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Abstract 

Structures used in the application must perform their duties undamaged during the time they are used. Cracks 

often affect the dynamic properties of the structural elements and can cause severe durability problems. The 

crack detection in the structural elements and vibration analysis are vital in engineering applications and so 

far has been the subject of many researches. In present study, free vibration analysis of the un-cracked and 

cracked cantilever beam was performed and the first three natural frequencies were determined as 

theoretically and numerically. After verifying the results, the beams were modeled using CATIA software 

and analyzed using the finite element method with ANSYS software in order to get quick results. The effect 

of the location of the crack, the depth of the crack, the width of the crack and the number of cracks on the 

first three natural frequencies was investigated by performing a parametric study. The results are given in 

tables and graphs. 
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1. Introduction 

Structures like beams are widely used in the steel construction of stadiums, bridges, buildings, skyscrapers, 

ships and many machines. There are few examples of real life systems which can be approximated to 

cantilever beam. For example, an aircraft wing, a tower crane overhang is like a cantilever beam.  Such 

structures must perform their duties safely and without damage during their use. The most common type of 

damage in such beams is cracked structures. Beam cracks become more dangerous if there are static or 

dynamic loads. The presence of cracks in a single beam can cause failure the whole structure. Therefore, 

crack detection has an important role in engineering applications. In the literature, the subject of free vibration 

analysis of cracked beams has significantly increased in recent years. But, many of these studies have 

experimentally and numerically examined the effect of crack depth and crack location on the first three natural 

frequencies in single or two cracked beams. Patil and Verma [1] applied ANSYS software on both crack and 

un-crack cantilever beam for finite element analysis. The experiments have done for finding natural 

frequencies by using various cross section, crack location and crack depth. The consequences achieved from 

fuzzy logic technique and finite element analysis is compared by them. Orhan [2] performed the free and 

forced vibration analysis of the cantilever beam with one and double cracks. Natural frequencies are found 

by doing free vibration analysis in his study. In the investigation of crack analysis, change in natural 

frequencies and harmonic responses are evaluated related to the change in crack depth and location. 

Chaudhari and Patil [3] used crack and un-crack aluminum beam for finding first three natural frequencies. 

They obtained deflection and natural frequencies for the variety of beam condition at different crack depth 

and locations. Patil et al. [4] investigated the effect of vibration on I section steel cantilever beam using 

ANSYS Workbench R14.5. They carried out vibration analysis on beam without crack and with crack by 

using computer aided software ANSYS. Satpute et al. [5] did finite element analysis of cracked and un-

cracked cantilever circular beam using ANSYS 14.5 and obtained first three natural frequencies in concept 
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of transverse mode. They examined the effect of the location and depth of the crack on natural frequencies. 

In experimental frame, Barad et al. [6] found first two natural frequencies of the cracked cantilever beam. 

They presented the influence of the crack depth and location on natural frequencies. Gowd et al. [7] found 

first three relative natural frequencies for an un-cracked and single cracked beam with using finite element 

method and used two algorithms using fuzzy logic and artificial neural networks for crack detection. They 

used the first three relative natural frequencies as three inputs and the corresponding relative crack depth and 

location as the two outputs in the algorithms. Behera et al. [8] fulfilled numerical and experimental studies 

for finding mode shapes and natural frequencies of crack and healthy aluminium beam structure. They used 

fuzzy logic methodology for analysing the presence of a crack. Chaudhari and Patil [9] used fuzzy logic 

applications for identifying the fault in terms of crack in their investigation. They took into account the 

transverse surface of the crack. They made analysis by using finite element methods and fuzzy logic 

techniques. Sahu et al. [10] proposed a method like Fuzzy logic technique and Adaptive Genetic Algorithm 

for structural damage detection in an unhealthy cantilever aluminum alloy beam. Afterwards, the results 

obtained both from the experimental analysis and the proposed methods are verified. Parhi and Choudhury 

[11] investigated the crack on the horizontal surface using fuzzy logic technique and finite element methods. 

They used first three natural frequencies for input parameters to the fuzzy controller and the relative crack 

depth and location for output parameters of the fuzzy controller. Pawar and Sawant [12] used ANSYS 

software and developed an experimental setup for vibrational analysis of cracked cantilever beam. They 

compared and verified results of numerical and experimental analysis. Lal and Johny [13] fulfilled a 

parametric study to assess the effect of crack depth ratio, location of cracks and number of cracks on the first 

three natural frequencies of the isotropic cantilever beam. Agarwalla and Parhi [14] studied the effect of an 

open crack on free vibration of the cantilever beam and compared the results obtained from the numerical 

and the experimental method. Al-Ansari et al. [15] found the natural frequency of an unhealthy simple 

supported beam (the crack with different depths) analytically, experimentally and numerically by ANSYS 

program in their research. The results obtained from three methods are compared. A continuous bilinear 

model for the displacement field is used by Heydari et al. [16], for the investigation of forced flexural 

vibration of an unhealthy beam in their studies. In order to show the accuracy of the method, they compared 

the obtained frequency values and the finite element results. Mia et al. [17] found natural frequency and mode 

shapes of vibration for both healthy and unhealthy fixed-free beam. Using Finite Element Analysis software 

(Abaqus) for cracked beam, they analyzed for different crack depth and location.  

In this study, the first three natural frequencies and mode shapes of an un-cracked and cracked cantilever 

beam with free vibration have been studied in details theoretically and using Finite Element Method 

(ANSYS). In addition, the first three natural frequencies of cantilever beam with single crack were obtained 

theoretically and numerically, then were compared with the literature and were observed to be quite 

compatible. For cracked cantilever beam four criteria such as different width of crack, different crack number, 

different crack location and different crack depth have been investigated. The effects of these criteria on the 

first three natural frequencies are shown by tables and graphs. 

2. Theory of Free Vibration for Un-cracked and Cracked Cantilever Beam 

The governing differential equation of motion for the free vibration of elastic beams is the equation given 

below in [18]: 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4 + 𝑚
𝜕2𝑦

𝜕𝑡2 = 0                             (1) 

where E is the elasticity modulus, m is the beam mass, I is the moment of inertia (for rectangular cross section, 

𝐼 =
𝑏ℎ3

12
), b is the beam width and h is the beam height, L is the length in Fig. 1. 
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Figure 1. Un-cracked fixed-free beam and cross section 

 

 

the solution y(x, t) of Eq. (1) is given as follows: 

𝑦(𝑥, 𝑡) = 𝑌(𝑥)𝑓(𝑡)                        (2)                                                                               

In Eq. (2) function Y(x) that varies only with x, and a function f(t) that varies only with time (t). 

By substituting Eq. (2) into Eq. (1) and is found; 

 

𝐸𝐼
𝜕4𝑌(𝑥)𝑓(𝑡)

𝜕𝑥4 = −𝑚
𝜕2𝑌(𝑥)𝑓(𝑡)

𝜕𝑡2                                    (3a)                                                                         

  

𝐸𝐼

𝑚

𝜕4𝑌(𝑥)/𝜕𝑥4

𝑌(𝑥)
= −

𝜕2𝑓(𝑡)/𝜕𝑡2

𝑓(𝑡)
(3b)                                                                                                     

   

 

If each side of the Eq. (3b) is equal to the same constant 𝜔2, that is; 

 

𝐸𝐼

𝑚

𝜕4𝑌(𝑥)/𝜕𝑥4

𝑌(𝑥)
= 𝜔2 (4a)                                                                                                                   

   

 

−
𝜕2𝑓(𝑡)

𝜕𝑡2

𝑓(𝑡)
= 𝜔2 (4b)                                                                                                                          

   

 

or 

 

𝜕4𝑌(𝑥)

𝜕𝑥4 − 𝜆4𝑌(𝑥) = 0 (5a)                                                                                                               
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𝜕2𝑓(𝑡)

𝜕𝑡2 + 𝜔2𝑓(𝑡) = 0 (5b)                                                                                                               

   

 

where 

 

𝜆4 =
𝑚𝜔2

𝐸𝐼
(6)                                                                                                                                  

   

 

The solution Y(x) of Eq. (5a) may be assumed as 

 

𝑌(𝑥) = 𝐶𝑒𝜓𝑥 (7)                                                                                                                            

   

where C and ψ are constants. If the substitute Eq. (7) into Eq. (5a), it is obtained Eq. (8) 

𝜕4𝐶𝑒𝜓𝑥

𝜕𝑥4 − 𝜆4𝐶𝑒𝜓𝑥 = 0 (8)                                                                                                               

   

after mathematical operations, is obtain as follows: 

𝜓4 = 𝜆4 (9a)                                                                                                                                 

    

the roots of ψ are as follows: 

𝜓1 = 𝜆, 𝜓2 = −𝜆, 𝜓3 = 𝑖𝜆, 𝜓4 = −𝑖𝜆, (9b)                                                                              

   

In Eq. (9b), 𝑖 = √−1. By using the roots of ψ given by Eq. (9b), it is found that Eq. (7) may be written as 

 𝑌(𝑥) = 𝐶1𝑒𝜆𝑥 + 𝐶2𝑒−𝜆𝑥 + 𝐶3𝑒𝑖𝜆𝑥 + 𝐶4𝑒𝑖𝜆𝑥                (10)                                                          

   

By using the Eulerian relations 

𝑒±𝜆𝑥 = cosh 𝜆𝑥 ± sinh 𝜆𝑥 (11a)                                                                                                   

   

𝑒±𝑖𝜆𝑥 = cos 𝜆𝑥 ± 𝑖 sin 𝜆𝑥 (11b)                                                                                                     

   

the trigonometric form of Eq. (10) is obtained: 

𝑌(𝑥) = 𝐴1 cosh 𝜆𝑥 + 𝐴2 sinh 𝜆𝑥 + 𝐴3 cos 𝜆𝑥 + 𝐴4 sin 𝜆𝑥 (12)                                                   

   

Eq. (12) is the general solution of Eq. (5a). 𝐴1, 𝐴2, 𝐴3 and 𝐴4 and the values of λ may be determined by 

using Eq. (12) and applying the beam’s boundary conditions. From Eq. (6), it is obtained the frequencies ω 

(rad/sec), may be determined as follow [18]: 
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𝜔 = 𝜆2√
𝐸𝐼

𝑚
(13)                                                                                                                                

   

If boundary conditions are written according to Fig. 1,  

at𝑥 = 0,𝑌 = 0,  
𝑑𝑌

𝑑𝑥
= 0                                                               (14)                                   

at 𝑥 = 𝐿,  
𝑑2𝑌

𝑑𝑥2 = 0,  
𝑑3𝑌

𝑑𝑥3 = 0                                                          (15)                                        

   

If Eq. (14) and Eq. (15) is solved by applying boundary conditions, it is obtained Eq. (16) as 

cosh 𝜆𝐿 cos 𝜆𝐿 = −1 (16)                                                                                                           

  

Eq. (16) must be solved numerically and the graph of this equation is shown in Fig. 2 and the roots are shown 

Table 1.  

 

 

 

 

 

             

 

 

 

 

 

 

 

 

Figure 2. A graph of Eq. (16) 

Table 1. The roots of Eq. (16) 

Index 𝜆𝑛𝐿 

n=1 1.8751 

n=2 4.69409 

n=3 7.85476 

n=4 10.9955 
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The final equation for natural frequency of the nth mode (𝜔𝑛) of un-cracked beams is presented in Eq. (17). 

ρ is the beam density and A is the beam cross section area.  

 

𝜔𝑛 = (𝜆𝑛𝐿)2√
𝐸𝐼

𝑚
= (𝜆𝑛)2√

𝐸𝐼

𝜌𝐴𝐿4
                           (17)                                                                                                        

 

 

 

 

 

 

 

Figure. 3 Fixed-free beam with one crack 

 

The equation below (Eq. 18) is natural frequency of the nth mode (𝜔𝑛𝑐) for one cracked beams;  

 

𝜔𝑛𝑐 = (𝜆𝑛)2√
𝐸𝐼1

𝜌𝐴𝐿4 (18)                                                                                                      

  

𝐼1 = 𝐼 − 𝐼𝑐 (19)                                                                                                                    

    

where 𝐼1 is the moment of inertia of a cracked beam, I is the moment of inertia of a un-cracked beam and 

𝐼𝑐 is the moment of inertia of cracked beam element (𝐼𝑐 =
𝑏(ℎ−𝑑)3

12
), a is the crack width, d is the crack depth, 

𝑥1 is the crack location from the fixed end. Whereas in this paper, in the free vibration analysis of multiple 

cracked beams, the parametric work was done numerically since it would be obtained faster with finite 

element methods instead of analytical methods. 

 

3. Verification of the Results 

For verification of the present exact results, an isotropic cantilever beam of dimensions 800 mm x 20 mm x 

20 mm, with single crack was considered. The other properties are as follows: the modulus of elasticity E = 

2.1 x 1011 N/m2, ρ =7800 kg/m3, poisons ratio ν = 0.35, crack width a = 1 mm, crack depth d = 2 mm and for 

single crack location at 𝑥1 = 120 mm from the fixed end. The geometric model of beam was also modelled 

on CATIA software, the analysis was carried out in ANSYS and first three natural frequencies were extracted, 

the results of which are presented in Table 2. The results obtained from numerical analysis (ANSYS) were 

found to be in perfect agreement with the exact solution and results in the literature [19]. 
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 Table 2. Comparision of modal frequencies of beam with  

                         single crack 

 Exact 

(Present) 

(Hz) 

ANSYS 

(Present) 

(Hz) 

Numerical 

(Literature) 

(Hz) [19] 

Mode 1 26.180 26.139 26.123 

Mode 2 164.073 163.82 164.092 

Mode 3 459.410 456.74 459.603 

 

4. Parametric studies of multi-crack beams 

A parametric study was performed to determine the influence of crack width, crack numbers, crack location 

and crack depth on the first three natural frequencies of the cantilever beam. For this purpose, firstly the 

geometry was modelled on CATIA software each beam (Fig. 4). After that, the analysis was done in ANSYS 

(Fig. 5) and the results were obtained and presented with tables (Table 3-5) and graphs (Fig. 6-11). The 

frequency ratio (fr) in the graphs is the ratio of the natural frequency of the cracked beam (cn) to the natural 

frequency of the un-cracked beam (ucn) (fr=cn/ucn). An isotropic cantilever beam was considered with the 

following properties: length L=800 mm with a rectangular cross-section with width b = 30 mm and height h 

= 30 mm, E= 2.1x1011 N/m2, ρ = 7850 kg/m3 and ν = 0.3.  

 

 

Figure 4. CATIA model of cantilever beam 
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(a) 1st Mode of vibration (single cracked beam) 

 

(b) 2nd Mode of vibration (single cracked beam) 

 

(c) 3rd Mode of vibration (single cracked beam) 

Figure 5. Mode shapes of first three natural frequencies of beam with single crack  
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Table 3. Natural frequencies of the cantilever beam with a crack for the first mode (Hz)  (a=1 mm) 

 Un-crack beam x1=150 x1=300 x1=450 x1=600 x1=750 

d=0.5 mm 

39.198 

39.190 39.194 39.197 39.198 39.199 

d=1 mm 39.173 39.187 39.195 39.198 39.200 

d=1.5 mm 39.148 39.175 39.192 39.199 39.202 

d=2 mm 39.114 39.161 39.187 39.199 39.203 

d=2.5 mm 39.067 39.140 39.182 39.199 39.204 

d=3 mm 39.017 39.117 39.175 39.199 39.206 

d=3.5 mm 38.958 39.091 39.167 39.198 39.207 

d=4 mm 38.891 39.061 39.159 39.198 39.208 

d=4.5 mm 38.815 39.027 39.149 39.197 39.210 

d=5 mm 38.732 38.989 39.137 39.196 39.211 

 

Table 4. Natural frequencies of the cantilever beam with a crack for the second mode (Hz) (a=1 mm) 

 Un-crack beam x1=150 x1=300 x1=450 x1=600 x1=750  

d=0.5 mm 

244.050 

244.050 244.030 244.010 244.040 244.060  

d=1 mm 244.050 243.980 243.920 244.010 244.060  

d=1.5 mm 244.050 243.910 243.780 243.960 244.070  

d=2 mm 244.040 243.810 243.600 243.890 244.070  

d=2.5 mm 244.030 243.670 243.340 243.800 244.070  

d=3 mm 244.020 243.510 243.050 243.700 244.080  

d=3.5 mm 244.010 243.320 242.720 243.580 244.080  

d=4 mm 244.000 243.110 242.340 243.450 244.090  

d=4.5 mm 243.990 242.880 241.920 243.300 244.090  

d=5 mm 243.970 242.620 241.450 243.130 244.090  

 

Table 5. Natural frequencies of the cantilever beam with a crack for the third mode (Hz) (a=1 mm) 

 Un-crack beam x1=150 x1=300 x1=450 x1=600 x1=750  

d=0.5 mm 

676.410 

676.390 676.340 676.370 676.280 676.390  

d=1 mm 676.340 676.190 676.310 676.020 676.400  

d=1.5 mm 676.270 675.960 676.220 675.620 676.410  

d=2 mm 676.160 675.660 676.090 675.090 676.400  

d=2.5 mm 676.020 675.220 675.910 674.350 676.340  

d=3 mm 675.860 674.760 675.730 673.540 676.370  

d=3.5 mm 675.680 674.220 675.500 672.590 676.360  

d=4 mm 675.460 673.600 675.250 671.520 676.350  

d=4.5 mm 675.220 672.910 674.960 670.310 676.330  

d=5 mm 674.960 672.150 674.640 668.970 676.310  
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5. Results and Discussion 

Some of the findings are presented below. 

 As the crack depth increased, a decrease in all three natural frequencies was observed (Fig. 6 - Fig. 

8). 

 As the number of cracks increased, all three natural frequency values decreased (Table 6). 

 As the crack width increased, a decrease was observed in the first natural frequency values and there 

was no significant decrease in the second and third natural frequencies (Table 7). 

 As can be seen from Figure 6, when the crack is at a distance of about 750 mm from the fixed end, 

it is understood that the first natural frequency is least affected and the crack is greatly influenced 

when it is 150 mm away from the fixed end. It can easily be cleared by the fact that the actual 

bending moment in the immediate vicinity of the cantilever beam is the largest. 

 As can be seen from Figure 7, it is understood that when the crack is seen right in the beam center, 

the second natural frequency is greatly influenced and the slightly influenced when the crack is 

located near the fixed end. The reason for such act is defined by the fact that the bending moment 

in the center of the beam is large. 

 In Figure 8, rapid change is seen in the third natural frequency at a distance of about 600 mm from 

the fixed end and no change occurs in the natural frequency at the beam center. The reason for this 

is that the nodal point is located in the center for the third mode. 

 It is understood from Figure 9 that the natural frequency is slightly influenced when the crack depth 

is 0.5 mm, and is greatly influenced when it is 20 mm. 

 As seen in Figure 10, the second natural frequency is highly affected at the center of the crack and 

the depth is 5 mm, and the least effect is for the crack depth of 0.5 mm. 

In Figure 11, it is clear that the third natural frequency no change occurs in the crack depth of 0.5 mm. 

 

   Table 6. The effect of the number of cracks on the first three natural frequencies (d=1.5 mm, a=2 mm) 

Crack number First mode Second mode Third mode 

1 (x1=150) 39.138 244.050 676.260 

2 (x2=200) 39.093 244.050 675.770 

3 (x3=250) 39.059 243.990 675.120 

4 (x4=300) 39.036 243.840 674.650 

5 (x5=350) 39.019 243.620 674.490 

6 (x6=400) 39.007 243.340 674.450 

7 (x7=450) 39.001 243.050 674.250 

8 (x8=500) 38.997 242.790 673.660 

9 (x9=550) 38.999 242.600 672.820 

10 (x10=600) 39.001 242.450 671.960 

11 (x11=650) 39.010 242.370 671.390 
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                 Table 7. The effect of the crack width on the first three natural  

   frequencies (x1=150 mm, d =1.5 mm) 

a (mm) First mode Second mode Third mode 

1 39.148 244.050 676.270 

1.5 39.143 244.050 676.270 

2 39.138 244.050 676.260 

2.5 39.134 244.050 676.260 

3 39.129 244.050 676.270 

 

Figure 6. Variation of the first natural frequency ratio depending on the depth of the crack for the various 

crack locations 

 

Figure 7. Variation of the second natural frequency ratio depending on the depth of the crack for the various 

crack locations 
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Figure 8. Variation of the third natural frequency ratio depending on the depth of the crack for the various 

crack locations 

 

 

Figure 9. Variation of the first natural frequency ratio depending on the crack locations for the various crack 

depths 
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Figure 10. Variation of the second natural frequency ratio depending on the crack locations for the various 

crack depths 

 

 

Figure 11. Variation of the third natural frequency ratio depending on the crack locations for the various 

crack depths 

 

6. Conclusions 

The effect of crack depth and location, crack width and number of cracks on natural frequencies was 

investigated as theoretical and numerical in this paper. The first three natural frequencies and mode shapes 

of an un-cracked and cracked cantilever beam with free vibration have been studied in details theoretically 

and using Finite Element Method (ANSYS), then were compared with the literature and were observed to be 
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quite compatible. As the crack depth and the number of cracks increased, a decrease in all three natural 

frequencies was observed. The effects of crack depth and location, crack width and number of cracks on the 

first three natural frequencies are shown by tables and graphs. 
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