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Abstract 

Music Information Retrieval (MIR) is an interdisciplinary field that involves automating music 

processing for the purpose of accessing and managing large music collections. Motivated by the rapid 

growth of digital music content, it encompasses a broad set of strategies from diverse disciplines. In 

this paper, we provide a task-centric perspective of this field with particular emphasis on high-level 

content analysis. We provide a general context to explain the contributions from various disciplines for 

those wishing to learn about this field. We also discuss challenges and future directions to stimulate 

further research. 
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1. Introduction 

Over the last fifteen years, musical access has transformed dramatically. With the rapid rise of digital 

media, traditional ways of accessing music, such as records or radio broadcasts have given way to more 

personalized ways of listening to, creating or learning about music. Music downloads have long 

surpassed CD sales, music recommender systems such as Spotify and Pandora are enjoying great 

success. Computer tools to engage with music have risen in popularity, and music creation is much 

easier with tools such as autotune, sampling, and digital audio workstations (software for editing and 

processing digital audio) (Colby, 2004). According to IFPI (IFPI Digital Music Report 2015, 2015), in 

2014, for the first time, revenue from digital channels reached the level of physical format sales, both at 

46%, and music subscription services enjoyed a rise of 39% in revenue. As a result of this 

transformation, the availability of music has increased dramatically and personal music collections 

grew rapidly: In 2011, average iTunes account contained about three thousand songs (Kahney, 2011); a 

survey from 2017 indicates (Chu, 2017) two thirds of respondents had over 5000, and ten percent, over 

a hundred thousand. 

This massive growth of the music industry created several challenges. The volume of digital media 

continues to grow exponentially, leading to an increasing personal need for efficient search tools for 

music collections. Existing tools suffer from labelling challenges for new data, especially related to 

more elusive features, such as mood, tempo, and timbre. Additionally, new areas have emerged, such as 

affordable personal karaoke machines, user-friendly mobile music production applications (Weinberg 

et al., 2009)[5], and interactive music systems (Collins, 2008; Granger et al., 2018). All these 

challenges require automation in certain principles of music, such as melody or harmony. The solutions 

consist of disparate strategies, which collectively form the interdisciplinary field of MIR. With the rise 

of the digital media, MIR gained popularity in academic and industrial research laboratories. To 

accomplish the task (and many subtasks) of automating music processing, the field employs many 

widely different, highly specialized strategies. Thus, it can be difficult, initially, to grasp the overall 

picture, see how these approaches fit together, and how they can be combined for specific purposes. 

We can group these strategies into two broad categories: low level versus high level content analysis. 
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Furthermore, tiers of abstraction within both categories exist. Low-level content analysis involves 

processing raw audio input utilizing signal processing techniques. For example, spectral flux is a 

measurement of change in the power spectrum in the signal, calculated by finding the Euclidean 

distance between the power spectra of two different frames of a single audio signal (Burger et al., 

2013). Mel-frequency cepstral coefficients are computed by taking the Fourier transform of the 

frequency spectrum after mapping it to the mel-scale, used as features for model training for many 

tasks (Logan, 2000). Aside from these simple audio measurements, some further analysis using these 

measurements can also be categorized as low-level content. Examples include onset detection (crucial 

measurement as a first step for beat tracking purposes) or timbre detection. High-level content analysis 

involves musical concepts such as melody, harmony or tempo to describe the contents of the music. 

High-level features are abstractions of musical concepts inferred through lower-level feature 

measurements. For a list of common high-level features, see (Casey et al., 2008). From an analytical 

standpoint, even though these features are intuitive for human perception, research to automate this 

involves sophisticated algorithms and models, which proved to be challenging. This paper focuses on 

high-level musical content description, with detailed explanations for the most common tasks within.  

There are many issues to consider before embarking on a MIR task. A major issue is to determine the 

input media for the rest of the process, since the collective methods used are adapted to the media, and 

these adaptations differ from task to task, both in terms of implementation and efficiency. Sections 1 

and 2 describe different input formats that could be considered for MIR tasks. Section 3 mentions many 

subtasks of high-level content identification and covers the advances in each subtask in detail. Section 

4 discusses current challenges, and Section 5 concludes the paper with future directions for the field.  

 

2. Raw Audio Input 

Raw audio refers to digital audio file formats such as WAV, AIFF, OGG, or MP3. Using raw audio as 

input leads to signal processing methods for retrieval of low-level features. Precise measuring of a 

single aspect of an audio is extremely difficult because a particular aspect cannot be perfectly singled 

out from a signal. Therefore, analysis of low-level features is often imperfect, and noisy. While these 

features can sometimes have research benefits on their own, such as genre classification of pieces (Kim 

& Nam, 2019), such subtasks are often unintuitive, since in isolation they have little if any musical 

significance to humans. Therefore, the primary purpose of low-level features is to infer high-level 

features, which in turn might be used to infer even more abstract (higher-level) features. For example, a 

folding process of the frequency spectrum (a low-level feature, computed using the Fourier transform) 

of a given musical piece yields a chromagram (or pitch class profiles, a level of abstraction) (Fujishima, 

1999), which is the occurrence frequency of the 12 pitch classes in that particular piece. The 

chromagram is then used to infer key or chord information (a further level of abstraction) about the 

piece. 

Imprecision of low-level features are further exacerbated by each level of additional abstraction. 

Therefore, it is crucial to employ algorithms that are as precise as possible for each step. To reduce the 

imprecision inherent to low-level features, symbolic representations as input media can be preferred. 

Most of the low-level features are already encoded in symbolic notation, therefore symbolic 

representations offer researchers convenience. In contrast, symbolic representations do not capture 

actual audio, but only represent it in a certain notation, and are therefore unable to reflect nuances. 

Thus, certain high-level features can only be extracted if the input is in a raw audio form, the most 

obvious examples of which are timbre, and lyrics. 

 

3. Symbolic Representations 

In order to represent music in a way that can be clearly understood and read by the computer, numerous 

digital representations called Music Representation Languages (MRLs) have been developed or 

proposed for use in MIR systems. These MRLs have varying approaches on representing a piece of 

music: Some emphasize the musical aspects of a piece (e.g. score notation, instrument information, 

composer, movement no), such as MuseData (Hewlett, 1997) or DARMS (Pool, 1996), while others, 

such as MIDI, have more computational concerns. 

The most popular of these MRLs is MIDI, not only because it is computationally efficient, but also 

because it is the best documented MRL, and is suitable for almost every operating system. Surprisingly, 

it is also the most limited in terms of the number of aspects of music that it can represent (Fujishima, 

1999), since it is designed to be read by hardware, and therefore consists of hardware protocols and 

instructions, rather than a more “musical” representation. Deeper exploration of different MRLs, their 
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thorough analyses and reviews can be found in (McLane, 1996; Repetto & Selfridge-Field, 1997; 

Selfridge-Field, 1994). 

Since symbolic representations already contain many low-level features explicitly, inferring high-level 

features is less complex, bypassing signal processing altogether. It is also more precise for the same 

reason. This leads to the elimination of errors which stem from any signal processing issue, such as 

production artefacts or algorithmic errors. Computationally, processing symbolic representations is less 

time-consuming than processing raw audio. Collectively, these reasons render MRLs more desirable 

over raw audio for extracting high-level musical content. Since MIDI is well documented and 

compatible with most systems, as stated above, it is usually the representation of choice for MIR 

processes.  

There are also important trade-offs in choosing a symbolic representation as a medium. Automated 

conversion of raw audio to symbolic representation is an infeasible operation, in terms of the resulting 

product. And since music is initially recorded in a raw audio form, such conversion should be made by 

hand, which is a tedious process. Therefore, the amount of content in raw audio form is vastly higher 

than that in symbolic formats. This also means that if a specific set of pieces are to be studied, the 

availability of these pieces in symbolic representations becomes a concern. Additionally, symbolic 

formats do not represent the performance, but the piece. This means that any intentional nuance of the 

performers would be excluded. If these nuances are of any importance to a study, then symbolic 

representations are ineffective. 

In the earlier years of MIR, the majority of researchers in the field of MIR sought to research using 

symbolic representations due to their convenience and precision. This led to a decision by MIREX to 

limit the number of papers using symbolic notation as input. Raw audio-based research therefore rose 

in numbers. However, symbolic representations remain as a popular option for research, and heavy 

considerations should be made about which input form to use before embarking on a specific MIR task. 

 

4. High-Level Musical Features 

An intuitive starting point for many music information retrieval tasks is to analyse high-level content, 

such as harmony, melody or tempo. There are many use cases for high-level musical content 

identification. Examples include finding work containing a melodic fragment, finding music that 

“sounds like” a given recording, mapping a performance onto another independent of tempo and 

rhythmic patterns, or finding music that matches a user’s personal profile. Tagging or labelling a 

musical piece (tags and labels are later used to be able to efficiently find a specific set of pieces) 

usually relies on its high-level musical content. One exception is tagging metadata, such as artist, 

album or release date, which is often already available independently. For example, automatically 

tagging a song as “happy” might be more likely if the song is in a major key, or music can be 

recommended to users depending on the overall tempo of their listening history. Throughout the 

evolution of MIR, the task of extracting high-level musical features proved to be a great challenge, and 

this subtask has been a subject of intense research. The music information retrieval evaluation 

exchange (known as MIREX) is a valuable medium keeping pace with latest developments in many 

applications within MIR, including high-level musical feature extraction (Downie et al., 2010, 2008). 

 Following subsections covers different high-level features, their tasks, subtasks and the 

methods employed for each one. The tasks mentioned here are:  

● Melody tracking: automatic identification and analysis of a melody line within a piece or an 

excerpt, 

● Beat tracking: automatic estimation of temporal parameters of a piece such as beat, tempo or 

rhythm, 

● Estimation of key and chord progressions,  

● Music structure: automatic identification of music segments such as beats, measures, themes, 

phrases or movements. 

The advances in these fields, comparisons between certain methods and evaluations will also be 

mentioned. 

 

4.1 Melody Tracking 

One of the most commercially attractive applications for melody tracking is retrieval. This includes 

helping users access music by automatically analysing a given melody line. Recommender systems 

apply this method to recommend pieces with similar melody lines. Some applications enable users to 
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find songs by humming melody lines. Copyright issues are analysed by investigating melody, the most 

defining, and the most predominant characteristic of any given piece of music. Similarly, melody 

tracking is also a primary tool in identifying cover songs (Juheon Lee, Sungkyun Chang, Donmoon 

Lee, 2015). Production tools are also enhanced by this feature, allowing musicians/producers to isolate 

melodies for later use, or remove a melody line from a given musical excerpt. The ability to automate 

this process is also a highly beneficial application for karaoke bars. 

Melody tracking tasks can be categorized into three main subtasks: melody extraction from polyphonic 

audio, Query-by-Humming/Singing (QbHS), and Symbolic Melody Similarity (SMS). These subtasks 

deal with similar issues, but employ completely different methods, and face different technical 

problems. 

The purpose of audio melody extraction is to extract and identify a melodic contour from polyphonic 

audio. While “melody” is in itself a difficult term to define, researchers accept more simplified 

definitions tailored to music processing. The most common definition of a melody line is the voice or 

instrument that is the most predominant, and its pitch values at different frames. Therefore, one 

assumption made by researchers is that melody is monophonic.  

Even with this assumption, melody extraction from audio proves challenging, mainly due to three 

factors. First, a polyphonic audio (where more than one voice may be present at a given time interval) 

makes it difficult to attribute specific frequency bands to specific instruments. This issue is further 

complicated by post-production techniques, which can alter audio in such ways which can blur note 

onsets and offsets within the audio. Second, in a piece where there might be more than one melody line 

(or one melody line with accompaniment), the algorithm should be able to correctly identify the 

predominant voice. Finally, the time intervals where the melody is not present should also be identified 

(also known as the “voicing detection” problem). For detailed explanations of recent audio melody 

extraction algorithms and their performances, see (Bosch et al., 2016; Kumar et al., 2020). 

Query-by-Humming/Singing involves users finding songs by humming sections of their melodies, and 

the system retrieves songs within its database with the closest correspondence. The queries 

(hummings), as well as the templates from the database which are in MIDI format, are converted to 

vectors which contain MIDI pitch values. In the case of templates, this conversion process is a 

straightforward isolation of a vector already existing in a MIDI file. In the case of queries, the process 

involves melody extraction techniques since the hummings are initially in a raw audio format. Some 

form of prior cleaning is usually necessary to decrease the influence of octave and precision errors 

caused by out-of-tune humming. 

The problem in general with a typical QbHS system arises when queries are in a different key than the 

database templates. Some form of matching algorithm is necessary to eliminate the influence of these 

differences. The simplest solution applied by researchers is to subtract the mean pitch from the query 

sequence (Jeon & Ma, 2011). This method is problematic when the sung query is only part of a larger 

template. To eliminate this factor, a Dynamic Time-Warping (DTW) algorithm is applied to the query 

vector in (Stasiak, 2014), after a set of pre-processing steps. DTW involves non-linearly rescaling the 

time domain of two sequences, such that they have the same number of frames which accurately map 

on to their corresponding partners. An illustration of the DTW algorithm can be seen in Figure 1. It 

tries to minimize the cost of the mappings where the cost is the sum of differences between each frame. 

However, as of MIREX 2016, the cumulative accuracy is no higher than 80 percent for QbHS tasks. 

 

 

 

 

 

 

 

 

http://www.iiste.org/


International Journal of Scientific and Technological Research                               www.iiste.org 
ISSN 2422-8702 (Online), DOI: 10.7176/JSTR/6-10-08 
Vol.6, No.10, 2020 
 

90 | P a g e  
www.iiste.org  
 
 

Figure 1. The rescaling of the time domain of two vectors using DTW. 

 

Symbolic representations can also be useful in melody tracking. One official task listed in MIREX is 

called “Symbolic Melodic Similarity” (SMS). The aim of an SMS task is to be able to list and rank 

melodically similar excerpts, for a given query. Extracting melody from a symbolized piece of music 

can be done via several methods, depending on the melody representation. For the SMS task, two 

melodic representations are suitable: melodies as 1-D strings of characters or geometric curves. 

In 1-D strings of characters representation, each character can represent one note or a consecutive note 

sequence. Similarities between melodies can therefore be found by applying well-known string-

matching algorithms, such as finding edit distance, finding substring occurrences or finding longest 

common subsequence. 

Geometric curve representation of melodic lines was the best-performing algorithm for SMS in 

MIREX 2014 (and later MIREX 2015), proposed by Urbano (2014).  According to this method shown 

in Figure 2, pitch occurrences are represented as points on a 2-D plane, and the melodic line is the 

interpolating curve, as fitted by second degree splines. Finding melodic similarity is simplified to the 

comparison of different 2-D curves. However, this best-performing algorithm offers accuracy levels of 

no more than 75%. 

 

Figure 2. Melody representation as a geometric curve, proposed by Urbano (2014). 

 

4.2 Beat Tracking 

Beat tracking is mainly concerned with the automatic estimation of temporal parameters of music, such 

as beat, measure, rhythm, tempo and meter. These estimated parameters can later be used for retrieval, 

classification, recommendation or higher-level content identification. Most research in this area is 

concerned with audio signals. Some temporal parameters which would be difficult to precisely identify 

are already encoded in symbolic representations, albeit omitting the nuances. An example would be the 

period of a beat (or a quarter note, the two can be used interchangeably), which is the time difference 
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between the onsets of two successive beats. This information is, by default, included in any MIDI file, 

therefore is trivial to obtain. Identification of higher-level content, however (such as measure 

information or rhythmic pattern) requires sophisticated algorithm design using beat information. While 

these algorithms are not usually concerned with symbolic representations, they can be accordingly 

modified.  

Once beats are estimated, they are treated as the temporal unit for high-level computation, allowing the 

estimation of implicit musical temporal units, such as measures or rhythmic patterns. Detecting musical 

structure in a piece (such as identifying chorus sections (Bartsch & Wakefield, 2002; de Berardinis et 

al., 2020)) is therefore facilitated by the beat information. This feature is especially useful for editing 

recorded audio for production studios (Fazekas & Sandler, 2007). Measure estimation can also provide 

a smoother segmentation option for later processing. Furthermore, the temporal axis of musical 

excerpts can be normalized using beat information, facilitating the identification of cover pieces 

(Tralie, 2017a, 2017b). Examples of industrial-scale applications of beat tracking, especially important 

in the field of entertainment, include audio beat synchronization with lighting effects. 

As already mentioned above, precision in identifying the beat structure is a problem, mainly stemming 

from the nature of audio signals and the extraneous information carried, as discussed in Section 2. 

Algorithms exist to minimize the influence of this information (Cannam et al., 2015), but desirable 

accuracy levels remain elusive. 

One of the biggest challenges for this field is the existence of temporally complex musical pieces. A 

beat structure that is not explicit in its presentation makes beat estimation highly problematic. 

Rhythmic complexity and tempo variations are the biggest contributors to ambiguous beat structures. In 

the presence of an ambiguous beat structure, multiple possible solutions exist, therefore, probabilistic 

models are employed to select the best option out of many (Boulanger-Lewandowski et al., 2013). 

 

4.3 Chord & Key Detection 

Extracting key information from musical excerpts has been a research of interest for over three 

decades. Krumhansl & Kessler provided key profiles for major and minor keys using an experiment 

where participants (with at least 5 years of formal musical training) rated how well certain probe tones 

fit an element (e.g. how well C# fits a IV-V-I cadence in A major) (Krumhansl & Kessler, 1982). These 

key profiles form the basis of most of the succeeding key-finding algorithms. These are in the form of 

12-bin vectors (the correlation value of every chromatic tone) for every key (24 in total). Key-profiles 

for C major and C minor keys can be seen in Figure 3. According to the Krumhansl-Schmuckler key-

finding algorithm, these key profiles are matched with other 12-bin vectors taken from excerpts and the 

key that yields the highest correlation is identified as the key for the excerpt (Krumhansl, 1990). This 

method can be found in many MIR-based toolboxes, and is the method of choice for much key 

extraction research. 

Figure 3. Key profiles for C major and C minor keys. 

 

The much-used Krumhansl-Schmuckler algorithm contained several problems, primarily identified by 

David Temperley who proposed certain improvements (Temperley, 2001). The Krumhansl-Schmuckler 

algorithm measures how much a pitch-class is present, factoring in the number of pitch-class 
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occurrences and their durations in a segment. This leads to over-weighting repeated notes. Consider a 

segment which consists of a C major triad, followed by a series of repeated E’s. The system would 

favour E minor in this case, rather than the correct choice, C major. Temperley suggests a modification 

where the 12-bin vectors would simply contain 1 or 0 for each pitch-class, without factoring in any 

form of weight (aside from the key-profile elements), and the algorithm would proceed with the same 

correlation process. This is shown in Temperley’s studies to be substantially more effective.   

Another problem is indicated to be the Krumhansl-Schmuckler algorithm’s inability to identify 

modulations, since it is applied to an excerpt as a whole, therefore yielding a single key. Segmentation 

is proposed by Temperley as a solution. Each segment would carry a different value for key 

information. Segments are chosen to be the smallest level of metrical units longer than 1 second. To 

avoid frequent modulations in order to adhere to musical modulation traditions, Temperley imposed 

penalties if a key for any segment differed from that of the previous segment. This proposed method, 

while reducing the over-frequency of modulations, carries with it the risk of snowballing, where the 

occurrence of an incorrectly assigned key would affect the following segments’ assignments because of 

the imposed penalty for modulations. 

Expanding upon this study, Temperley proposed treating the key-profiles as probabilities, indicating the 

probability of each pitch-class occurring in a segment of the given key (Temperley, 2007). Choosing a 

key for a segment is then a matter of choosing the most probable, given the pitch-class set that is 

observed.  

An interesting study by Chew (Chew, 2007) uses a structure called the “Spiral Array” as key profiles. 

The Spiral Array is a model where pitch classes are represented by 3D spatial coordinates along a 

spiral. Chords are defined as triangles in the spiral, and keys are structures consisting of three such 

triangles (using the tonic, the dominant and the subdominant chords). This mathematical model is a 

very efficient attempt to model human key-finding, since pitch-class relations are based on fifth 

intervals (i.e. an increment in the spiral corresponds to an upper perfect fifth interval). Thus, closer 

pitch classes along the spiral have closer relations in terms of the chords and keys to which they 

belong. Chew’s modeling of key-profiles yields generally accurate assessments of keys and key 

modulations. 

Many more algorithms attempt to map 12-bin key profiles to multiple-dimension representations to 

improve the modelling of human hearing. The first well-known multiple-dimension space related to 

pitch-class interactions is “The Harmonic Network” or Tonnetz (shown in Figure 4) (Cohn, 1998). This 

concept is the basis for the key-finding algorithms that use multiple-dimension representations, and the 

Spiral Array mentioned above is a mere wrapping up of the Tonnetz to form a 3D spiral. More such 

representations exist, such as the “Tonal Centroid Space” (Harte et al., 2007) or the “Tonal Interval 

Space” (Bernardes et al., 2016). 

Figure 4. The Harmonic Network, or Tonnetz. 

 

Chord recognition is a similar task, in which the contents of every segment of a piece is examined, and 

a chord is inferred. Similar probabilistic models are used (Jiang et al., 2018), but chord recognition has 

more depth, due to a wider range of variations in terms of chord type (e.g. diminished, augmented, 

suspended) or inversion. For maximum accuracy, these features should also be determined. This results 
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in extra constraints in the probabilistic models. To achieve such accuracy, different representations for 

chords are suggested, which are in turn used as features for probabilistic models. At MIREX 2019, one 

submission for the annual chord estimation task employs convolutional neural networks for 11 different 

types of chords (S. Lee et al., 2019). The accuracy, however, fails to exceed the baseline chord 

estimation algorithms, which are annually being resubmitted to MIREX since 2016. 

 

4.4 Music Structure 

Segmentation in MIR is an essential task, providing both high-level content and a means to access 

other high-level content. A segment is usually defined as a region with some internal similarity or 

consistency. In many low-level content tasks dealing with raw audio, segments are created using 

windowing techniques for signal processing. These short segments usually last for up to 100 

milliseconds. In other tasks, such as tempo tracking, a larger segment size is needed to capture 

meaningful rhythmic patterns. 

In higher-level tasks, a more accurate modelling of the piece is often necessary, achieved by musical 

segmentation. Depending on the task itself, segment sizes can vary, relative to the beat structure of the 

piece; they can range from fractions of a beat to entire movements of a complete piece of music. 

Automatic extraction of different sections of a piece (such as a phrase, a theme or a movement) is 

especially beneficial in allowing recording studios to edit these sections separately (Fazekas & Sandler, 

2007). Alternatively, these sections can be used by live performers to create a mash-up from sections of 

existing songs. 

Beat-based segmentation is essential for beat-tracking tasks such as tempo, meter of rhythmic pattern 

extraction. It also facilitates the normalization of the time domain, therefore time-invariant analysis can 

be made. Cover song identification exemplifies a task which greatly benefits from time-invariant 

analysis (Ellis & Poliner, 2007). 

 

4.5 Mood Detection 

Mood detection can be considered an even further level of abstraction among the MIR subtasks. It 

involves using high-level features such as timbre, tempo, and key as features for further learning 

algorithms. This is a subtask designed specifically for automatic metadata tagging of a piece, and its 

target platform consists of the recommendation systems.  

Two critical steps in a mood detection task are the feature selection and the feature training steps. 

Careful considerations should be made before deciding the useful features for determining the mood of 

a given dataset. According to prior research, key, intensity, timbre and rhythm are the most beneficial 

features overall (Tzanetakis & Cook, 2002), but this may vary across datasets, especially if songs are 

from different genres. 

Developments in the machine learning field have been especially beneficial for mood detection. With 

the resurgence of deep learning methods, mood detection gained popularity and research in this area 

began to output more accurate results. The feature selection step is also automated, where low-level 

features are directly and automatically chosen by a feature selection algorithm. MIREX 2018 included 

an automatic mood classification task and submitted papers mention the use of recurrent neural 

networks as the primary choice of learning algorithm (Song et al., 2018). 

 

5. Challenges in MIR Progress 

Over the last two decades, the many technological advances have included digital signal processing and 

machine learning fields. These advances have allowed for new prospects in MIR and its subfields, but 

progress has not met expectations. Figure 5 shows the performances of all algorithms submitted to 

MIREX for several tasks (Schedl et al., 2014). As seen from the figure, the performances show a “glass 

ceiling” effect, and for some, it is possible that performance will decrease as time passes. The figure 

only includes research submitted up to 2013, but the glass-ceiling effect continues to present. This 

section tries to shed more light on these challenges with some points of discussion. 
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Figure 5. Maximum and median performance for several MIREX tasks [46]. 

 

5.1 Dataset Issues 

One of the biggest issues in MIR arise from the datasets used for research. Datasets not only establish 

the ground truth for evaluating MIR algorithms: they guide the research efforts to devise new 

algorithms. They are also used for training new machine learning models for sophisticated estimation 

algorithms. As such, both the evaluations and the algorithms are highly sensitive to errors and precision 

levels in the datasets.  

Some datasets contain pieces which suffer from production incapabilities (e.g. slightly faster tempo at 

one point, detuned audio). These shortcomings are therefore reflected in the estimation algorithms, 

where precision errors appear, and such pieces should be edited accordingly. Additionally, some pieces 

are completely inappropriate for the task at hand. An example is given in (Humphrey & Bello, 2015) 

where a chord estimation algorithm attempts to estimate the chords of pieces with no basic chord 

structure (some examples given by Humphrey and Bello are “Revolution 9” and “Love You To” by The 

Beatles, and “Brass Monkey” by the Beastie Boys). Datasets should be constructed based on specific 

tasks to avoid analyzing non-analyzable pieces. 

Since music is subjective by nature, in some cases, an excerpt can be interpreted in multiple ways. The 

algorithms are designed to represent only one of these ways, and if this representation does not match 

the ground truth, it is labeled as incorrect. Therefore, when creating ground truth, it would be beneficial 

to take all of the reasonable solutions into consideration, perhaps by assigning likelihood scores to each 

label.  

Because all of these datasets were constructed using a wide range of sources, and often very different 

methods, most have different formats, which makes them difficult to use without further processing by 

any given MIR algorithm.  Insufficient documentation for these datasets further increases the difficulty 

of adapting to each different format. These datasets should be unified under a single format, with 

sufficient documentation. Such an effort would require a joint task force to drive consensus and receive 

broad acceptance. 

Additionally, the sparseness of datasets is a great challenge in itself. Since it is cumbersome to 

collaborate with musicians to gather datasets, researchers often use the same existing datasets for many 

consecutive tasks. Alternatively, tasks are initiated purely because a PhD student donates a dataset to 

researchers, meaning that tasks are defined by individual researchers, and there are no standards for 

task definitions or evaluations. An additional issue is that MIREX as a platform has a closed nature 

(algorithm failures are impossible to track), making it impossible for researchers to learn from failed 

approaches. This often leads to researchers replicating efforts redundantly for similar tasks. Therefore, 

collaborating with music providers to frequently obtain new datasets, and building systems to 

standardize these datasets is becoming a necessity for efficient research. 
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5.2 User Behavior & Interaction 

Currently, the interaction between users and the field of MIR is mostly limited to recommendation 

systems and tools for music access. The field is mostly focused on developing systems and algorithms, 

as opposed to analyzing user needs and behavior. For more consistent and more effective user 

feedback, it is important to broaden the ways in which the user can directly interact with the system, for 

example, by including different visualization tools, social engagement systems for music, or gaming 

based on musical concepts. These tools not only provide better user feedback, but also additional 

contextual information based on group influences in addition to individual preferences. 

Since most researchers within the MIR community focus on Western music, different cultures have 

largely been neglected. High-level content is often designed using Western tonal system such as 

rhythm, melody, key, scale or tuning. User studies are conducted where subjects respond to stimuli 

(usually consisting of Western music excerpts) in the Western context. As a result, datasets for MIR 

research often consist of pieces composed using the Western tonal system. The symbolic 

representations for music and MIR algorithms in general are catered to the same tonal system. This 

situation not only impacts researchers and algorithms, but also machine learning outcomes, as they 

reflect bias in the data. A more generalized approach is necessary for universal applications of MIR 

tasks, including algorithms, as well as data formats and dataset collections. 

 

5.3 Empirical Studies 

A large portion of the research done in MIR aims to propose better tools for users to access music. 

Empirical research thus seems like a very beneficial method to employ, but these are paid little 

attention, as research in MIR is mostly systems-focused. Their low impact in MIR research stems from 

reasons discussed below. 

Music is a subjective domain, and it is usually very difficult for non-musicians to explain musical 

concepts or how they are affected by these. This semantic gap between researchers and users (even 

musically trained ones) creates problems. Systems may not function as intended, since users may 

interpret aspects of the system differently. Additionally, difficulties may be encountered during user 

studies, where subjects may provide inaccurate responses simply because he/she misinterpreted the 

problem at hand.  

Another problem is the scale and the subject demographic for empirical studies. The majority of recent 

empirical studies have been small-scale, conducted mainly with students, co-workers, or generally 

people who have some interest in music. This makes them largely non-generalizable and thus 

unreliable. This is to a large degree unavoidable, since in a fast-changing field such as MIR, large-scale 

studies are time-consuming, and the study might possibly become irrelevant on completion. Secondly, 

obtaining mailing lists for surveys are often not possible due to privacy concerns. Researchers therefore 

resort to easily obtainable samples, given by students and co-workers. Studies are available which 

provide insightful overviews of the lack of impact for user studies in general (J. H. Lee et al., 2016; J. 

H. Lee & Cunningham, 2012). 

User-centric MIR research is still in its infancy, and many related questions still need extensive 

research. Modelling each user, therefore creating a personalized system is necessary. Examples can be 

given where the system is built around specific music listening scenarios, such as driving (Baltrunas et 

al., 2011) or working out (Moens et al., 2010). However, there are many unexplored but important 

questions related to user modelling, such as which content or context is more relevant for user 

modelling, how they influence the user or one another, and if these answers are clear, how to actually 

build a user-centric system. 

 

6. Conclusion 

Despite the challenges that are present within the field of MIR today, overcoming these is possible 

through careful consideration and steps, especially with the use of powerful machinery and 

sophisticated algorithms. This paper provided a broad representation of the field, outlining task 

hierarchy within, and detailing each sub-field. High-level content was given the highest priority, and 

explained in detail, with historical research background for each content area. Last, the most important 

challenges that encapsulate the field were revealed, along with discussion points to overcome these 

challenges. We hope that our efforts in introducing the field and its challenges will attract greater 

research interest, and increase overall effectiveness of research, overcoming the glass-ceiling effect. 
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