The Modified Hadamard Products of Functions Belonging to the Class P $(j, \lambda, \alpha, n, z_0)$

Huseyin Baba Department of Mathematics, Hakkari Vocational School, Hakkari University PO box 30000, Hakkari, Turkey E-mail: huseyininmail@gmail.com

Abstract

The subclass $P(j, \lambda, \alpha, n)$ of starlike functions with negative coefficients by using the differential D^n operator and functions of the form $f(z) = z - \sum_{k=j+1}^{\infty} a_k z^k$ which are analytic in the open unit disk is considered. The subclass $P(j, \lambda, \alpha, n, z_0)$ for which $f(z_0) = z_0$ or $f'(z_0) = 1$, z_0 real is examined by Kiziltunc and Baba (Kiziltunc and Baba, 2012). The modified Hadamard products of functions belonging to the class $P(j, \lambda, \alpha, n, z_0)$ has been obtained.

Keywords: Fixed point, Starlike, Salagean operatör, Hadamard product.

1. Introduction

Let \mathcal{A} denote the family of functions f of the form

$$f(z) = z - \sum_{k=i+1}^{\infty} a_k z^k \tag{1.1}$$

that are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}\}$. A function $f \in \mathcal{A}$ is said to be starlike of order α ($0 \le \alpha < 1$) if and only if

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} \ge \alpha, \quad (z \in \mathbb{U}).$$
(1.2)

Let $S^*(\alpha)$ define the class of all such functions. Additionally, a function $f \in \mathcal{A}$ is said to be convex of order α ($0 \le \alpha < 1$) if and only if

$$Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \alpha, \quad (z \in \mathbb{U}).$$

$$(1.3)$$

Let $K(\alpha)$ define the class of all those functions which are convex of order α in \mathbb{U} .

Note that $S^*(0) = S^*$ and K(0) = K are the classes of starlike and convex functions in \mathbb{U} , respectively.

Let $\mathcal{A}(j)$ denote the class of functions of the form:

$$f(z) = z + \sum_{k=j+1}^{\infty} a_k z^k \qquad (j \in \mathbb{N} = \{1, 2, 3, \dots\})$$
(1.4)

which are analytic in the open unit disk \mathbb{U} .

For a function f(z) in $\mathcal{A}(j)$, the Sălāgean operator introduced by Sălāgean (Sălăgean, 1983) is as follows

$$D^0f(z) = f(z)$$

$$D^{1}f(z) = Df(z) = zf'(z) = z + \sum_{k=j+1}^{\infty} ka_{k}z^{k}$$
$$D^{2}f(z) = D(f(z)) = zf'(z) + z^{2}f''(z) = z + \sum_{k=j+1}^{\infty} k^{2}a_{k}z^{k}$$

and for $n = 1,2,3 \dots$ we can write

$$D^{n}f(z) = D(D^{n-1}f(z)) = z + \sum_{k=j+1}^{\infty} k^{2}a_{k}z^{k} \qquad (n \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\}).$$
(1.5)

With the help of the differential operator D^n , M.K.Aouf and H.M.Srivastava (Aouf and Srivastava, 1996) said that a function f(z) belonging to $\mathcal{A}(j)$ is in the class $Q(j, \lambda, \alpha, n)$ if and only if

$$Re\left\{\frac{(1-\lambda)z(D^{n}f(z))'+\lambda z(D^{n+1}f(z))'}{(1-\lambda)D^{n}f(z)+\lambda D^{n+1}f(z)}\right\} > \alpha$$
(1.6)

for some α ($0 \le \alpha < 1$) and λ ($0 \le \lambda < 1$), and for all $z \in U$. Additionally, T(j) denoted the subclass of $\mathcal{A}(j)$ consisting of functions of the form:

$$f(z) = z - \sum_{k=j+1}^{\infty} a_k z^k \qquad (a_k \ge 0; j \in \mathbb{N})$$

$$(1.7)$$

Further, M.K.Aouf and H.M.Srivastava defined the class $P(j, \lambda, \alpha, n)$ by

$$P(j,\lambda,\alpha,n) = Q(j,\lambda,\alpha,n) \cap T(j).$$
(1.8)

For a function f(z) in $P(j, \lambda, \alpha, n)$, M.K.A out and H.M.Srivastava define with

$$D^0f(z) = f(z)$$

$$D^{1}f(z) = Df(z) = zf'(z) = z - \sum_{k=j+1}^{\infty} ka_{k}z^{k}$$
$$D^{2}f(z) = D(f(z)) = zf'(z) + z^{2}f''(z) = z - \sum_{k=j+1}^{\infty} k^{2}a_{k}z^{k}$$

and for $n = 1,2,3 \dots$ we can write

$$D^{n}f(z) = D(D^{n-1}f(z)) = z - \sum_{k=j+1}^{\infty} k^{2}a_{k}z^{k} \qquad (n \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\}).$$
(1.9)

In (Aouf and Srivastava, 1996), M.K.A ouf and H.M.Srivastava obtained coefficients inequalities, distortion theorems, closure thorems, and some properties involving the modified Hadamard products for functions belonging to the class $P(j, \lambda, \alpha, n)$. They also determined the radii of close-to-convexity, starlikeness, convexity for the class $P(j, \lambda, \alpha, n)$.

In order that prove our theorem, the following lemma is needed.

Lemma 1.1. (Aouf and Srivastava, 1996) Let the function f(z) be defined by (1.7). Then $f(z) \in P(j, \lambda, \alpha, n)$ if and only if

$$\sum_{k=i+1}^{\infty} k^n (k-\alpha) \{1 + (k-1)\lambda\} a_k \le 1 - \alpha$$
(1.10)

 $(a_k \ge 0; n \in \mathbb{N}_0; 0 \le \alpha < 1; z \in \mathcal{U}; 0 \le \lambda < 1).$

In (Schild, 1974), Schild investigated the class of univalent polynomials of the form f(z) = z - 20 | P a g e www.iiste.org $\sum_{n=2}^{\mathbb{N}} a_n z^n$, where $a_n \ge 0$ and in the disk |z| < 1. In (Silverman, 1975), Silverman dealt with functions of the form

$$f(z) = a_1 z - \sum_{n=2}^{N} a_n z^n$$
(1.11)

where either

$$a_n \ge 0, f(z_0), \quad (-1 < z_0 < 1; \ z_0 \neq 0)$$
 (1.12)

or

$$a_n \ge 0, f'(z_0) = 1, \quad (-1 < z_0 < 1).$$
 (1.13)

 $S_0^*(\alpha, z_0)$ studied the subclass of functions starlike of order α that satisfy (1.12), and $S_1^*(\alpha, z_0)$ examined the subclass of functions starlike of order α that satisfy (1.13). Also defined by $K_0(\alpha, z_0)$ and $K_1(\alpha, z_0)$ the subclasses of functions convex of order α that satisfy, respectively, (1.12) and (1.13).

We denote by $P(j, \lambda, \alpha, n, z_0)$ the subclass of $P(j, \lambda, \alpha, n)$ involving any fixed point.

In order that prove our theorem, the following lemma is needed.

Lemma 1.2. (Kiziltunc and Baba, 2012) Let the function f(z) be defined by (1.7). Then f(z) is $P(j, \lambda, \alpha, n, z_0)$ if and only if

$$\sum_{k=j+1}^{\infty} \left[k^n \left(\frac{k-\alpha}{1-\alpha} \right) \{ 1 + (k-1)\lambda \} - z_0^{k-1} \right] a_k \le 1$$
 (1.14)

 $(a_k \ge 0; j \in \mathbb{N}; n \in \mathbb{N}_0; 0 \le \alpha < 1; z \in \mathcal{U}; 0 \le \lambda < 1; z_0 \in \mathbb{R} \text{ fixed point}).$

In (Kiziltunc and Baba, 2012), H.Kiziltunc and H.Baba, studied the class $P(j, \lambda, \alpha, n, z_0)$ involving any fixed point and we determined coefficient inequalities for functions belonging to the class $P(j, \lambda, \alpha, n, z_0)$. As special cases, the results of this paper reduced to Silverman (Silverman, 1975).

In the present paper, I shall prove that the class $P(j, \lambda, \alpha, n, z_0)$ is closed under convex linear combinations. Then the modified Hadamard products of functions belonging to the class $P(j, \lambda, \alpha, n, z_0)$ has been obtained.

2. Convex Linear Combinations

In this section, I shall prove that the class $P(j, \lambda, \alpha, n, z_0)$ is closed under convex linear combinations.

Theorem 2.1. $P(j, \lambda, \alpha, n, z_0)$ is a convex set.

Proof. Let functions

$$f_{\nu}(z) = z - \sum_{k=j+1}^{\infty} a_{\nu,k} z^{k} \quad (a_{\nu,k} \ge 0; \nu = 1, 2)$$
(2.1)

be in the class $P(j, \lambda, \alpha, n, z_0)$. It is sufficient to show that the function h(z) defined by

$$h(z) = \mu f_1(z) + (1 - \mu) f_2(z) \quad (0 \le \mu \le 1)$$
(2.2)

is also in the class $P(j, \lambda, \alpha, n, z_0)$. Since, for $0 \le \mu \le 1$,

$$h(z) = z - \sum_{k=j+1}^{\infty} \{ \mu a_{1,k} + (1-\mu)a_{2,k} \} z^k,$$
(2.3)

with the aid of Lemma 1.1, I have

$$\sum_{k=j+1}^{\infty} [k^n (k-\alpha) \{1 + (k-1)\lambda\}] \{\mu a_{1,k} + (1-\mu)a_{2,k}\} \le 1 - \alpha$$
(2.4)

which implies that $h(z) \in P(j, \lambda, \alpha, n)$. Further, the function $h(z) \in P(j, \lambda, \alpha, n)$ given by $h(z_0) = z_0$ is class of $P(j, \lambda, \alpha, n, z_0)$. Hence $P(j, \lambda, \alpha, n, z_0)$ is a convex set.

Teorem 2.2. Let functions $f_i(z) = z$ and

$$f_k(z) = z - \frac{1 - \alpha}{k^n (k - \alpha) \{1 + (k - 1)\lambda\}} z^k \qquad (k \ge j + 1; n \in \mathbb{N}_0)$$
(2.5)

for $0 \le \alpha < 1$ and $0 \le \lambda < 1$. Then f(z) in the class $P(j, \lambda, \alpha, n, z_0)$ if and only if it can be expressed in the form:

$$f(z) = \sum_{k=j}^{\infty} \mu_k f_k(z), \qquad (2.6)$$

where

$$\mu_k \ge 0 \quad (k \ge j) \quad \text{ve } \ \sum_{k=j}^{\infty} \mu_k = 1.$$
 (2.7)

Proof. Assume that

$$f(z) = \sum_{k=j}^{\infty} \mu_k f_k(z)$$

= $\sum_{k=j}^{\infty} \mu_k z - \sum_{k=j+1}^{\infty} \frac{1-\alpha}{k^n (k-\alpha) \{1+(k-1)\lambda\}} \mu_k z^k$
= $z - \sum_{k=j+1}^{\infty} \frac{1-\alpha}{k^n (k-\alpha) \{1+(k-1)\lambda\}} \mu_k z^k$ (2.8)

and by Lemma 1.2

$$\sum_{k=j+1}^{\infty} a_k z_0^{k-1} = 0.$$

Then it follows that

$$\sum_{k=j+1}^{\infty} \left[\frac{k^n (k-\alpha) \{1+(k-1)\lambda\}}{1-\alpha} - z_0^{k-1} \right] \cdot \frac{1-\alpha}{k^n (k-\alpha) \{1+(k-1)\lambda\}} \mu_k = \sum_{k=j}^{\infty} \mu_k = 1 - \mu_j \le 1.$$

So, by Lemma 1.2, $f(z) \in P(j, \lambda, \alpha, n, z_0)$.

Conversely, assume that the function f(z) defined by (1.7) belongs to the class $P(j, \lambda, \alpha, n, z_0)$. Then

$$a_k \le \frac{1-\alpha}{k^n (k-\alpha)(1+(k-1)\lambda) - (1-\alpha)z_0^{k-1}} \quad (k \ge j+1; n \in \mathbb{N}_0).$$
(2.9)

Setting

$$\mu_{k} = \left[\frac{k^{n}(k-\alpha)\{1+(k-1)\lambda\}}{1-\alpha} - z_{0}^{k-1}\right] a_{k} \quad (k \ge j+1; n \in \mathbb{N}_{0})$$
(2.10)

and

$$\mu_j = 1 - \sum_{k=j}^{\infty} \mu_k, \tag{2.11}$$

I can see that f(z) can be expressed in the form (2.6). This completes the proof of Theorem 2.2.

3. Modified Hadamard Products

Let functions $f_v(z)$ (v = 1,2) be defined by (2.1). The modified Hadamard product of $f_1(z)$ and $f_2(z)$ is **22** | P a g e www.iiste.org

International Journal of Scientific and Technological Research ISSN 2422-8702 (Online) Vol 4, No.3, 2018

defined by

$$(f_1 * f_2)(z) = z - \sum_{k=j+1}^{\infty} a_{1,k} a_{2,k} z^k.$$
(3.1)

Theorem 3.1. Let each of the functions $f_v(z)$ (v = 1,2) defined by (2.1) be in the class $P(j, \lambda, \alpha, n, z_0)$. Then $(f_1 * f_2)(z)$ is in the class $P(j, \lambda, \varphi(j, \lambda, \alpha, n), n, z_0)$ where

$$\varphi(j,\lambda,\alpha,n) = \frac{(j+1)^n (1+j\lambda) - (j+1)\{(1-\alpha)/(j+1-\alpha)\}^2}{(j+1)^n (1+j\lambda) - \{(1-\alpha)/(j+1-\alpha)\}^2}.$$
(3.2)

Proof. Employing the technique used earlier by Schild and Silverman (Shild and Silverman, 1975), I need to find the largest $\varphi = \varphi(j, \lambda, \alpha, n)$ such that

$$\sum_{k=j+1}^{\infty} \frac{k^n (k-\varphi) \{1+(k-1)\lambda\}}{1-\varphi} a_{1,k} a_{2,k} \le 1.$$
(3.3)

From

$$\sum_{k=j+1}^{\infty} \frac{k^n (k-\alpha) \{1+(k-1)\lambda\}}{1-\alpha} a_{1,k} \le 1$$
(3.4)

and

$$\sum_{k=j+1}^{\infty} \frac{k^n (k-\alpha) \{1+(k-1)\lambda\}}{1-\alpha} a_{2,k} \le 1$$
(3.5)

using the Cauchy-Schwarz inequality, I leads to

$$\sum_{k=j+1}^{\infty} \frac{k^n (k-\alpha) \{1+(k-1)\lambda\}}{1-\alpha} \sqrt{a_{1,k} a_{2,k}} \le 1.$$
(3.6)

Thus it is sufficient to show that

$$\frac{k^{n}(k-\varphi)}{1-\varphi}a_{1,k}a_{2,k} \le \frac{k^{n}(k-\alpha)}{1-\alpha}\sqrt{a_{1,k}a_{2,k}} \quad (k \ge j+1),$$
(3.7)

or equivalently

$$\sqrt{a_{1,k}a_{2,k}} \le \frac{(k-\alpha)(1-\varphi)}{(1-\alpha)(k-\varphi)}$$
 $(k \ge j+1).$ (3.8)

Note that I have from (3.6)

$$\sqrt{a_{1,k}a_{2,k}} \le \frac{1-\alpha}{k^n(k-\alpha)\{1+(k-1)\lambda\}} \qquad (k \ge j+1).$$
(3.9)

Consequently, if

$$\frac{1-\alpha}{k^n(k-\alpha)\{1+(k-1)\lambda\}} \le \frac{(k-\alpha)(1-\varphi)}{(1-\alpha)(k-\varphi)} \qquad (k \ge j+1).$$
(3.10)

or, if

$$\varphi \leq \frac{k^{n} \{1 + (k-1)\lambda\} - k\{(1-\alpha)/(k-\alpha)\}^{2}}{k^{n} \{1 + (k-1)\lambda\} - \{(1-\alpha)/(k-\alpha)\}^{2}} \qquad (k \geq j+1).$$
(3.11)

then (3.6) is satisfied. Since

$$\Gamma(k) = \frac{k^n \{1 + (k-1)\lambda\} - k\{(1-\alpha)/(k-\alpha)\}^2}{k^n \{1 + (k-1)\lambda\} - \{(1-\alpha)/(k-\alpha)\}^2}$$
(3.12)

is non-decreasing for $k \ge j + 1$, letting k = j + 1 in (3.12). I obtain

$$\varphi \le \Gamma(j+1) = \frac{(j+1)^n (1+j\lambda) - (j+1)\{(1-\alpha)/(j+1-\alpha)\}^2}{(j+1)^n (1+j\lambda) - \{(1-\alpha)/(j+1-\alpha)\}^2}$$
(3.13)

which proves assertion of Theorem 3.1.

Finally, by taking the functions

$$f_{\nu}(z) = z - \frac{1 - \alpha}{(j+1)^n (j+1-\alpha)(1+j\lambda)} z^{j+1} \qquad (\nu = 1, 2),$$
(3.14)

we can see that the result is sharp.

Theorem 3.2. Let

 $f_1(z) \in P(j, \lambda, \alpha, n, z_0)$ and $f_2(z) \in P(j, \lambda, \gamma, n, z_0)$.

Then $(f_1 * f_2)(z)$ is in the class $P(j, \lambda, \tau(j, \lambda, \alpha, \gamma, n), n, z_0)$ where

$$\tau(j,\lambda,\alpha,\gamma,n) = \frac{(j+1)^n (1+j\lambda) - (j+1) \{\frac{(1-\alpha)}{(j+1-\alpha)}\} \cdot (1-\gamma)/(j+1-\gamma)\}}{(j+1)^n (1+j\lambda) - \{\frac{(1-\alpha)}{(j+1-\alpha)}\} \cdot (1-\gamma)/(j+1-\gamma)\}}$$
(3.15)

The result is the best possible for the functions

$$f_1(z) = z - \frac{1 - \alpha}{(j+1)^n (j+1-\alpha)(1+j\lambda)} z^{j+1},$$
(3.16)

and

$$f_2(z) = z - \frac{1 - \gamma}{(j+1)^n (j+1-\gamma)(1+j\lambda)} z^{j+1}.$$
(3.17)

Proof. Proceeding as in the proof of Theorem 3.1, I get

$$\tau \leq \frac{k^{n} \{1 + (k-1)\lambda\} - k\{(1-\alpha)/(k-\alpha)\} \cdot \left\{\frac{(1-\gamma)}{(k-\gamma)}\right\}}{k^{n} \{1 + (k-1)\lambda\} - \{(1-\alpha)/(k-\alpha)\} \cdot \left\{\frac{(1-\gamma)}{(k-\gamma)}\right\}} \qquad (k \geq j+1).$$
(3.18)

Since the right-hand side of (3.18) is non-decreasing for $k \ge j + 1$, letting k = j + 1 in (3.18), I obtain (6.15).

This completes the proof of Theorem 3.2.

Corollary 3.1. Let the functions $f_v(z)$ defined by

$$f_{\nu}(z) = z - \sum_{k=j+1}^{\infty} a_{\nu,k} z^{k} \quad (a_{\nu,k} \ge 0; \nu = 1, 2, 3)$$
(3.19)

be in the class $P(j, \lambda, \alpha, n, z_0)$. Then

 $(f_1*f_2*f_3)(z)\in P(j,\lambda,\mu(j,\lambda,\alpha,n),n,z_0),$

where

$$\mu(j,\lambda,\alpha,n) = \frac{(j+1)^{2n}(1+j\lambda)^2 - (j+1)\{(1-\alpha)/(j+1-\alpha)\}^3}{(j+1)^{2n}(1+j\lambda)^2 - \{(1-\alpha)/(j+1-\alpha)\}^3}.$$
(3.20)

For the functions

$$f_{\nu}(z) = z - \frac{1 - \alpha}{(j+1)^n (j+1-\alpha)(1+j\lambda)} z^{j+1}, \ (\nu = 1, 2, 3),$$
(3.21)

the result is the best possible.

Proof. From Theorem 3.1, I have

$$(f_1*f_2)(z)\in P(j,\lambda,\varphi(j,\lambda,\alpha,n),n,z_0),$$

where φ is given by (3.2). Now, using Teorem 3.2, I get

$$(f_1*f_2*f_3)(z)\in P(j,\lambda,\mu(j,\lambda,\alpha,n),n,z_0),$$

where

$$\mu(j,\lambda,\alpha,n) = \frac{(j+1)^n (1+j\lambda) - (j+1) \{\frac{(1-\alpha)}{(j+1-\alpha)}\} \{(1-\varphi)/(j+1-\varphi)\}}{(j+1)^n (1+j\lambda) - \{\frac{(1-\alpha)}{(j+1-\alpha)}\} \{(1-\varphi)/(j+1-\varphi)\}} = \frac{(j+1)^{2n} (1+j\lambda)^2 - (j+1) \{(1-\alpha)/(j+1-\alpha)\}^3}{(j+1)^{2n} (1+j\lambda)^2 - \{(1-\alpha)/(j+1-\alpha)\}^3}$$

This completes the proof of corollary 3.1.

Theorem 3.3. Let the functions $f_v(z)$ (v = 1,2) defined by (2.1) be in the class $P(j, \lambda, \alpha, n, z_0)$. Then the function

$$h(z) = z - \sum_{k=j+1}^{\infty} \left(a_{1,k}^2 + a_{2,k}^2 \right) z^k$$
(3.22)

belongs to the class $P(j, \lambda, \sigma(j, \lambda, \alpha, n), n, z_0)$, where

$$\sigma(j,\lambda,\alpha,n) = \frac{(j+1)^n (1+j\lambda) - 2(j+1)\{((1-\alpha))/((j+1-\alpha))\}^2}{(j+1)^n (1+j\lambda) - 2\{((1-\alpha))/((j+1-\alpha))\}^2}.$$
(3.23)

For the functions $f_v(z)$ (v = 1,2) defined by (3.14), the result is sharp.

Proof. By virtue of Lemma 1.1, I obtain

$$\sum_{k=j+1}^{\infty} \left[\frac{k^n (k-\alpha) \{1+(k-1)\lambda\}}{1-\alpha} \right]^2 a_{1,k}^2 \le \left[\sum_{k=j+1}^{\infty} \frac{k^n (k-\alpha) \{1+(k-1)\lambda\}}{1-\alpha} a_{1,k} \right]^2 \le 1$$
(3.24)

and

$$\sum_{k=j+1}^{\infty} \left[\frac{k^n (k-\alpha) \{1+(k-1)\lambda\}}{1-\alpha} \right]^2 a_{2,k}^2 \le \left[\sum_{k=j+1}^{\infty} \frac{k^n (k-\alpha) \{1+(k-1)\lambda\}}{1-\alpha} a_{2,k} \right]^2 \le 1.$$
(3.25)

From (3.24) and (3.25), I have

$$\sum_{k=j+1}^{\infty} \frac{1}{2} \left[\frac{k^n (k-\alpha) \{1+(k-1)\lambda\}}{1-\alpha} \right]^2 \left(a_{1,k}^2 + a_{2,k}^2 \right) \le 1.$$
(3.26)

Thus, I need to find the largest $\sigma = \sigma(j, \lambda, \alpha, n)$ such that

$$\frac{k^{n}(k-\sigma)\{1+(k-1)\lambda\}}{1-\sigma} \le \frac{1}{2} \left[\frac{k^{n}(k-\alpha)\{1+(k-1)\lambda\}}{1-\alpha} \right]^{2} \qquad (k \ge j+1) ,$$
(3.27)

or equivalently

$$\sigma \le \frac{k^n (1 + (k-1)\lambda) - 2k\{(1-\alpha)\}/((k-\alpha)\}^2}{k^n (1 + (k-1)\lambda) - 2\{(1-\alpha)\}/((k-\alpha)\}^2} \qquad (k \ge j+1).$$
(3.28)

Since

$$\nabla(k) = \frac{k^n (1 + (k-1)\lambda) - 2k\{(1-\alpha)\}/((k-\alpha)\}^2}{k^n (1 + (k-1)\lambda) - 2\{(1-\alpha)\}/((k-\alpha)\}^2}$$
(3.29)

is non-decreasing for $k \ge j + 1$, I have

$$\sigma = \nabla(j+1) = \frac{(j+1)^n (1+j\lambda) - 2(j+1)\{((1-\alpha))/((j+1-\alpha))\}^2}{(j+1)^n (1+j\lambda) - 2\{((1-\alpha))/((j+1-\alpha))\}^2},$$
(3.30)

which proves the assertion of Theorem 3.3.

References

- Kiziltunc H. and Baba H., 2012. Inequalities for Fixed Points of the Subclass $P(j, \lambda, \alpha, n, z_0)$ of Starlike Functions with Negative Coefficients, Advances in Fixed Point Theory, Vol.2, 197-202.
- Aouf, M.K. and Srivastava, H.M., 1996. Some families of starlike functions with negative coefficients, J. Math. Anal. Appl. 203, 762-790, Article No:0411.
- Silverman, H., 1976. Extreme points of univalent functions with two fixed points, Trans. Amer. Math. Soc. Vol. 219 pp. 387-395.
- A. Shild and H. Silverman, Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A 29 (1975), 99-106.
- G.Şt., Sălăgean, Subclasses of univalent functions, in "Complex Analysis: Fifth Romanian-Finnish Seminar." Part I (Bucharest, 1981), pp. 362-372. Lecture Notes in Mathematics, Vol. 1013, Springer-Verlag, Berlin/Newyork, 1983.
- Schild, A., 1974. On a class of functions schlicht in the unit circle, Proc. Amer. Math. Soc. 5115-120. MR 15, 694.