed in the form:

$$
\begin{equation*}
f(z)=\sum_{k=j}^{\infty} \mu_{k} f_{k}(z) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{k} \geq 0 \quad(k \geq j) \quad \text { ve } \quad \sum_{k=j}^{\infty} \mu_{k}=1 \tag{2.7}
\end{equation*}
$$

Proof. Assume that

$$
\begin{align*}
f(z) & =\sum_{k=j}^{\infty} \mu_{k} f_{k}(z) \\
& =\sum_{k=j}^{\infty} \mu_{k} z-\sum_{k=j+1}^{\infty} \frac{1-\alpha}{k^{n}(k-\alpha)\{1+(k-1) \lambda\}} \mu_{k} z^{k} \\
& =z-\sum_{k=j+1}^{\infty} \frac{1-\alpha}{k^{n}(k-\alpha)\{1+(k-1) \lambda\}} \mu_{k} z^{k} \tag{2.8}
\end{align*}
$$

and by Lemma 1.2

$$
\sum_{k=j+1}^{\infty} a_{k} z_{0}^{k-1}=0
$$

Then it follows that

$$
\sum_{k=j+1}^{\infty}\left[\frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha}-z_{0}^{k-1}\right] \cdot \frac{1-\alpha}{k^{n}(k-\alpha)\{1+(k-1) \lambda\}} \mu_{k}=\sum_{k=j}^{\infty} \mu_{k}=1-\mu_{j} \leq 1
$$

So, by Lemma 1.2, $f(z) \in P\left(j, \lambda, \alpha, n, z_{0}\right)$.
Conversely, assume that the function $f(z)$ defined by (1.7) belongs to the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{k^{n}(k-\alpha)(1+(k-1) \lambda)-(1-\alpha) z_{0}^{k-1}} \quad\left(k \geq j+1 ; n \in \mathbb{N}_{0}\right) \tag{2.9}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\mu_{k}=\left[\frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha}-z_{0}^{k-1}\right] a_{k} \quad\left(k \geq j+1 ; n \in \mathbb{N}_{0}\right) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{j}=1-\sum_{k=j}^{\infty} \mu_{k} \tag{2.11}
\end{equation*}
$$

I can see that $f(z)$ can be expressed in the form (2.6). This completes the proof of Theorem 2.2.

3. Modified Hadamard Products

Let functions $f_{v}(z)(v=1,2)$ be defined by (2.1). The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is
defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z-\sum_{k=j+1}^{\infty} a_{1, k} a_{2, k} z^{k} . \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let each of the functions $f_{v}(z)(v=1,2)$ defined by (2.1) be in the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$. Then $\left(f_{1} * f_{2}\right)(z)$ is in the class $P\left(j, \lambda, \varphi(j, \lambda, \alpha, n), n, z_{-} 0\right)$ where

$$
\begin{equation*}
\varphi(j, \lambda, \alpha, n)=\frac{(j+1)^{n}(1+j \lambda)-(j+1)\{(1-\alpha) /(j+1-\alpha)\}^{2}}{(j+1)^{n}(1+j \lambda)-\{(1-\alpha) /(j+1-\alpha)\}^{2}} . \tag{3.2}
\end{equation*}
$$

Proof. Employing the technique used earlier by Schild and Silverman (Shild and Silverman, 1975), I need to find the largest $\varphi=\varphi(j, \lambda, \alpha, n)$ such that

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\varphi)\{1+(k-1) \lambda\}}{1-\varphi} a_{1, k} a_{2, k} \leq 1 \tag{3.3}
\end{equation*}
$$

From

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha} a_{1, k} \leq 1 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha} a_{2, k} \leq 1 \tag{3.5}
\end{equation*}
$$

using the Cauchy-Schwarz inequality, I leads to

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha} \sqrt{a_{1, k} a_{2, k}} \leq 1 \tag{3.6}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{equation*}
\frac{k^{n}(k-\varphi)}{1-\varphi} a_{1, k} a_{2, k} \leq \frac{k^{n}(k-\alpha)}{1-\alpha} \sqrt{a_{1, k} a_{2, k}} \quad(k \geq j+1) \tag{3.7}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sqrt{a_{1, k} a_{2, k}} \leq \frac{(k-\alpha)(1-\varphi)}{(1-\alpha)(k-\varphi)} \quad(k \geq j+1) \tag{3.8}
\end{equation*}
$$

Note that I have from (3.6)

$$
\begin{equation*}
\sqrt{a_{1, k} a_{2, k}} \leq \frac{1-\alpha}{k^{n}(k-\alpha)\{1+(k-1) \lambda\}} \quad(k \geq j+1) . \tag{3.9}
\end{equation*}
$$

Consequently, if

$$
\begin{equation*}
\frac{1-\alpha}{k^{n}(k-\alpha)\{1+(k-1) \lambda\}} \leq \frac{(k-\alpha)(1-\varphi)}{(1-\alpha)(k-\varphi)} \quad(k \geq j+1) \tag{3.10}
\end{equation*}
$$

or, if

$$
\begin{equation*}
\varphi \leq \frac{k^{n}\{1+(k-1) \lambda\}-k\{(1-\alpha) /(k-\alpha)\}^{2}}{k^{n}\{1+(k-1) \lambda\}-\{(1-\alpha) /(k-\alpha)\}^{2}} \quad(k \geq j+1) . \tag{3.11}
\end{equation*}
$$

then (3.6) is satisfied. Since

$$
\begin{equation*}
\Gamma(k)=\frac{k^{n}\{1+(k-1) \lambda\}-k\{(1-\alpha) /(k-\alpha)\}^{2}}{k^{n}\{1+(k-1) \lambda\}-\{(1-\alpha) /(k-\alpha)\}^{2}} \tag{3.12}
\end{equation*}
$$

is non-decreasing for $k \geq j+1$, letting $k=j+1$ in (3.12). I obtain
$\varphi \leq \Gamma(j+1)=\frac{(j+1)^{n}(1+j \lambda)-(j+1)\{(1-\alpha) /(j+1-\alpha)\}^{2}}{(j+1)^{n}(1+j \lambda)-\{(1-\alpha) /(j+1-\alpha)\}^{2}}$

23 | P a g e
www.iiste.org
which proves assertion of Theorem 3.1.
Finally, by taking the functions

$$
\begin{equation*}
f_{v}(z)=z-\frac{1-\alpha}{(j+1)^{n}(j+1-\alpha)(1+j \lambda)} z^{j+1} \quad(v=1,2) \tag{3.14}
\end{equation*}
$$

we can see that the result is sharp.
Theorem 3.2. Let
$f_{1}(z) \in P\left(j, \lambda, \alpha, n, z_{0}\right)$ and $f_{2}(z) \in P\left(j, \lambda, \gamma, n, z_{0}\right)$.
Then $\left(f_{1} * f_{2}\right)(z)$ is in the class $P\left(j, \lambda, \tau(j, \lambda, \alpha, \gamma, n), n, z_{0}\right)$ where

$$
\begin{equation*}
\tau(j, \lambda, \alpha, \gamma, n)=\frac{(j+1)^{n}(1+j \lambda)-(j+1)\left\{\frac{(1-\alpha)}{(j+1-\alpha)}\right\} \cdot\{(1-\gamma) /(j+1-\gamma)\}}{(j+1)^{n}(1+j \lambda)-\left\{\frac{(1-\alpha)}{(j+1-\alpha)}\right\} \cdot\{(1-\gamma) /(j+1-\gamma)\}} \tag{3.15}
\end{equation*}
$$

The result is the best possible for the functions

$$
\begin{equation*}
f_{1}(z)=z-\frac{1-\alpha}{(j+1)^{n}(j+1-\alpha)(1+j \lambda)} z^{j+1}, \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z-\frac{1-\gamma}{(j+1)^{n}(j+1-\gamma)(1+j \lambda)} z^{j+1} . \tag{3.17}
\end{equation*}
$$

Proof. Proceeding as in the proof of Theorem 3.1, I get

$$
\begin{equation*}
\tau \leq \frac{k^{n}\{1+(k-1) \lambda\}-k\{(1-\alpha) /(k-\alpha)\} \cdot\left\{\frac{(1-\gamma)}{(k-\gamma)}\right\}}{k^{n}\{1+(k-1) \lambda\}-\{(1-\alpha) /(k-\alpha)\}\left\{\frac{(1-\gamma}{(k-\gamma)}\right\}} \quad(k \geq j+1) . \tag{3.18}
\end{equation*}
$$

Since the right-hand side of (3.18) is non-decreasing for $k \geq j+1$, letting $k=j+1$ in (3.18), I obtain (6.15).

This completes the proof of Theorem 3.2.
Corollary 3.1. Let the functions $f_{v}(z)$ defined by

$$
\begin{equation*}
f_{v}(z)=z-\sum_{k=j+1}^{\infty} a_{v, k} z^{k} \quad\left(a_{v, k} \geq 0 ; v=1,2,3\right) \tag{3.19}
\end{equation*}
$$

be in the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$. Then
$\left(f_{1} * f_{2} * f_{3}\right)(z) \in P\left(j, \lambda, \mu(j, \lambda, \alpha, n), n, z_{0}\right)$,
where

$$
\begin{equation*}
\mu(j, \lambda, \alpha, n)=\frac{(j+1)^{2 n}(1+j \lambda)^{2}-(j+1)\{(1-\alpha) /(j+1-\alpha)\}^{3}}{(j+1)^{2 n}(1+j \lambda)^{2}-\{(1-\alpha) /(j+1-\alpha)\}^{3}} \tag{3.20}
\end{equation*}
$$

For the functions

$$
\begin{equation*}
f_{v}(z)=z-\frac{1-\alpha}{(j+1)^{n}(j+1-\alpha)(1+j \lambda)} z^{j+1},(v=1,2,3) \tag{3.21}
\end{equation*}
$$

the result is the best possible.
Proof. From Theorem 3.1, I have
24 | P a g e
www.iiste.org
$\left(f_{1} * f_{2}\right)(z) \in P\left(j, \lambda, \varphi(j, \lambda, \alpha, n), n, z_{0}\right)$,
where φ is given by (3.2). Now, using Teorem 3.2, I get
$\left(f_{1} * f_{2} * f_{3}\right)(z) \in P\left(j, \lambda, \mu(j, \lambda, \alpha, n), n, z_{0}\right)$,
where
$\mu(j, \lambda, \alpha, n)=\frac{(j+1)^{n}(1+j \lambda)-(j+1)\left\{\frac{(1-\alpha)}{(j+1-\alpha)}\right\} \cdot\{(1-\varphi) /(j+1-\varphi)\}}{(j+1)^{n}(1+j \lambda)-\left\{\frac{(1-\alpha)}{(j+1-\alpha)}\right\} \cdot\{(1-\varphi) /(j+1-\varphi)\}}=\frac{(j+1)^{2 n}(1+j \lambda)^{2}-(j+1)\{(1-\alpha) /(j+1-\alpha)\}^{3}}{(j+1)^{2 n}(1+j \lambda)^{2}-\{(1-\alpha) /(j+1-\alpha)\}^{3}}$.
This completes the proof of corollary 3.1.
Theorem 3.3. Let the functions $f_{v}(z)(v=1,2)$ defined by (2.1) be in the class $P\left(j, \lambda, \alpha, n, z_{0}\right)$. Then the function

$$
\begin{equation*}
h(z)=z-\sum_{k=j+1}^{\infty}\left(a_{1, k}^{2}+a_{2, k}^{2}\right) z^{k} \tag{3.22}
\end{equation*}
$$

belongs to the class $P\left(j, \lambda, \sigma(j, \lambda, \alpha, n), n, z_{0}\right)$, where

$$
\begin{equation*}
\sigma(j, \lambda, \alpha, n)=\frac{(j+1)^{n}(1+j \lambda)-2(j+1)\{((1-\alpha)) /((j+1-\alpha))\}^{2}}{(j+1)^{n}(1+j \lambda)-2\{((1-\alpha)) /((j+1-\alpha))\}^{2}} . \tag{3.23}
\end{equation*}
$$

For the functions $f_{v}(z)(v=1,2)$ defined by (3.14), the result is sharp.
Proof. By virtue of Lemma 1.1, I obtain

$$
\begin{equation*}
\sum_{k=j+1}^{\infty}\left[\frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha}\right]^{2} a_{1, k}^{2} \leq\left[\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha} a_{1, k}\right]^{2} \leq 1 \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=j+1}^{\infty}\left[\frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha}\right]^{2} a_{2, k}^{2} \leq\left[\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha} a_{2, k}\right]^{2} \leq 1 \tag{3.25}
\end{equation*}
$$

From (3.24) and (3.25), I have

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{1}{2}\left[\frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha}\right]^{2}\left(a_{1, k}^{2}+a_{2, k}^{2}\right) \leq 1 \tag{3.26}
\end{equation*}
$$

Thus, I need to find the largest $\sigma=\sigma(j, \lambda, \alpha, n)$ such that

$$
\begin{equation*}
\frac{k^{n}(k-\sigma)\{1+(k-1) \lambda\}}{1-\sigma} \leq \frac{1}{2}\left[\frac{k^{n}(k-\alpha)\{1+(k-1) \lambda\}}{1-\alpha}\right]^{2} \quad(k \geq j+1), \tag{3.27}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sigma \leq \frac{k^{n}(1+(k-1) \lambda)-2 k\{(1-\alpha)) /((k-\alpha)\}^{2}}{k^{n}(1+(k-1) \lambda)-2\{(1-\alpha)) /((k-\alpha)\}^{2}} \quad(k \geq j+1) . \tag{3.28}
\end{equation*}
$$

Since

$$
\begin{equation*}
\nabla(k)=\frac{k^{n}(1+(k-1) \lambda)-2 k\{(1-\alpha)) /((k-\alpha)\}^{2}}{k^{n}(1+(k-1) \lambda)-2\{(1-\alpha)) /((k-\alpha)\}^{2}} \tag{3.29}
\end{equation*}
$$

is non-decreasing for $k \geq j+1$, I have
25 | Page
www.iiste.org

$$
\begin{equation*}
\sigma=\nabla(j+1)=\frac{(j+1)^{n}(1+j \lambda)-2(j+1)\{((1-\alpha)) /((j+1-\alpha))\}^{2}}{(j+1)^{n}(1+j \lambda)-2\{((1-\alpha)) /((j+1-\alpha))\}^{2}} \tag{3.30}
\end{equation*}
$$

which proves the assertion of Theorem 3.3.

References

Kiziltunc H. and Baba H., 2012. Inequalities for Fixed Points of the Subclass $P\left(j, \lambda, \alpha, n, z_{0}\right)$ of Starlike Functions with Negative Coefficients, Advances in Fixed Point Theory, Vol.2, 197-202.

Aouf, M.K. and Srivastava, H.M., 1996. Some families of starlike functions with negative coefficients, J. Math. Anal. Appl. 203, 762-790, Article No:0411.

Silverman, H., 1976. Extreme points of univalent functions with two fixed points, Trans. Amer. Math. Soc. Vol. 219 pp. 387-395.
A. Shild and H. Silverman, Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A 29 (1975), 99-106.
G.Şt., Sălăgean, Subclasses of univalent functions, in "Complex Analysis: Fifth Romanian-Finnish Seminar." Part I (Bucharest, 1981), pp. 362-372. Lecture Notes in Mathematics, Vol. 1013, Springer-Verlag, Berlin/Newyork, 1983.

Schild, A., 1974. On a class of functions schlicht in the unit circle, Proc. Amer. Math. Soc. 5115-120. MR 15, 694.

