
International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

305 | P a g e
www.iiste.org

Design of Weave Pattern Model for the Selection Box

Driving Software

Mustafa Dulger

Mechanical Engineering Department, Faculty of Engineering

University of Istanbul Cerrahpasa, Istanbul 34320, Turkey

E-mail: mdulger @istanbul.edu.tr

Abstract

A PC driven electronic selection box, simply Selection Box, together with its driving software, is

designed to replace perforated card feed pattern system in a jacquard mechanism used on classical

weaving looms. A new Weave Pattern Model for the Selection Box’s driving software is developed and

presented in this paper.

The developed Weave Pattern Model provides access to a weave pattern and serves as an underlying data

structure for the Selection Box’s driving software. Further a feed protocol, by which holes sequence on

the perforated card for a given weave pattern is determined, is automated.

The dynamic link library, MCreator.dll, keeping the implementation of Weave Pattern Model is

developed in C++ language. A small client application, HLChanger.exe, testing the library is also

developed. HLChanger.exe, besides testing the library, enables user change Colour Stack of the Weave

Pattern Model and thus permitting the visualisation of the Weave Pattern. The library is available from

the author on request. An example weave pattern is worked out on this client program and the result is

presented at the end.

Keywords: Weave Pattern, Weave Pattern Model, Perforated Card Protocol, Perforated Card, Jacquard

Mechanism, Solenoid Matrix, Loom, Image Matrix, Colour Stack, Pattern Interface, Protocol Interface.

1. Introductıon

A study on the modernisation of classical jacquard mechanism on weaving loom is carried out by Dülger

[1]. In this study, group of Solenoid Matrixes forming a Selection Box is designed to replace perforated

card feed system on a classical jacquard mechanism. For each hole in the perforated card, there is one

solenoid in the Solenoid Matrix. Each solenoid is responsible for either opening or closing the hole

assigned to it. In this context, the Solenoid Matrix acts as a programmable perforated card [1] [2] [3].

The driving application software package HL [1] running on an IBM-PC is developed to control and

drive the Selection Box. A PC (Personal Computer), provided with a 32-Bit IO card, serves as a controller

for the Selection Box. The application software package HL, converts pixel and colour information of the

Weave Pattern into respective TTL signals at the output ports of the IO card. A certain protocol named

as five-coloured feed protocol is used in converting Weave Pattern information into TTL signals. These

signals are then fed into the Selection Box. The Selection Box restores states of solenoids to simulate the

perforated card that should be in mesh for the current stroke of the loom.

In this manuscript, The Weave Pattern Model is going to be discussed in detail. The Weave Pattern Model

is developed for the HL software package, to enable it get easy access to the Weave Pattern.

2. Weave Pattern Model - Overview

Block diagram of the Weave Pattern Model is given in Figure 1. As seen from the figure, the Weave

Pattern Model is made up of two main components. They are the set of Interfaces and the Data Model.

2.1. Interfaces
The first interface in the model is the Pattern Interface and defines virtual gate functions to provide

access to the elements of Weave Pattern. The second interface is the Protocol Interface and provides

virtual gate functions to access perforated card protocol.

http://www.iiste.org/

International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

306 | P a g e
www.iiste.org

2.1.1. Pattern Interface

The Pattern Interface is designed to provide virtual access functions for the components of the Weave

Pattern Model. The Processor object implements the Pattern Interface. The Pattern Interface has

following functions;

 ReadBmp (BSTR filename);

 Convert (int nFromTo) ;

 ReplaceColour (DWORD oldColour, DWORD newColour)

 WriteBmp (BSTR filename)

 get_Bitmap (BYTE** ppVal);

 put_Bitmap (BYTE* pVal);

 GetColourArray (int iCl, BYTE **ppClmArray)

 GetRowArray (int iRw, BYTE **ppRowArray)

ReadBmp function read the pattern from a stream file. The stream file is located by the parameter

filename. After the successful call of the function, new objects of the Data Model are recreated as the old

ones are deleted.

Convert function builds either Image Matrix object from Weave Pattern object or vice versa depending

upon the value of the parameter nFromTo. If the parameter nFromTo has the value BMPTOI = 1, the

Image Matrix object is updated from Weave Pattern object and if the parameter nFromTo has the value

ITOBMP = 0, Weave Pattern object is updated from Image Matrix object.

+

Figure 1. Weave Pattern Model

ReplaceColour function replaces the colour entity in Colour Stack referenced by the first parameter

oldColour with the colour entity given by the second parameter newColour.

WriteBmp function stores Weave Pattern object into the stream file located by the parameter filename.

Element functions get_Bitmap and put_Bitmap provide access to the Weave Pattern object stored in DIB

format. The parameter in the get_Bitmap function ppVal is the address of the pointer on the buffer of

bytes and passed to the function. After the successful call of the function, the buffer keeps the image of

the Weave Pattern object. The put_Bitmap function replaces the content of the Weave Pattern object with

the content of the buffer which is pointed by the parameter pVal.

http://www.iiste.org/

International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

307 | P a g e
www.iiste.org

The GetColourArray function provides access to the colour references of the column of the Image Matrix

indexed by the parameter iCl. The parameter ppColourArray keeps the address of the pointer on the

buffer of bytes and passed to the function. After successful call of the function, the buffer keeps colour

references for the indexed column of the Image Matrix. Similarly the GetRowArray function returns

colour references for the row of the Image Matrix indexed by the parameter iRw. The parameter

ppRowArray keeps the address of the returned buffer pointer.

2.1.2. Protocol Interface

In the classical jacquard mechanism data feed is done through the perforated card implementation. The

commonly used perforated card layout for carpet looms has 15 rows and 84 columns as illustrated in

Figure 2. This layout enables controlling of maximum 15 x 84 = 1260 needles in the loom.

Holing of the perforated card is performed according to a certain feed protocol. There are of course

different feeding protocols. Discussing all of these protocols is out of the scope of this study. The wide-

spread five-coloured feed protocol will only be explained here because it is the dominating protocol

currently used in the industry.

Figure 2. Perforated card with five-coloured feed protocol

In the five-coloured feed protocol there are five main rows and each of which can have three sub-rows

on a perforated card. Each of the main rows corresponds to different colour in the Weave Pattern. The

Weave Pattern hence have maximum of five colours.

Each column, composing of five main rows, represents three successive pixels in the Weave Pattern.

Therefore only three of fifteen locations should be holed.

Sub-rows in a main row describe the location of pixels in order. If the successive order of pixels in Weave

Pattern is red, white and green, the first sub-row of the red row, the second sub-row of the white row and

the third sub-row of the green row must be holed as indicated in the first column of Figure 2.

There exist 84 columns in a single perforated card. They represent total of 84x3 = 252 successive pixels.

Hundreds of perforated cards are hence required for even a simple Weave Pattern.

Holes sequence, Hs, is defined as 16 bits length word. It simulates one column in the perforated card. As

there are only 15 hole locations (rows) in the column, each location is represented by one bit in the holes

sequence. The first location corresponds to Least Significant Bit, LSB, of the holes sequence. The last

location, that is the row 15 in the column corresponds to15th bit of the holes sequence. If the location is

holed, the corresponding bit value in the holes sequence is 1 and if it is non-holed the bit value is 0. For

example, the holes sequence for the first column in the perforated card shown in Figure 2. is indicated in

binary and hexadecimal form as follow,

Hs = (0 010 000 100 000 001)b = 0x2101

In this column the colours of the first three successive pixels in the Weave Pattern are given in such a

way that the colour of the first pixel is the first main colour, the colour of the second pixel is the fifth

main colour and the colour of the third pixel is the third main colour.

The Protocol Interface provides gate functions implemented for the five-coloured feed protocol. The

Processor object makes the implementation of the Protocol Interface.

The functions of the Protocol Interface are,

 GetRowSequence (int nRwLine, WORD **ppHoles);

 GetSequence (WORD** ppHoles) ;

GetRowSequence function returns the word buffer indicating the holes sequences. Each element of the

buffer represents three successive pixels of the row indexed by the parameter nRwLine. The pointer to

the address of the word buffer is given by the parameter ppholes and passed to the function. After the

successful call of the function, the word buffer keeps the holes sequences. The size of buffer depends

http://www.iiste.org/

International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

308 | P a g e
www.iiste.org

upon the length of the row of the Weave Pattern. The last element of the word buffer keeps the value of

0xFFFF signalling the end of the buffer.

GetSequence function does the same, not for the single row but also for the entire Weave Pattern. The

returned word buffer holds the sequences of row lines starting by the first row and ending by the last row.

2.2. Data Model

The Data Model keeps internal components to store and manipulate Weave Pattern. These components

are Weave Pattern, Image Matrix, Pixel Array, Colour Stack and Processor.

2.2.1. Weave Patten

The Weave Pattern is a picture stored in a Device Independent Bitmap (DIB) format. DIB format is

developed by IBM [4] and Microsoft [5] corporations. One can refer to Note 1. for more information

about DIB format.

2.2.2. Image Matrix

The Image Matrix is the key component of the Weave Pattern Model. Weave Pattern is mapped to the

Image Matrix in such a way that the first row of the Weave Patten becomes the last row in the Image

Matrix so that Image Matrix is in one to one correspondence with the weave pattern. That means, upper

left pixel in the weave pattern is represented in the first row and first column of the Image Matrix and

lower right pixel of the real weave pattern is represented in the last row and last column of the Image

Matrix.

The Image Matrix keeps reference values on a colour entity in the Colour Stack for each pixel in the

Weave Pattern. These reference values have only meaning if a predefined Colour Stack exists. The term

“reference on a colour entity” needs a little bit more explanation. The relative position of the colour

entity in the Colour Stack to the stack begin is defined as a reference on the colour entity. It is obvious

that if the Colour Stack is changed the appearance of the Weave Pattern would also be changed although

the Image Matrix remains unchanged.

2.2.3. Pixel Array

The Pixel Array is nothing else than keeping the Image Matrix in an array. Allocation of the Image Matrix

entities in the Pixel Array is done as follow

PixelArray[k] = ImageMatrix[i, j] (1)

where,

 k : (j-1) × nCl + i.

 nCl : number of columns in the Image Matrix.

 nRw : number of rows in the Image Matrix.

i : column index ranging from 1 to nCl in the Image Matrix.

 j : row index ranging from 1 to nRw in the Image Matrix.

It can be concluded from equation (1) that the allocation of the rows in the Pixel Array starts from the

first row and ends with the last row of the Image Matrix.

Pixel Array is constructed to achieve the compatibility with the standard DIB’s Image Array. It requires,

however, a slight modification because DIB’s Image Array keeps the Weave Pattern in reverse row order.

That means, it starts with the last row and ends with the first row. The correlations between Image Array

of Weave Pattern Model and DIB’s Image Array is

DIBImgArry[L] = ImageMatrix[i, j] (2)

where,

 L : (nRw -j) × nCl + i

Figure 3. gives the correlation between Image Matrix, Colour Stack and Pixel Array schematically.

http://www.iiste.org/

International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

309 | P a g e
www.iiste.org

Figure 3. Image Matrix, Colour Stack and Pixel Array

2.2.4. Colour Stack

The Colour Stack is the proxy of the RGBQUAD array of the Weave Pattern (one can refer to Note 1 for

more information about RGBQUAD array). The Weave Pattern’s RGBQUAD array is hence

reconstructed by the Colour Stack of the Weave Pattern Model.

Each element in the Colour Stack has a size of double words and represents an object of RGB colour

structure. RGB stand for Red-Green-Blue colours. They are basic colour. Any colour, different than basic

colours, can be expressed in terms of basic colours. The RGB colour structure in C++ syntax is defined

as

DWORD RGB {BYTE bRed, BYTE bGreen, BYTE bBlue};

where,

bRed is the red component of the colour, bGreen is the green component of the colour and bBlue is the

blue component of the colour.

http://www.iiste.org/

International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

310 | P a g e
www.iiste.org

RGB colour structure is widely supported by nowadays computer technology. By combining basic

colours in different intensities, it is possible to get huge amount of different colours. Basic colours have

an intensity range of 0-250. Hereby number 0 indicates no intensity and number 250 indicates full

intensity. For example {255,0,0} correspond pure red, {0,255,0} pure green and {0,0,250} pure blue.

Each Weave Pattern has its own Colour Stack. One must not make much consideration about Colour

Stack as it is integral part of DIB format.

2.2.5. Processor

The Processor is the operational component of the Weave Pattern Model. It simply converts Weave

Pattern in DIB format into the Image Matrix and creates corresponding Colour Stack. In this conversion

only the DIB image array of the Weave Pattern is converted to the Image Matrix of the Weave Pattern

Model. This conversion can be carried out in reverse direction as well. That means if the Image Matrix

and its Colour Stack exist, the Processor rebuilds the corresponding Weave Pattern.

3. Discussion & Conclusion

The Weave Pattern Model developed in this study provides full access to the Weave Pattern. The Weave

Pattern, in which the picture is kept in Device Independent Bitmap format, is modelled as a matrix of

colour references and resulting matrix is named as Image Matrix. Two interfaces are designed to provide

full access to the Weave Pattern Model.

The entire implementation for the Weave Pattern Model is carried out in programming language C++ for

the Microsoft Windows platform. A dynamic link library module named MCreator.dll, is designed for

this purpose. The Weave Pattern Model is designed as COM objects (Component Object Model) [6] [7].

Any client application linking with this library has an access to the Weave Pattern Model. The library is

entirely used by the Selection Box Driving Software HL, and demonstrates full success in all functions.

The header file for the Weave Pattern Model is given in Note 2. All declarations related with the Weave

Pattern Model are given in this header file.

In order to test the library, a small test program HLChanger.exe is developed. In this test program, the

Weave Pattern is visualized. The Colour Stack in the Weave Pattern has five different colours. The user

can pick any of these colours in the Colour Stack and replace it with another colour. The Weave Pattern

is redrawn by using the changed Colour Stack. Colour change is performed by using the Pattern

Interface. Snapshots showing the same Weave Pattern with different Colour Stack are taken from the test

program HLChanger.exe and given through Figure 6. and Figure 7. in Note 3.

As a result following points can be drawn.

 A new Weave Pattern Model is designed.

 The Weave Pattern Model incorporates a Weave Pattern stored in Device Independent Bitmap

(DIB) format.

 Keeping the Weave Pattern in DIB format extremely eases Weave Pattern generation because

there are plenty of bitmap editors available.

 Two interfaces are designed providing full access to the Weave Pattern Model.

 The Weave Pattern Model is fully implemented in C++ and a Dynamic Link Library having the

COM object of Weave Pattern Model is developed.

 Pattern Model provides full functionality for the Selection Box driving software, HL.

Symbols & Abbreviations

HL : Selection Box Driving Software

HLChanger : Client Test Program testing Weave Pattern Model

IBM-PC : IBM Personal Computer

IO : Input / Output

IO32 : 32 Bit Input / Output Card

HL : Selection Box Driving Program

TTL : Transistor-Transistor-Logic

DIB : Device Independent Bitmap

OS/2 : Operating System 2 by IBM for IBM-PC

i, : Colour index

j : Row index

iCl : Colour index

http://www.iiste.org/

International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

311 | P a g e
www.iiste.org

iRw : Row index

nCl : Number of colours in the Image Matrix

nRw : Number of rows in the Image Matrix

ImageMatrix[- ,-] : Two dimensional Image Matrix

PixelArray[] : One dimensional Pixel Array

DIBImgArry[] : One dimensional DIB image array

BYTE : 8-Bit unsigned character

WORD : 2-BYTE unsigned character

DWORD : Double WORD character

int : integer

ITOBMP : Enumerator, image to bitmap (= 0)

BMPTOI : Enumerator, bitmap to image (= 1)

BSTR : B-String (system allocated character string)

Filename : file name parameter of type BSTR

nFromTo : convert parameter of type integer

oldColour : colour parameter of type DWORD

newColour : colour parameter of type DWORD

ppClmArray : address of pointer to colour array

ppRowArray : address of pointer to row array

LSB : Least Significant Bit

Hs : Array of holes sequence in WORD

Figure 4. Device Independent Bitmap Format Structure

Notes

Note 1: Device Independent Bitmap Format

DIB has been defined by IBM and Microsoft corporations. Only a brief explanation of the DIB format is

done here for the sake of the completeness of the article.

The DIB can exist in two different formats; the Windows format and the OS/2 format. Because the OS/2

format is rarely used, the DIB in the Windows format will be employed.

The DIB stored in a file consists of four structures, as shown in Figure 4. The first structure is the

BITMAP FILE HEADER structure. It is optional and indicates whether the DIB is persistent. The other

structures are obligatory. BITMAP INFO structure provides information about, how the DIB’ Image

Array is to be interpreted. It also provides complete colour stack when DIB has one.

http://www.iiste.org/

International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

312 | P a g e
www.iiste.org

The BITMAPFILEHEADER structure is used only when the bitmap is read or stored to disk. When a

DIB is manipulated in memory, the BITMAPFILEHEADER structure is often discarded. The remaining

parts of the DIB structure follow the same format whether they are located in a memory or in a disk file.

The BITMAPINFO structure contains a BITMAPINFOHEADER and zero or more colour stack values

for pixels stored in the bitmap. BITMAPINFOHEADER contains information about the dimensions,

colour format, and compression for the bitmap.

RGBQUAD Array is the colour table of the bitmap. Each element of the colour table is four byte long

and holds a colour entity defined in RGB system.

DIB Image Array is an array of pixel information. Every pixel in the bitmap is represented by a pointer

to the colour entity in the colour table. Each element in the image array hence contains a value pointing

to the colour entity entries. If, for example, the element in the array has a value of 32, the corresponding

pixel in the bitmap will use the colour found in colour table entry number 32. The main characteristic of

DIB image array is that, allocation of pixel in bitmap takes place in reverse row order as for the true

picture.

Note 2: Header File for the Weave Pattern Model Class

Figure 5. Screen copy of the Header File for the Weave Pattern Model Class

http://www.iiste.org/

International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

313 | P a g e
www.iiste.org

Note 3: Weave Patterns

Figure 6. Weave Pattern (example 1)

http://www.iiste.org/

International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

314 | P a g e
www.iiste.org

Figure 7. Weave Pattern (example 2)

References

[1] Dülger, M. (2003). “Developing a Software Package for Electronic Jacquard System of Classical

Textile Machines”, Ph.D. Thesis, University of Gaziantep.

[2] Dülger, M. (June 2009). “Preliminaries on Latching Low Level Physical Signals from a parallel

port of a PC.” Int. Eng. J. Research & Development, Vol.1, No.2.

[3] Dülger, M. (June 2009). “Design of a PC Driven Selection Box for a Jacquard Mechanism on a

Conventional Carpet Weaving Loom.” Int. Eng. J. Research & Development, Vol.1, No.2.

[4] IBM - International Business Machines Co., http://www.ibm.com

http://www.iiste.org/
http://www.ibm.com/

International Journal of Scientific and Technological Research www.iiste.org
ISSN 2422-8702 (Online)
Vol 4, No.10, 2018

315 | P a g e
www.iiste.org

[5] Microsoft, http://www.microsoft.com

[6] MSDN - “Microsoft Developer Network Library” http://msdn.microsoft.com/en-

us/library/default.aspx

[7] Rogerson, D. (January 1997) “Inside Com”, Microsoft Press.

http://www.iiste.org/
http://www.microsoft.com/
http://msdn.microsoft.com/en-us/library/default.aspx
http://msdn.microsoft.com/en-us/library/default.aspx

