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Abstract  

In this work, an analysis is carried out vis-à-vis an explicit iterative algorithm proposed by Qureshi et al (2013) 

for initial value problems in ordinary differential equations. The algorithm was constructed using the well – 

known Forward Euler’s method and its variants. Discussion carries with it an investigation for stability, 

consistency and convergence of the proposed algorithm-properties essential for an iterative algorithm to be of 

any use. The proposed algorithm is found to be second order accurate, consistent, stable and convergent. The 

regions and intervals of absolute stability for Forward Euler method and its variants have also been compared 

with that of the proposed algorithm. Numerical implementations have been carried out using MATLAB version 

8.1 (R2013a) in double precision arithmetic. Further, the computation of approximate solutions, absolute and 

maximum global errors provided in accompanying figures and tables reveal equivalency of the algorithm to 

other second order algorithms taken from the literature.      

Keywords: Iterative Algorithm, Ordinary Differential Equations, Accuracy, Consistency, Convergence. 

1. Introduction 

Ordinary Differential Equations (ODEs) are ubiquitous whether it be Mathematics (Computational and Applied), 

Physics (Newton’s second law and harmonic oscillations), Chemistry (chemical kinetics and chaos), Ecology 

(logistic and unlimited population growth), Weather Forecasting (Lorenz Model), Economics (Ramsey – Cass – 

Koopmans Model and Competitive Equilibrium Model), and Romance (Dynamical Love Model: The Romeo 

and Juliet Scenario); as discussed by number of scholars such as Strogatz (1994), Blanchard et al (2012), Sunday 

and Odekunle (2012), Sunday et al (2012), Obayomi and Olabode (2013), Qureshi et al (2013), Soomro et al 

(2013); and Jia and Sogabe (2013). Considerably, large class of linear models can easily be handled with 

analytical means whereas nonlinear models in terms of either scalar or vector ODEs have always posed new 

challenges for researchers working in various scientific domains as these models do not possess solutions in the 

form of elementary mathematical functions as discussed by Akanbi (2010), Chandio and Memon (2010), 

Soomro et al (2013); and Chapra and Canale (2010). It is because of this reason that researchers are engrossed – 

to date – for devising either new algorithms or otherwise improve the existing  ones (explicit or implicit) by 

reducing the number of function evaluations per step, increasing order of accuracy and expanding regions of 

absolute stability. Significant contributions in the form of textbooks and scientific work came from almost every 

corner of the globe but no unique algorithm could be agreed upon (Palais and Robert, 2009; Chandio and 

Memon, 2010). Standard explicit iterative algorithms have been improved by OCHOCHE (2008), Chandio and 

Memon, (2010), Rabiei and Ismail (2011), Rabiei and Ismail (2012), Rabiei et al (2013); just to mention a few; 

whereas (Fatunla, 1976), (Ogunrinde and Fadugba, 2012), and (Ramos, 2007) are few members of a huge family 

of researchers who have proposed nonstandard algorithms to solve first order initial value problems (IVPs) in 

ODEs. Whether it be an improved version of some standard algorithm or a newly constructed one; in either case 

the algorithm so obtained is required to satisfy crucial and fundamental characteristics. These characteristics 

involve accuracy, convergence, and stability of the algorithm. For further details, see the work of Ma (2010), Ma 

(2010), Odekunle and Sunday (2012), Sunday et al (2012), and Rabiei et al (2013).       

For working on the present paper, motivation ascended from the well acknowledged explicit first order Euler 

method and its variants. Though, explicit algorithms do not offer reasonable solutions when it comes to stiff 

problems but they are extensively being employed because of their simplicity and easy implementation as a 
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computer code as evident from the remarks given by Hassan et al (2006), Edwards and Penny (2008), and Zill 

(2009). An explicit iterative algorithm is constructed by Qureshi et al (2013) to solve first order IVPs in ODEs of 

the form (1) and (2), as given below: 
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An explicit iterative algorithm constructed by Qureshi et al (2013) is: 
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                         (3) 

for 0,1,2, ,i n . 

2. Materials and Methods 

2.1 Preliminaries 

Given below are some key theorems and definitions needed to support rest of the discussion. 

Theorem 01. A function  ,f t y  is said to satisfy Lipschitz condition in the variable y on a convex set 

  0, ,R t y t t b y        if a fixed constant 0L   exists such that 

   , , * *f t y f t y L y y    

whenever  ,t y  and  , *t y R . The fixed constant L is known as Lipschitz constant for  ,f t y . 

Theorem 02. If  ,f t y  satisfies Lipschitz condition and is continuous on the convex set R then the IVP (1) will 

have a unique solution  y t  on 0 ,t b     

Definition 01. An iterative algorithm is said to be one – step if it is of the form: 

 1 1, , ;i i i i iy y h t y y h    

making the algorithm explicit in the absence of the term 1iy   on the right hand side otherwise implicit, where   

is called incremental function. 

Definition 02. The order of an explicit one – step iterative algorithm is the largest integer 1p   such that 

     1
1 , ; p

i i i iy t y h t y h O h 
       

where  1iy t   is the exact solution to (1). 

Definition 03. An iterative algorithm is said to be convergent if the numerical solution iy  (with round-off errors 

assumed to be zero) approaches the exact solution  iy t  as the step size approaches zero. Symbolically, 
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What follows next is the investigation for order of accuracy, stability, consistency, and convergence of the 

proposed algorithm (3). 

2.2 Order of Accuracy of the Proposed Algorithm 

To determine order of accuracy of the proposed algorithm (3); it has been expanded using Taylor’s theorem and 

equated to Taylor series expansion of the exact solution  1iy t  . After some algebraic simplification, expansion 

of (3) turns out to be equal to the expansion of  1iy t   up to the term containing  
2

t declaring the proposed 

algorithm to be second order accurate. Taylor series expansion of  1iy t   is given by: 
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It is also known that: 
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Hence, (4) can be rewritten as 
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Now, the second inner function of the proposed algorithm (3) is expanded as: 
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Substituting it into (3), we obtain 
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Taylor expansion further gives: 

    
     

2 3 3

1
2 4 8

i i y

t t t
y y tf F f F G

  
                                                             (8) 

Comparison of (7) and (8) reveals that the right hand side terms are agree with each other up to the term 

containing  
2

t . Thus the proposed algorithm (3) is of second order accuracy; that is, local truncation error is 

 
3

O t . 

2.3 Consistency of the Proposed Algorithm 
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As reported in Fatunla (1988), an iterative algorithm is said to be consistent if its incremental function with step 

size approaching zero, agrees with the IVP (1), that is, 

   
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Thus, having satisfied (9), the proposed algorithm (3) is said to be consistent. 

2.4 Stability and Convergence of the Proposed Algorithm 

Theorem 03. (Lambert 1973, Fatunla 1988) 

Suppose  i iy y t  and  i iz z t  be two different approximate solutions to IVP of the type (1), subject to 

initial conditions  0y t   and  0 *z t  , respectively; such that * , 0      . If the two iterates are 

produced using one – step explicit linear iterative algorithm then we obtain: 

 1 , ;i i i iy y t t y t     

 1 , ;i i i iz z t t z t     

The following condition 

1 1 *i iy z K       

is the necessary and sufficient condition for the proposed algorithm to be stable and convergent. 

Proof 

From (3), we have 
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Using Mean Value Theorem for a function of two variables with  ,   being an intermediate point of any two 

points in R
2
, we get  
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1 1 *i iy z K       

This shows that the proposed algorithm (3) is stable and consistent, therefore convergent. 

Finally, analysis of region of absolute stability for the proposed algorithm (3) is carried out using the scalar 

model problem: 

 0 0,
dy

y y t y
dt

   for   

We would like the numerical solution to decline when  Re 0  and the region of absolute stability is the 

complex t  plane where numerical solutions satisfy 1i iy y  . 

When (3) is applied on the model problem, it yields 
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Thus, the region of absolute stability is given as 
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t t
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 
      

Region of absolute stability of the proposed algorithm has been given in figure 1 along with stability regions for 

Forward Euler, Midpoint Euler, Improved Euler and MIME
1
 methods whereas interval of absolute stability for 

proposed algorithm and other methods is found to be identical as shown in table I. It is also worth to be noted in 

figure 1 that regions of absolute stability for the proposed algorithm and MIME method are same.   

                                                           

1
  1 , , ,

2 2 2 2
i i i i i i i i

t t t t
y y tf t y f t y f t y

     
         

  
; proposed by OCHOCHE (2008). 
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Fig 1. Regions of absolute stability (inside portion of the closed loops). 

Table 1. Stability polynomials and Intervals of absolute stability 

Algorithm Stability Polynomial Interval of absolute stability 

Forward Euler 1 t    2,0  

Midpoint Euler 
 

2

1
2

t
t





     2,0  

Improved Euler 
 

2

1
2

t
t





     2,0  

MIME 
   

2 3

1
2 4

t t
t

 
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 
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Proposed 
   

2 3

1
2 4

t t
t

 


 
      2,0  

 

 

3. Numerical Implementation and Discussion 

In this part of the work, performance of proposed algorithm has been checked against some 2
nd

 order algorithms 

taken from literature. Numerical computations and graphical displays have been obtained using MATLAB 

version 8.1 (R2013a) in double precision arithmetic.  

Consider the following autonomous first order IVP: 

Problem 1:       cos 2 sin 3 , 0 1; 0,10
dy

t t y t
dt

    (source: Burden & Faires (2010)) 

Exact solution:   1 2sin 2 1 3cos3 4 3y t t t    

It has been observed from figure 2 (a – d) that the proposed algorithm follows the pattern of the exact solution as 

being followed by other methods with considerably a large step size of 0.5 for problem 1. Further, maximum 

absolute global errors computed in table 2 reveal equivalency of the proposed algorithm with 2
nd

 order Midpoint 

Euler and MIME methods whereas Improved Euler contains a bit higher amount of errors. It is obvious from 

table 2 that by further decreasing step size, the numerical solution obtained by the proposed algorithm will 

approach to the exact solution.   
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(a)                                                                    (b) 

 

    (c)                                                                        (d) 

Fig 2. Comparison of proposed algorithm with two standard methods and one nonstandard MIME method. 

 

Table 2. Maximum absolute global errors with varying step sizes for problem 1. 

‘ t ’ 
Maximum Absolute Global Errors 

Midpoint Euler Improved Euler MIME Proposed 

0.1 1.537340214559269e-03 3.071662959107331e-03 1.537340214559269e-03 1.537340214559269e-03 

0.2 6.185439200536636e-03 1.232238868990373e-02 6.185439200536636e-03 6.185439200536636e-03 

0.4 2.508549427699337e-02 4.939081787710430e-02 2.508549427699337e-02 2.508549427699337e-02 

0.5 4.062188173624455e-02 7.924420556674233e-02 4.062188173624455e-02 4.062188173624455e-02 

1.0 1.982161478984918e-01 3.567045590319764e-01 1.982161478984918e-01 1.982161478984918e-01 

 

As a second example, a nonlinear first order IVP is considered: 

Problem 2:    31 , 0 0; 0,1.2
dy

y y t
dt

     (see Ramos (2007)) 

Implicit solution:    1 22 1
3 6 3 tan 6ln 1 3 6 ln 1 0

3

y
y t y y                

 

For the problem 2, explicit expression for its solution is not available therefore the value at 1.2t   has been 

obtained using Newton’s iterative scheme as  1.2 7.368587110472472y t  . This output is used as a 

reference point for calculating absolute errors at end point of the given interval. These computed errors and time 
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taken by CPU to execute the results are shown in table 3 for different integration steps whereas figure 3 shows 

approximate solution obtained by the proposed algorithm (3) for 400 (say) integration steps. Table 3 shows 

inverse relation between integration steps and absolute error computed; that is, increment in integration steps 

results reduction in corresponding errors. It is also observed from third column of table 3 that error can further be 

decreased at the cost of more computational effort.  

Table 3. Absolute errors at 1.2t   and CPU time for problem 2. 

Integration Steps Absolute error Computer Time (in microseconds) 

200 7.921486078109474e-02 2110 

400 3.079290602821860e-02 5647 

600 1.572245833341501e-02 6575 

800 9.463829887513597e-03 9584 

1000 6.304863390318438e-03 11826 

2000 1.705975830714301e-03 18457 

 

Figure 3. Approximate solution to problem 2 using proposed algorithm. 

4. Conclusion 

In the current work, an attempt has been made to discuss and examine accuracy, consistency, convergence and 

stability of an explicit iterative algorithm proposed by Qureshi et al (2013). The algorithm is found to be 2
nd

 

order accurate, consistent, convergent and stable and thereby can be used for finding approximate solution to the 

problems of the type (1) and (2). Region of absolute stability drawn for the proposed algorithm seems to be 

completely agree with that of 2
nd

 order MIME method as indicated in figure 1. Furthermore, it is also worth to be 

noted from table 1 that intervals of absolute stability for all algorithms under consideration are alike. Numerical 

examples provided show reasonable performance of the proposed algorithm.   

5. Future Work 

In future, propagation of errors and error norms of the proposed algorithm would be discussed and compared 

with existing literature for Forward Euler and its variants. Numerical examples would be given to study dexterity 

of the proposed algorithm with respect to exact solution, local and global truncation errors and error norms.  
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