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Abstract 

The subclass 𝑃(𝑗, 𝜆, 𝛼, 𝑛) of starlike functions with negative coefficients by using the differential 𝐷𝑛 

operator and functions of the form 𝑓(𝑧) = 𝑧 − ∑ 𝑎𝑘𝑧𝑘∞
𝑘=𝑗+1  which are analytic in the open unit disk is 

considered. The subclass 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) for which 𝑓(𝑧0) = 𝑧0 or 𝑓′(𝑧0) = 1, 𝑧0 real is examined by 

Kiziltunc and Baba (Kiziltunc and Baba, 2012). The modified Hadamard products of functions 

belonging to the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) has been obtained. 
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1. Introduction 

Let 𝒜 denote the family of functions 𝑓 of the form  

                                   𝑓(𝑧) = 𝑧 − ∑ 𝑎𝑘𝑧𝑘∞
𝑘=𝑗+1                                                  (1.1) 

that are analytic in the open unit disk 𝕌 = {z ∈ ℂ: |z| < 1}}. A function 𝑓 ∈ 𝒜 is said to be starlike of 

order 𝛼 (0 ≤ 𝛼 < 1) if and only if 

                                  𝑅𝑒 {
𝑧𝑓′(𝑧)

𝑓(𝑧)
} ≥ 𝛼,   (𝑧 ∈ 𝕌).                                                (1.2) 

Let 𝑆∗(𝛼) define the class of all such functions. Adititionally, a function 𝑓 ∈ 𝒜 is said to be convex of 

order 𝛼 (0 ≤ 𝛼 < 1) if and only if 

                             𝑅𝑒 {1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
} > 𝛼,   (𝑧 ∈ 𝕌).                                              (1.3) 

Let 𝐾(𝛼) define the class of all those functions which are convex of order 𝛼 in 𝕌. 

Note that 𝑆∗(0) = 𝑆∗ and 𝐾(0) = 𝐾 are the classes of starlike and convex functions in 𝕌, respectively. 

Let 𝒜(𝑗) denote the class of functions of the form: 

                     𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑘𝑧𝑘∞
𝑘=𝑗+1        (𝑗 ∈ ℕ = {1,2,3, … })                         (1.4) 

which are analytic in the open unit disk 𝕌.  

For a function 𝑓(𝑧) in 𝒜(𝑗), the Sălāgean operator introduced by Sălāgean (Sălăgean, 1983) is as follows  
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𝐷0𝑓(𝑧) = 𝑓(𝑧) 

𝐷1𝑓(𝑧) = 𝐷𝑓(𝑧) = 𝑧𝑓′(𝑧) = 𝑧 + ∑ 𝑘𝑎𝑘𝑧𝑘∞
𝑘=𝑗+1   

𝐷2𝑓(𝑧) = 𝐷(𝑓(𝑧)) = 𝑧𝑓′(𝑧) + 𝑧2𝑓′′(𝑧) = 𝑧 + ∑ 𝑘2𝑎𝑘𝑧𝑘∞
𝑘=𝑗+1   

and for 𝑛 = 1,2,3 … we can write 

    𝐷𝑛𝑓(𝑧) = 𝐷(𝐷𝑛−1𝑓(𝑧)) = 𝑧 + ∑ 𝑘2𝑎𝑘𝑧𝑘∞
𝑘=𝑗+1         (𝑛 ∈ ℕ0 = ℕ ∪ {0}).         (1.5) 

With the help of the differential operatör 𝐷𝑛, M.K.Aouf and H.M.Srivastava (Aouf and Srivastava, 1996) 

said that a function 𝑓(𝑧) belonging to 𝒜(𝑗) is in the class 𝑄(𝑗, 𝜆, 𝛼, 𝑛) if and only if 

                                           𝑅𝑒 {
(1−𝜆)𝑧(𝐷𝑛𝑓(𝑧))

′
+𝜆𝑧(𝐷𝑛+1𝑓(𝑧))

′

(1−𝜆)𝐷𝑛𝑓(𝑧)+𝜆𝐷𝑛+1𝑓(𝑧)
} > 𝛼                           (1.6) 

for some 𝛼 (0 ≤ 𝛼 < 1) and 𝜆 (0 ≤ 𝜆 < 1), and for all 𝑧 ∈ 𝕌. Additionally, 𝑇(𝑗) denoted the subclass of 

𝒜(𝑗)  consisting of functions of the form: 

                         𝑓(𝑧) = 𝑧 − ∑ 𝑎𝑘𝑧𝑘∞
𝑘=𝑗+1         (𝑎𝑘 ≥ 0; 𝑗 ∈ ℕ)                                (1.7) 

Further, M.K.Aouf and H.M.Srivastava defined the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛) by 

                                 𝑃(𝑗, 𝜆, 𝛼, 𝑛) = 𝑄(𝑗, 𝜆, 𝛼, 𝑛) ∩ 𝑇(𝑗).                                       (1.8) 

For a function 𝑓(𝑧) in 𝑃(𝑗, 𝜆, 𝛼, 𝑛), M.K.A ouf and H.M.Srivastava define with  

𝐷0𝑓(𝑧) = 𝑓(𝑧) 

𝐷1𝑓(𝑧) = 𝐷𝑓(𝑧) = 𝑧𝑓′(𝑧) = 𝑧 − ∑ 𝑘𝑎𝑘𝑧𝑘∞
𝑘=𝑗+1   

𝐷2𝑓(𝑧) = 𝐷(𝑓(𝑧)) = 𝑧𝑓′(𝑧) + 𝑧2𝑓′′(𝑧) = 𝑧 − ∑ 𝑘2𝑎𝑘𝑧𝑘∞
𝑘=𝑗+1   

and for 𝑛 = 1,2,3 … we can write 

    𝐷𝑛𝑓(𝑧) = 𝐷(𝐷𝑛−1𝑓(𝑧)) = 𝑧 − ∑ 𝑘2𝑎𝑘𝑧𝑘∞
𝑘=𝑗+1         (𝑛 ∈ ℕ0 = ℕ ∪ {0}).        (1.9) 

In (Aouf and Srivastava, 1996), M.K.A ouf and H.M.Srivastava obtained coefficients inequalities, 

distortion theorems, closure thorems, and some properties involving the modified Hadamard products for 

functions belonging to the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛). They also determined the radii of close-to-convexity, 

starlikeness, convexity for the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛). 

In order that prove our theorem, the following lemma is needed. 

 

Lemma 1.1. (Aouf and Srivastava, 1996) Let the function 𝑓(𝑧) be defined by (1.7). Then 𝑓(𝑧) ∈
𝑃(𝑗, 𝜆, 𝛼, 𝑛) if and only if 

                     ∑ 𝑘𝑛(𝑘 − 𝛼){1 + (𝑘 − 1)𝜆}𝑎𝑘 ≤ 1 − 𝛼∞
𝑘=𝑗+1                                (1.10) 

(𝑎𝑘 ≥ 0; 𝑛 ∈ ℕ0; 0 ≤ 𝛼 < 1; 𝑧 ∈ 𝒰; 0 ≤ 𝜆 < 1). 

In (Schild, 1974), Schild investigated the class of univalent polynomials of the form 𝑓(𝑧) = 𝑧 −
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∑ 𝑎𝑛𝑧𝑛ℕ
𝑛=2 , where 𝑎𝑛 ≥ 0 and in the disk |z| < 1. In (Silverman, 1975), Silverman dealt with functions 

of the form 

                            𝑓(𝑧) = 𝑎1𝑧 − ∑ 𝑎𝑛𝑧𝑛ℕ
𝑛=2                                                       (1.11) 

where either 

                     𝑎𝑛 ≥ 0, 𝑓(𝑧0),     (−1 < 𝑧0 < 1; 𝑧0 ≠ 0)                                     (1.12) 

or 

                      𝑎𝑛 ≥ 0, 𝑓′(𝑧0) = 1,     (−1 < 𝑧0 < 1).                                         (1.13) 

𝑆0
∗(𝛼, 𝑧0) studied the subclass of functions starlike of order 𝛼 that satisfy (1.12), and 𝑆1

∗(𝛼, 𝑧0)  examined 

the subclass of functions starlike of order 𝛼 that satisfy (1.13). Also defined by 𝐾0(𝛼, 𝑧0)   and 𝐾1(𝛼, 𝑧0)    

the subclasses of functions convex of order 𝛼 that satisfy, respectively, (1.12) and (1.13). 

We denote by 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) the subclass of 𝑃(𝑗, 𝜆, 𝛼, 𝑛) involving any fixed point. 

In order that prove our theorem, the following lemma is needed. 

Lemma 1.2. (Kiziltunc and Baba, 2012) Let the function 𝑓(𝑧) be defined by (1.7). Then 𝑓(𝑧) is 

𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) if and only if 

                      ∑ [𝑘𝑛 (
𝑘−𝛼

1−𝛼
) {1 + (𝑘 − 1)𝜆} − 𝑧0

𝑘−1] 𝑎𝑘 ≤ 1∞
𝑘=𝑗+1                   (1.14) 

 

(𝑎𝑘 ≥ 0;  𝑗 ∈ ℕ;  𝑛 ∈ ℕ0;  0 ≤ 𝛼 < 1;  𝑧 ∈ 𝒰;  0 ≤ 𝜆 < 1;  𝑧0 ∈ ℝ fixed point). 

In (Kiziltunc and Baba, 2012), H.Kızıltunc and H.Baba, studied the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) involving any 

fixed point and we determined coefficient inequalities for functions belonging to the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0). 

As special cases, the results of this paper reduced to Silverman (Silverman, 1975). 

In the present paper, I shall prove that the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) is closed under convex linear 

combinations. Then the modified Hadamard products of functions belonging to the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) 

has been obtained.  

2. Convex Linear Combinations 

In this section, I shall prove that the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) is closed under convex linear combinations. 

Theorem 2.1. 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) is a convex set. 

Proof. Let functions  

                    𝑓𝑣(𝑧) = 𝑧 − ∑ 𝑎𝑣,𝑘𝑧𝑘∞
𝑘=𝑗+1      (𝑎𝑣,𝑘 ≥ 0; 𝑣 = 1,2)                              (2.1) 

be in the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0). It is sufficient to show that the function ℎ(𝑧) defined by 

                      ℎ(𝑧) = 𝜇𝑓1(𝑧) + (1 − 𝜇)𝑓2(𝑧)    (0 ≤ 𝜇 ≤ 1)                               (2.2) 

is also in the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0). Since, for 0 ≤ 𝜇 ≤ 1,  

                        ℎ(𝑧) =  𝑧 − ∑ {𝜇𝑎1,𝑘 + (1 − 𝜇)𝑎2,𝑘}𝑧𝑘∞
𝑘=𝑗+1 ,                               (2.3) 
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with the aid of Lemma 1.1, I have  

         ∑ [𝑘𝑛(𝑘 − 𝛼){1 + (𝑘 − 1)𝜆}]{𝜇𝑎1,𝑘 + (1 − 𝜇)𝑎2,𝑘} ≤ 1 − 𝛼∞
𝑘=𝑗+1                (2.4)          

which implies that ℎ(𝑧) ∈ 𝑃(𝑗, 𝜆, 𝛼, 𝑛). Further, the function ℎ(𝑧) ∈ 𝑃(𝑗, 𝜆, 𝛼, 𝑛) given by ℎ(𝑧0) = 𝑧0 is 

class of 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0). Hence 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) is a convex set. 

Teorem 2.2. Let functions 𝑓𝑗(𝑧) = 𝑧 and  

          𝑓𝑘(𝑧) = 𝑧 −
1−𝛼

𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}
𝑧𝑘       (𝑘 ≥ 𝑗 + 1; 𝑛 ∈ ℕ0)                            (2.5)  

for 0 ≤ 𝛼 < 1 and 0 ≤ 𝜆 < 1. Then 𝑓(𝑧) in the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0) if and only if it can be expressed in 

the form: 

                               𝑓(𝑧) = ∑ 𝜇𝑘𝑓𝑘(𝑧)∞
𝑘=𝑗 ,                                                          (2.6) 

where 

                             𝜇𝑘 ≥ 0   (𝑘 ≥ 𝑗)   ve   ∑ 𝜇𝑘 = 1∞
𝑘=𝑗 .                                         (2.7)  

Proof. Assume that  

           𝑓(𝑧) = ∑ 𝜇𝑘𝑓𝑘(𝑧)∞
𝑘=𝑗  

                   = ∑ 𝜇𝑘𝑧 − ∑
1−𝛼

𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}
𝜇𝑘𝑧𝑘∞

𝑘=𝑗+1
∞
𝑘=𝑗  

                   = 𝑧 − ∑
1−𝛼

𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}
𝜇𝑘𝑧𝑘∞

𝑘=𝑗+1                                                   (2.8) 

and by Lemma 1.2 

         ∑ 𝑎𝑘𝑧0
𝑘−1 = 0∞

𝑘=𝑗+1 . 

Then it follows that 

        ∑ [
𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
− 𝑧0

𝑘−1] .
1−𝛼

𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}
∞
𝑘=𝑗+1 𝜇𝑘 = ∑ 𝜇𝑘 = 1∞

𝑘=𝑗 − 𝜇𝑗 ≤ 1. 

So, by Lemma 1.2, 𝑓(𝑧) ∈ 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0). 

Conversely, assume that the function 𝑓(𝑧) defined by (1.7) belongs to the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0). Then  

                   𝑎𝑘 ≤
1−𝛼

𝑘𝑛(𝑘−𝛼)(1+(𝑘−1)𝜆)−(1−𝛼)𝑧0
𝑘−1      (𝑘 ≥ 𝑗 + 1; 𝑛 ∈ ℕ0).                  (2.9) 

Setting  

        𝜇𝑘 = [
𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
− 𝑧0

𝑘−1] 𝑎𝑘     (𝑘 ≥ 𝑗 + 1; 𝑛 ∈ ℕ0)                       (2.10) 

and 

                                  𝜇𝑗 = 1 − ∑ 𝜇𝑘
∞
𝑘=𝑗 ,                                                           (2.11) 

I can see that 𝑓(𝑧) can be expressed in the form (2.6). This completes the proof of Theorem 2.2. 

3. Modified Hadamard Products  

Let functions 𝑓𝑣(𝑧) (𝑣 = 1,2) be defined by (2.1). The modified Hadamard product of 𝑓1(𝑧) and 𝑓2(𝑧) is 
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defined by  

                              (𝑓1 ∗ 𝑓2)(𝑧) = 𝑧 − ∑ 𝑎1,𝑘𝑎2,𝑘𝑧𝑘∞
𝑘=𝑗+1 .                                           (3.1) 

Theorem 3.1. Let each of the functions 𝑓𝑣(𝑧) (𝑣 = 1,2) defined by (2.1) be in the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0). 

Then (𝑓1 ∗ 𝑓2)(𝑧) is in the class 𝑃(𝑗, 𝜆, 𝜑(𝑗, 𝜆, 𝛼, 𝑛), 𝑛, 𝑧_0) where  

                          𝜑(𝑗, 𝜆, 𝛼, 𝑛) =
(𝑗+1)𝑛(1+𝑗𝜆)−(𝑗+1){(1−𝛼)/(𝑗+1−𝛼)}2

(𝑗+1)𝑛(1+𝑗𝜆)−{(1−𝛼)/(𝑗+1−𝛼)}2 .                                (3.2) 

Proof. Employing the technique used earlier by Schild and Silverman (Shild and Silverman, 1975), I need 

to find the largest 𝜑 = 𝜑(𝑗, 𝜆, 𝛼, 𝑛) such that  

                                    ∑
𝑘𝑛(𝑘−𝜑){1+(𝑘−1)𝜆}

1−𝜑
𝑎1,𝑘𝑎2,𝑘

∞
𝑘=𝑗+1 ≤ 1.                                    (3.3)  

From   

                                    ∑
𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
𝑎1,𝑘

∞
𝑘=𝑗+1 ≤ 1                                           (3.4)  

and  

                                   ∑
𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
𝑎2,𝑘

∞
𝑘=𝑗+1 ≤ 1                                           (3.5)   

using the Cauchy-Schwarz inequality, I leads to  

                                ∑
𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
√𝑎1,𝑘𝑎2,𝑘

∞
𝑘=𝑗+1 ≤ 1.                                    (3.6)  

Thus it is sufficient to show that  

                   
𝑘𝑛(𝑘−𝜑)

1−𝜑
𝑎1,𝑘𝑎2,𝑘 ≤

𝑘𝑛(𝑘−𝛼)

1−𝛼
√𝑎1,𝑘𝑎2,𝑘       (𝑘 ≥ 𝑗 + 1),                             (3.7)  

or equivalently 

                         √𝑎1,𝑘𝑎2,𝑘 ≤
(𝑘−𝛼)(1−𝜑)

(1−𝛼)(𝑘−𝜑)
                  (𝑘 ≥ 𝑗 + 1).                              (3.8)  

Note that I have from (3.6)  

                         √𝑎1,𝑘𝑎2,𝑘 ≤
1−𝛼

𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}
         (𝑘 ≥ 𝑗 + 1).                             (3.9)   

Consequently, if 

                       
1−𝛼

 𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}
≤

(𝑘−𝛼)(1−𝜑)

(1−𝛼)(𝑘−𝜑)
            (𝑘 ≥ 𝑗 + 1).                           (3.10) 

or, if 

                         𝜑 ≤
𝑘𝑛{1+(𝑘−1)𝜆}−𝑘{(1−𝛼)/(𝑘−𝛼)}2

𝑘𝑛{1+(𝑘−1)𝜆}−{(1−𝛼)/(𝑘−𝛼)}2        (𝑘 ≥ 𝑗 + 1).                            (3.11) 

then (3.6) is satisfied. Since  

                        Γ(𝑘) =
𝑘𝑛{1+(𝑘−1)𝜆}−𝑘{(1−𝛼)/(𝑘−𝛼)}2

𝑘𝑛{1+(𝑘−1)𝜆}−{(1−𝛼)/(𝑘−𝛼)}2                                                    (3.12)  

is non-decreasing for 𝑘 ≥ 𝑗 + 1, letting 𝑘 = 𝑗 + 1 in (3.12). I obtain  

𝜑 ≤ Γ(𝑗 + 1) =
(𝑗+1)𝑛(1+𝑗𝜆)−(𝑗+1){(1−𝛼)/(𝑗+1−𝛼)}2

(𝑗+1)𝑛(1+𝑗𝜆)−{(1−𝛼)/(𝑗+1−𝛼)}2          (3.13)  
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which proves assertion of Theorem 3.1. 

 Finally, by taking the functions  

                        𝑓𝑣(𝑧) = 𝑧 −
1−𝛼

(𝑗+1)𝑛(𝑗+1−𝛼)(1+𝑗𝜆)
𝑧𝑗+1        (𝑣 = 1,2),                         (3.14)  

we can see that the result is sharp. 

Theorem 3.2. Let  

𝑓1(𝑧) ∈ 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0)   and   𝑓2(𝑧) ∈ 𝑃(𝑗, 𝜆, 𝛾, 𝑛, 𝑧0).  

Then (𝑓1 ∗ 𝑓2)(𝑧) is in the class 𝑃(𝑗, 𝜆, 𝜏(𝑗, 𝜆, 𝛼, 𝛾, 𝑛), 𝑛, 𝑧0) where  

                      𝜏(𝑗, 𝜆, 𝛼, 𝛾, 𝑛) =
(𝑗+1)𝑛(1+𝑗𝜆)−(𝑗+1){

(1−𝛼)

(𝑗+1−𝛼)
}.{(1−𝛾)/(𝑗+1−𝛾)}

(𝑗+1)𝑛(1+𝑗𝜆)−{
(1−𝛼)

(𝑗+1−𝛼)
}.{(1−𝛾)/(𝑗+1−𝛾)}

                         (3.15)  

The result is the best possible for the functions  

                              𝑓1(𝑧) = 𝑧 −
1−𝛼

(𝑗+1)𝑛(𝑗+1−𝛼)(1+𝑗𝜆)
𝑧𝑗+1,                                           (3.16)  

and  

                              𝑓2(𝑧) = 𝑧 −
1−𝛾

(𝑗+1)𝑛(𝑗+1−𝛾)(1+𝑗𝜆)
𝑧𝑗+1.                                           (3.17)  

Proof. Proceeding as in the proof of Theorem 3.1, I get      

      𝜏 ≤
𝑘𝑛{1+(𝑘−1)𝜆}−𝑘{(1−𝛼) (𝑘−𝛼)⁄ }.{

(1−𝛾)

(𝑘−𝛾)
}

𝑘𝑛{1+(𝑘−1)𝜆}−{(1−𝛼) (𝑘−𝛼)⁄ }.{
(1−𝛾)

(𝑘−𝛾)
}

           (𝑘 ≥ 𝑗 + 1).                                  (3.18) 

Since the right-hand side of (3.18) is non-decreasing for 𝑘 ≥ 𝑗 + 1, letting 𝑘 = 𝑗 + 1 in (3.18), I obtain 

(6.15). 

 This completes the proof of Theorem 3.2. 

Corollary 3.1. Let the functions 𝑓𝑣(𝑧) defined by  

                      𝑓𝑣(𝑧) = 𝑧 − ∑ 𝑎𝑣,𝑘𝑧𝑘∞
𝑘=𝑗+1       (𝑎𝑣,𝑘 ≥ 0; 𝑣 = 1,2,3)                              (3.19)  

be in the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0). Then  

(𝑓1 ∗ 𝑓2 ∗ 𝑓3)(𝑧) ∈ 𝑃(𝑗, 𝜆, 𝜇(𝑗, 𝜆, 𝛼, 𝑛), 𝑛, 𝑧0),  

where  

                          𝜇(𝑗, 𝜆, 𝛼, 𝑛) =
(𝑗+1)2𝑛(1+𝑗𝜆)2−(𝑗+1){(1−𝛼)/(𝑗+1−𝛼)}3

(𝑗+1)2𝑛(1+𝑗𝜆)2−{(1−𝛼)/(𝑗+1−𝛼)}3  .                              (3.20)  

For the functions  

                         𝑓𝑣(𝑧) = 𝑧 −
1−𝛼

(𝑗+1)𝑛(𝑗+1−𝛼)(1+𝑗𝜆)
𝑧𝑗+1,  (𝑣 = 1,2,3),                             (3.21)  

the result is the best possible. 

Proof. From Theorem 3.1, I have  
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(𝑓1 ∗ 𝑓2)(𝑧) ∈ 𝑃(𝑗, 𝜆, 𝜑(𝑗, 𝜆, 𝛼, 𝑛), 𝑛, 𝑧0),  

where 𝜑 is given by (3.2). Now, using Teorem 3.2, I get  

(𝑓1 ∗ 𝑓2 ∗ 𝑓3)(𝑧) ∈ 𝑃(𝑗, 𝜆, 𝜇(𝑗, 𝜆, 𝛼, 𝑛), 𝑛, 𝑧0),  

where  

𝜇(𝑗, 𝜆, 𝛼, 𝑛) =
(𝑗+1)𝑛(1+𝑗𝜆)−(𝑗+1){

(1−𝛼)

(𝑗+1−𝛼)
}.{(1−𝜑)/(𝑗+1−𝜑)}

(𝑗+1)𝑛(1+𝑗𝜆)−{
(1−𝛼)

(𝑗+1−𝛼)
}.{(1−𝜑)/(𝑗+1−𝜑)}

    =
(𝑗+1)2𝑛(1+𝑗𝜆)2−(𝑗+1){(1−𝛼)/(𝑗+1−𝛼)}3

(𝑗+1)2𝑛(1+𝑗𝜆)2−{(1−𝛼)/(𝑗+1−𝛼)}3  . 

This completes the proof of corollary 3.1. 

Theorem 3.3. Let the functions 𝑓𝑣(𝑧) (𝑣 = 1,2) defined by (2.1) be in the class 𝑃(𝑗, 𝜆, 𝛼, 𝑛, 𝑧0). Then the 

function  

                                      ℎ(𝑧) = 𝑧 − ∑ (𝑎1,𝑘
2 +𝑎2,𝑘

2 )𝑧𝑘∞
𝑘=𝑗+1                                           (3.22)  

belongs to the class 𝑃(𝑗, 𝜆, 𝜎(𝑗, 𝜆, 𝛼, 𝑛), 𝑛, 𝑧0), where  

                            𝜎(𝑗, 𝜆, 𝛼, 𝑛) =
(𝑗+1)𝑛(1+𝑗𝜆)−2(𝑗+1){((1−𝛼))/((𝑗+1−𝛼) )}2

(𝑗+1)𝑛(1+𝑗𝜆)−2{((1−𝛼))/((𝑗+1−𝛼) )}2  .                        (3.23)  

For the functions 𝑓𝑣(𝑧) (𝑣 = 1,2) defined by (3.14), the result is sharp.  

Proof. By virtue of Lemma 1.1, I obtain 

           ∑ [
𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
]

2

𝑎1,𝑘
2 ≤∞

𝑘=𝑗+1 [∑
𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
𝑎1,𝑘

∞
𝑘=𝑗+1 ]

2

≤ 1             (3.24)  

and 

           ∑ [
𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
]

2

𝑎2,𝑘
2 ≤∞

𝑘=𝑗+1 [∑
𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
𝑎2,𝑘

∞
𝑘=𝑗+1 ]

2

≤ 1.            (3.25)  

From (3.24) and (3.25), I have 

                                ∑
1

2
[

𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
]

2

(𝑎1,𝑘
2 + 𝑎2,𝑘

2 )∞
𝑘=𝑗+1 ≤ 1.                           (3.26)  

Thus, I need to find the largest 𝜎 = 𝜎(𝑗, 𝜆, 𝛼, 𝑛) such that  

                   
𝑘𝑛(𝑘−𝜎){1+(𝑘−1)𝜆}

1−𝜎
≤

1

2
[

𝑘𝑛(𝑘−𝛼){1+(𝑘−1)𝜆}

1−𝛼
]

2

      (𝑘 ≥ 𝑗 + 1) ,                       (3.27)  

or equivalently  

                     𝜎 ≤
𝑘𝑛(1+(𝑘−1)𝜆)−2𝑘{(1−𝛼))/((𝑘−𝛼)}2

𝑘𝑛(1+(𝑘−1)𝜆)−2{(1−𝛼))/((𝑘−𝛼)}2         (𝑘 ≥ 𝑗 + 1).                             (3.28)  

Since  

                      ∇(𝑘) =
𝑘𝑛(1+(𝑘−1)𝜆)−2𝑘{(1−𝛼))/((𝑘−𝛼)}2

𝑘𝑛(1+(𝑘−1)𝜆)−2{(1−𝛼))/((𝑘−𝛼)}2                                                  (3.29)  

is non-decreasing for 𝑘 ≥ 𝑗 + 1, I have 
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                    σ = ∇(𝑗 + 1) =
(𝑗+1)𝑛(1+𝑗𝜆)−2(𝑗+1){((1−𝛼))/((𝑗+1−𝛼) )}2

(𝑗+1)𝑛(1+𝑗𝜆)−2{((1−𝛼))/((𝑗+1−𝛼) )}2  ,                            (3.30)  

which proves the assertion of Theorem 3.3. 
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