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Abstract 

Manganese dendrites on the magnesite ore are natural solid phase and poly morphological structures of 

manganese oxides (MnO2+, 3+- 4+). They are a wide variety of structures.In this study, radial particle 

distribution and growth critical exponents are investigated by using the scaling method for natural 

manganese dendrites.For this purpose, the samples are grouped according to the superficial 

heterogeneity of the deposits and the calculations are made. The results of radial particle distributions 

are similar to the Gaussian distribution approach. We have performed the radial growth distribution 

function to test this hypothesis.The obtained data are fitted to thenon-regression method as the 

Gaussian function and determined their both median and the median diameter for the manganese 
dendrites that have various solid morphological transitions. Also, growth critical exponent values vary 

between 0.424 ≤ α ≤ 0.732 and 2.153 ≤ β ≤ 10.457 by using linear regression method. The results were 

compared with the real and simulated representation values in the literature. 
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1. Introduction 

In recent years, very successful studies have been in field of no-equilibrium physics on naturally 

growing patterns (Meakin, 1998). It is known that there are often self-similar patterns or fractal in 

nature. One of them is manganese dendrites which are formed on natural surface, subsurface and 

interface at the rocks, quartz and magnesite ore typically results in the different rich growing patterns 
(Vicsek, 1991; García-Ruiz et al., 1994). 

Structures of dendrites on the magnesite ores may consist of birnesite, coronadite, cryptomelane, 

hollandite, romanechite, todorokite, and other species. These dendrite structures have heterogeneous 

growth and a universal distribution for the particles. A many number of experiment (Potter and 

Rossman, 1979; Chopard et al., 1991), theoretic analyses (Bayirli and Ozbey, 2013), and the computer 

simulations (Chopard et al., 1991) have been carried out to investigate the relationship between the 

geometrical structure and the formation mechanism. Chopard et al. (1991) proposed that the reaction-

diffusion process deposits them when super saturated Mn-rich solutions are exposed to air on the rock 

surfaces. Garcia Ruiz et al. (1994) obtained three-like manganese patterns for experimental studies and 

presented data supporting the ideais that the manganese dendrites are the mineral record of flow in 
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stabilities. Potter et al. (1979) reported that many samples have similar strong x-ray lines or line 

broadening can make x-ray diffraction identification ineffectual. They have also determined that 

infrared spectroscopy has been helpful in verifying some dendrite mineralogy. Meanwhile, it is 

proposed that the formation of some manganese dendrites geometrically can be explained by the 

diffusion limited aggregation (DLA) model (Witten and Sander, 1981). Several researchers showed that 

manganese dendrites can be identified with eight or ten basic groups according to their geometrical 

parameters (Potter and Rossman, 1979). Dorn and Dickinson (1981) also, indicated that the presence of 

dendrite formation would be a strong evidence for the biological contribution (Dorn and Dickinson, 

1981) .The mineralogy of the Iron Mountain dendrites due to todorokite and birnessite offers the 

possibility of a role for microorganisms in their formation. Their researchers have argued that rock 

varnish, a close relative to dendrites, was formed through bacterial precipitation Mn-fixing bacteria 
precipitate Mn from solution by oxidizing Mn2+ and Mn3+ to Mn4+. Therefore, they were performed 

deoxy ribonucleic acid (DNA) extractions on dendrite samples in order to determine whether Mn-

fixing bacteria are presented (Dorr et al, 1981). 

In this study, the radial particle distribution was determined by using scaling and image processing 

method for natural manganese dendrites. For this purpose, the number of sites in the radius r range 

from the seed to the periphery was calculated. The nonlinear regression method was used to determine 

the probability distribution function. In addition, growth-critical exponent values were calculated using 

the linear regression method. The results were compared with the similar samples in the literature. 

 

1. Material and method 

The samples used in this study were collected from KUMAŞ magnesite production area in Kutahya, 

Turkey. The samples generally are in small rock blocks. The manganese dendrites on the rocks have a 
very distinct geometric and random distribution in brown form. Some of them have a fractal structure. 

It is observed that each of them grows outwardly around a nucleus by separating the branches from the 

lower branches. In addition, since the branch thicknesses are different from each other, the 

heterogeneity is also different morphologically. 

The sample surfaces were displayed with a camera and then transferred to a computer. A typical 

magnesite ore surface image is shown in Fig. 1. Five different samples belonging to two groups were 

constructed for calculations in view of heterogeneity and branch thicknesses. These samples were 

named G1-A, B, C, D, E and G2-A, B, C, D and presented in Fig. 2. Radial structures were observed 

on the surface of selected manganese dendrites samples. Then, we scaled the homogeneous patterns 

using the special software (imageJ) numerically with BMP formats that images are transformed into 

binary images (Schneider et al., 2012). We computed with the number of the dark square pixels by 
dividing the pattern into boxes of size є=1 pixel. Each pixel is redistricted in the memory in a such a 

way that the local density ρ(r) of a pixel is 1, in which r is radius from the seed to the pattern perimeter, 

if any part of manganese dendrite patterns is on pixel, and 0 if otherwise is 0. Then, we determined that 

the black pixels containing occupied pixels in image map as a radial function of interval r (Δr) and the 

number of sites from the seed to perimeter, in the usual way. The systematic solution application was 

geometrically shown in Fig. 3. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig. 1.Typical image of the natural magnesite ore surface. 
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Fig. 2.Selected manganese dendrites on the surface of natural magnesite (particle density, branch 

thickness and, heterogeneity were preferred as a selection rule). 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 3.Algorithm for calculating particle numbers around the seed on the selected manganese dendrite. 

The unit radial surface in the each steep, Δs, for the counting particles from the seed to pattern 

perimeter are shown the white ring line on the pattern surface shown in Fig. 3. 

 

4. Results and discussion 

Numerical computations were performed on a finite-size square lattice with linear dimension L by 

using the image processing method. The length of the manganese particle was chosen as linear 
dimension of ε = 1 lattice unit black pixel and surface size si= ε2. The particle density on the magnesite 

Δs 

r 
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surface of the square lattice is given by  

 

 

ρ= N / L 2          (1) 

 

 

where N is the total number of particle in the square lattice. The number of the particle, which is 

proportional to coverage, is on the lattice surface. Some manganese patterns have a radial fractal 

structure. Especially, there is a seed at the center of the generic pattern and grows by adding new 

particles around the seed. Geometrically, since the patterns of the DLA model were similar to the 

structure, we calculated the particle density for each sample and summarized in Table 1.Firstly, to 
determine the radial particle distribution, the number of particles is computed from the seed to the 

cluster perimeters. The number of particles in the radius of pattern Δr interval can be defined by the 

relationship defined below: 

 

Δni=p(s)Δsi          (2) 

 

 

And the function of probability distribution can be defined as: 

 

 

p(s)=Δni/Δsi           (3) 

 
 

Where Δsi is the interval size of sites.p(s) is positive and independent random variables that each with 

the some probability distribution in Eq. 3, and it is follows from the central limit theorem of 

mathematical statistics that this quantity is asymptotically a Gaussian distribution (Charmer, 1962). 

Hence, at last of much diffusion limit events the particles surfaces can be growth as the Gaussian 

distribution function. Accordingly, the relationship between the number of particles and the radial 

radius can be determined by a Gaussian distribution. The distribution function of particles Δn per 

surface interval Δs can be written with: 
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Where σ, s0 are the statistical median of the surface, their geometrical standard derivation, respectively. 

For special case of function, one is normalized distribution function  
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Here R, r0 and  are diameter, donates the median diameters, and is the gyration diameter for the 
patters, respectively. 

 

The site distribution of samples is proportional to the particles distributions in the scaling manganese 

patterns. To compute the scaling function N(r, n) for sites distribution in each steps numerically we 

obtained patterns from the real samples. We compute to describe the distribution as radial that the next 

in coming particles touch the mass of cluster, M, at a distance r which is diameter from the seed to 
pattern perimeter. The typical dependence of the pattern site distribution on interval Δr at fixed values 

of interval Δn is shown in Fig. 4. It is possible to define each with Gaussian function approximate. 

Non-linear regression calculation is shown in the graph as a line (Charmer, 1962). The total number 
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sites of the pattern are N. In Fig. 4, we plotted the asymptotic sites distribution, N (r, n) against the r. 

Particles distributions approximately showed the Gaussian distribution for site distribution as redial. 

The data spectrums of some manganese particle have one or two, and multi picks. Nevertheless, the 

approaches to the initial Gaussian parameters estimate functions N(r, n) taken form Eq. 5 using non-

linear regression method. The regression coefficients vary interval from 0.64555 to 0.96793. The site 

distributions as the radial function are identified with the good agreement of the data spectrums for the 

real manganese patterns with the Gaussian function. In addition, the median values and diameters 

change from 3.518 to 22.169 and from 6.252 to 20.321, respectively. As the manganese structures 

change from the dendrite to compact, the median values decrease. However, the values of the median 

diameters approximately are constant. The one of the reason of that, it can be the number of particles 

not constants for the real manganese groups. The results of the Gaussian fit parameters for the sample 
groups are presented in Table 1.On other hand, it is numerically detected that a Gaussian is not a good 

description for the particles distribution near the seed of patterns, for small r the tail behaves like power 

law. Furthermore, one has to realize that N(r, n) drops to zero for large r simply because of the finite 

size of the patterns. 

 

 

 
 

Fig. 4.Typical graphs of radial particle distributions from the core to the periphery of the manganese 

dendrite groups. 

 
Secondly, the particle distribution function can be defined as the first region where the number of 

particles is the greatest from the core toward the periphery and the other region as the second region. 

The first zone is the dead zone; the second region is the active and clustering region. 

Both regions can be defined by the power-law relations. Accordingly, the following equation for r 

<rmax, N < Nmax 1. region and for r > rmin and N > Nmax2. region, respectively, can be written as: 

 

 

r ~ Nα.                (6) 
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r~ N-β            (7) 
 

where α and β are critical exponents. They are the growth exponents according to the scaling theory.  

 

Fig. 5.Typical graphs of radial particle distributions from the core to the periphery of the manganese 

dendrite groups. 

 

Growth along the boundary of manganese cluster is concentrated at the outer tips as Fig 5. The particle 

number during to growth increases the values of the gyration diameter, rmax, and it decreases towards 

from gyration diameter. The active region moves out-wards leaving behind “dead zones” which are 

shielded by outer tips of the center of seed during to growth process. To calculate growth critical 

exponents, the logarithms of the maximum values of particle radius have been taken for both axes. We 

did the same for the next half-maximum of the data. Then, critical exponents were calculated using the 

linear regression method and the obtained results were compared with the values of structures 

generated by the DLA (Ossadnikand lee, 1993). It is possible to obtain natural manganese dendrites by 
the DLA algorithm. To characterize the particle distribution and the growth process; we consider the 

particles distribution affect that occurs during the growth. 

 

 

Table 1.The calculated parameters of manganese dendrite groups as particle count, particle density, 

growth critical exponents and regression constants. 

 
Samples Particle 

numbers 

(N) 

Particle 

density 

(%) 

median 

 

() 
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(R
2
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Critical 

exponents 

1 region (α) 

Critical 

exponents 
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Regression 

constant 

(R
2
) 

G1-A 14592 16.226 3.518±0.573 5.252±1.463 0.64555 1.9641.376 1.2500250 0.89528 

G1-B 14976 21.267 5.0560.636 6.2522.027 0.92711 0.4240.067 3.8260.497 0.80981 

G1-C 15576 26.236 8.827±0.568 8.775±1.047 0.94484 0.5480.050 4.5020.281 0.93977 

G1-D 20286 26.624 11.483±3.226 10.857±0.757 0.81389 0.5510.049 3.6190.518 0.78686 

G1-E 71820 26.034 18.927±2.405 10.889±1.527 0.87532 0.0660.054 4.0180.378 0.88277 

G2-A 13312 15.737 4.478±0.506 12.294±0.214 0.87079 0.4300.107 2.1530.351 0.74633 

G2-B 14692 30.325 14.884±1.472 13.294±0.214 0.84076 0.5620.035 5.9041.355 0.72625 

G2-C 14080 30.675 22.169±1.937 15.419±0.842 0.90811 0.732±0.0687 6.701±0.930 0.84955 

G2-D 13696 36.427 18.735±±1.021 17.632±0.501 0.871 0.482±0.047 2.312±0.211 0.8499 

G2-E 14976 40.475 33.746±3.544 20.321±0.772 0.96793 0.548±0.036 10.457±0.801 0.9315 
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dendrites-like formation and have given gave some interesting insights into why such a universal 

function should exist, at least for the case of heterogeneous growth. At the beginning of the growth, 

nucleation centers form for the manganese dendrites. Then each centre grows by catching the monomer 

falling inside it, being “active zone”, roughly identified with its Voronoï polyhedron. Therefore its size 

is proportional to the surface of Voronoï polyhedron during to growth process which does not change 

with time if nucleation of new islands in the case of homogenous nucleation is neglected (Mulheran, 

1992). Nevertheless, while the poly morphological structures of the manganese are changed from the 

dendrite to the compact structures in macroscopic scale, the polyhedron structures in them are nearby 

lasted. The result is that at any coverage the site size distribution of the islands reproduces that of the 
Voronï cells, which explains the rescaling for different coverage for the manganese groups. Therefore, 

manganese particles growth seems natural that the character of a growing patterns must be represented 

by a hierarchy structure reflecting whole growth properties of the subtract surface. 

 

4. Conclusion  

In this paper, the irregular particles distributions having from the DLA-likeform to compact crystal 

growth of the real manganese groups are investigated by using scaling method. Radial manganese 

particle distribution and probability distribution function were determined using nonlinear regression 

method. Also, it is clarified that the numerical data spectrums only consistent with a Gaussian behavior 

around maximum numbers but this description indeed fails in the small r tail. In addition, growth 

critical exponents were calculated using a linear regression method. Critical base values were shown to 
consistent with the values calculated for the DLA model representations. As a result, while it is possible 

to explain the formation of manganese dendrites geometrically, the crystal structure of branches is not 

possible to define. Therefore, this study is very important for statistical physics. 
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