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Abstract 
Linear models play a dominant role in analyzing several data sets arising at places like agricultural experiments, 

space experiments, biological experiments, financial modeling and a wide range other practical problems. One of 

the major strings in the development of the regression model is the assumption of the error. It is often assumed 

that the random error of the linear regression model is normally distributed. In numerous situations, however, it 

is nearly impossible to find a data set that satisfies the normality assumption due to various reasons, such as 

multivariate skewed and/or heavy-tailed distributions. This problem has been addressed by specifying a different 

parametric distribution family for the error terms. In this paper, a linear regression model with generalized new 

symmetric errors is developed and analyzed. The Maximum Likelihood (ML) estimators of the model 

parameters are derived and their properties with respect to the generalized new symmetric distributed errors are 

discussed. Simulations were carried out to study the performance of the proposed model with that of Gaussian 

errors and found that the proposed model perform well when the variables are platykurtic. Some applications of 

the developed model are also pointed.             

Key Words: Generalized new symmetric distribution, Regression model, Simulation  

1. Introduction 

The linear model is one of the most popular and simplest models in statistics. It has been received significant 

applications in almost every area of science, engineering and medicine in general and in Statistics and 

Econometrics in particular. Most of the inferential procedures, however, are based on the basic assumption of the 

linear regression model that the error terms have normal distribution. For example, Rao (1973), Seber (1977), 

Drapper and Smith (1981), Atkinson (1985), McCullagh,P., Nilder, J.A.(1989), Montgomery et al. (2001), Grob 

(2003), Seber and Lee (2003), Sengupta, D. and Jammalamadaka, S.Rao (2003), Weisberg (2005) and Yan and 

Su (2009) among others, are excellent references covering various aspects of classical linear models.  

There have been a wide range of studies on the influences of non-normality on several linear regression analyses 

during about the last four decades. Zeckhauser and Thompson (1970) on linear regression model with power 

distributions; Zellner, A. (1976) and Sutradhar, B.C. and Ali, M.M. (1986) on regression model with a 

multivariate t error variable; Tiku et al. (1999) on linear regression model with symmetric innovations; Tiku et 

al. (2000) on first-order autoregressive model with symmetric innoviations; Tiku et al. (2001) for the simple 

linear model with t distribution innovations; Das Gupta, S. and Jammalamadaka, S.R. (2003) on Linear Models; 

Liu and Bozdogan (2004) for power exponential (PE) multiple regression; Wong and Bian (2005) for the 
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multiple regression coefficients in linear model with underlying Student t distribution; Wong and Bian (2005) 

extension of the results given in Tiku et al. (1999) where the underlying distribution is a generalized logistic 

distribution; Liu and Bozdogan (2008) for the multivariate regression models with power exponential random 

errors; Soffritti, G. and Galimberti, G. (2010) on multivariate linear regression model under the assumption that 

the error terms follow a finite mixture of normal distributions; Jafari and Hashemi (2011) for simple linear 

regression with the error term of Skew-Normal distribution; Hettmansperger and McKean (2011) has been 

developed a complete rank-based inference for linear models based on rank-based estimation analogous to the 

way that traditional analysis is based on least squares (LS) estimation; S. Jahan and A. Khan (2012) on g-and-k 

distribution as the underlying assumption for the distribution of error in simple linear regression model; and 

Guorui Bian, et al. (2013) extension of the results given in Bian and Tiku (1997), Tiku et al. (1999,2000,2001), 

Wong and Bian (2005), Islam and Tiku (2005, 2010) on the multiple regression model with underlying 

distribution assumed to be symmetric and Student t  are excellent references covering various aspects of linear 

models with non normal error terms.  

Linear model with generalized new symmetric error 

For simplicity and clarity here we considered a basic regression model where there is only one independent 

variable and assume the regression function is linear of the form 

iii uxy  10  , ),0(~ 2 IGSPu 
                                                (1) 

for the conditions in which the distribution of the error terms are assumed to be independent and identically 

distributed generalized new symmetric random errors with mean 0 and constant variance
2 .  

In this paper, we extend the work of A.Asrat Atsedeweyn and K.Srinivasa Rao (2013) to the case, where the 

underlying distribution is a generalized new symmetric distribution. The generalized new symmetric distribution 

family represents very wide platykurtic distributions ranging from mesokurtic to highly flatted platykurtic 

distributions. It is clear that the generalized new symmetric distribution has been received great interest in many 

applications such as signal processing, agricultural and biological experiments and financial modeling; see, for 

example, M.Seshashayee, et.al (2011).  But so far, no study has been attempted to investigate a linear regression 

model with the generalized new symmetric error distribution. Hence, in this paper we considered a linear 

regression model in which the underlying distribution is a generalized new symmetric.  

The rest of the paper is organized as follows. Section 2, briefly introduces the generalized new symmetric 

distribution and discusses some of its properties. In Section 3, we develop the ML estimators for the generalized 

new symmetric data, study the asymptotic properties of the proposed estimators and then conduct simulation to 

the study. We also illustrate the results of Monte Carlo experiments in which datasets were simulated from the 

proposed model and from models with other distribution for the error terms. In addition, the OLS estimators are 

also presented. Comparisons of the ML with OLS estimation techniques; and the proposed model with normal 

regression model are made in Section 4. Finally we state some results in Section 5.   
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2. Generalized New Symmetric Distribution 

On many occasions, even though the shape of the sample frequency curve is symmetric and bell shaped, the 

normal approximation may badly fit the distribution, indicating some kind of kurtosis. To model such situations 

a more appropriate distribution of symmetric and platykurtic nature is needed. In recent years, techniques for 

extending the family of normal distributions have been proposed. A three-parameter distribution, named as 

Generalized new symmetric (GNS) distribution has been introduced by the authors Srinivasa Rao, et al., (1997) 

by inserting a new parameter   to the normal distribution, such that a kurtosis effect will depend on it. It is a 

family of unimodel, symmetric and a bell-shaped continuous probability distribution, defined on the entire real 

line, which suits for the situations where the variables are platykurtic.   

We say that the random variable y has the generalized new symmetric distribution if y has the density function,  
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Here  is the location parameter,  is the scale parameter and is the shape parameter. We denote the 

generalized new symmetric distribution with location parameter  , scale parameter   and shape parameter   

as ),,( 2 GNS . The factor
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k , which incorporates the well-

tabulated gamma function, serves as a normalizing factor to insure that the area under the density curve

  ,,/yf  is equal to one.  

The distribution has several desirable properties and nice physical interpretations. Because of the shape 

parameter it has quite a bit of flexibility for analyzing different types of platykurtic data. The attraction of the NS 

distribution is that from the parent pdf, a large class of distributions can be generated with the parameter   

controlling the kurtosis. Each value of the shape parameter ,...)2,1,0( gives different bell shaped and 

symmetric continuous distributions with parameters  and . So,  can be treated as an index parameter which 

can be used to determine a larger class of specific distributions.  Particularly, if we choose 0  then equation 

(2) is recognized as the pdf for the univariate normal distribution, i.e. ),()0,,( 22  NNS  . In this sense 

(2) may be regarded as a generalization of the normal distribution. Moreover, in the limit ,  the pdf tends 

to the uniform distribution, ),(  U . Therefore, this family of distribution has a broad application area 

in real life. 

Figure 1 illustrates several of the possible shapes obtained from (2) for various choices of   and 0 , 1   
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    Figure1: The generalized new symmetric probability density for    0,1,0,,  (solid line); 

   1,1,0,,   (dotted line); and    2,1,0,,   (dashed line)  

Figure 1 represents the plot of (2) and shows the effect of varying the index parameter   for fixed  and . 

The green (solid) curve is the standard normal distribution while the red (dashed) and blue (dotted) curves are 

the new symmetric distribution with   equal to 1 and 2 respectively. It can be seen that the distribution is very 

versatile and that the value of   has a substantial effect on the kurtosis of the probability density function. For 

larger values of , we expect heavy fat tails. An advantage of GNS distribution is that it is adaptive to flatness in 

the data by varying the values of . When   increases, the sharpness diminishes.  

When a random variable Y  is generalized new symmetric distributed with mean ,  variance 
2  and index 

parameter  or to define y as a variate drawn from this distribution, we write  

),,(~ 2 NSY                                       (3) 

The distributions belonging to this family have the following additional characteristics.  

i. It is clear from (2) that the mode of the pdf is  and that it is unimodal and symmetrical about the mode. 

Therefore, the median and the mean are also equal to  . These properties coincide with those of the normal 

distribution. 

ii. Since the distribution is symmetric, its skewness is zero. 

iii. The Function ),,;( yf is log-concave.  

iv. Range: Infinity in both directions. 

v. The distribution function of the family specified by (2) is given as 
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            Figure 2: The generalized symmetric distribution for )0,1,0(NS , (solid line); )1,1,0(NS  (dotted 

line); and )2,1,0(NS  (dashed line)   

vi. Central Moments 

The GNS has moments of all orders p. That is, for new symmetric distributed Y with mean  , standard 

deviation   and index parameter  , the expectation 
pyE )(  exists and is finite for all p. The odd moments 

clearly all vanish by symmetry, I.e. 012 n  and the even moments are  
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In particular, the first four central moments of this distribution are 
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That is, the variance of the distribution is 
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vii. The recurrence relation between the central moments is 
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viii. The characteristic function of this distribution is 
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           This is the product of the normal characteristic function and a polynomial of ‘t’. 

ix. The kurtosis of the distribution is 
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x. Hazard and reversed hazard functions of the distribution 
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The hazard function is the ratio of the probability density function to the survival function, )(yS . The hazard 

function )(yh of the GNS distribution proposed in this paper can be utilized to characterize life phenomena and 

can be written as  

            
)(1

)(

)(

)(
)(

yF

yf

yS

yf
yh


                                                           (11)    

where f  is the pdf and F  is the CDF of the GNS distribution with mean  , variance   and index parameter 

 . If 0 , (11) becomes the normal hazard function. Recently, it is observed, Gupta, R. C., Gupta, R. D. 

(2007), that the reversed hazard function plays an important role in the reliability analysis. The reversed hazard 

function of the ),,( GNS  is 

)(

)(
)(

yF

yf
yr                                             (12)    

The hazard and reversed hazard functions of the generalized new symmetric distribution for 0 , 1  and 

some values of )2,1,0( are illustrated in Figure 3.  

 

Figure 3: The GNS distribution reversed hazard (left) and hazard (right) functions for )0,1,0(),,(   

(solid line), )1,1,0(),,(  (dashed line) and )2,1,0(),,(   (dotted line)  

It is well known that the hazard function or the reversed hazard function uniquely determines the corresponding 

probability density function.  

3. Inference 

Previously we have studied generalized new symmetric distribution and its distributional properties. Another 

aspect of any distributional study is to look in to the inferential aspects of the distribution, in particular the 

estimation of the parameters involved in the distribution under study and their asymptotic properties. 
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3.1  Estimation of the model parameters  

The estimation of parameters in a linear regression model is probably one of the oldest and most widely used 

problems in many applied areas such as economics, engineering, social, health, and biological sciences. 

Maximum likelihood (ML) is the principal method of estimation used for all generalized linear models. 

However, the shape parameter   is estimated based on the sample kurtosis of the distribution since it takes non-

negative integral values.  After identifying  , the ML method is used to estimate the simple linear model 

parameters (the intercept ,0  and the slope 1 ) and the scale parameter ( ).                                

3.1.1 Estimation of the shape parameter 

Since the shape parameter   takes non-negative integral values, it can be estimated not using the method of ML 

procedure but through sample kurtosis by solving the equation in which the sample kurtosis 2 is equated to the 

theoretical kurtosis 2 . That is, 
2
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Solving this equation numerically, we can find the value of . By Rochies theorem, there is one and only one 

real root to this equation. We pick up the nearest integer to this real root as an estimator for the shape parameter (

 ). For the simulated data of various sample size n, we have estimated   and the results are summarized in 

Table 1.   

Table 1: The estimate of   for various sample of size n 

 

  n 

̂  

Calculated   Rounded 

100                       3.260                3            

1000                     2.260                2                                   

3000                     2.2015              2                  

5000                     2.0240              2                  

10000                   0.9527              1           

For each estimated value of , the corresponding value of kurtosis 2 can be found using (13). Some values of 

2 for  = 0, 1, 2 ..., 21 are given in Table 2.  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.1, 2014 

 

56 

Table 2: Values of the kurtosis ( 2 ) for various values of shape parameter (  ) 

       2          2  

0     3.0000 

1     2.5200 

2     2.43669 

3     2.39539 

4     2.36956 

5     2.35145 

6     2.33786 

7     2.32717 

8     2.31848 

9     2.31123 

10   2.30507 

11     2.29975 

12     2.29509 

13     2.29097 

14     2.28729 

15     2.28398 

16     2.28098 

17     2.27825 

18     2.27574 

19     2.27343 

20     2.27129 

21     2.26931 

          

The table indicates that as   increases, 2 decreases. This is also supported graphically in Figure 3. 

 

Figure 3: The relationship between kurtosis ( 2 ) and shape parameter ( ). 

3.1.2 Maximum Likelihood Estimation of the Model Parameters  

Let nyyy ,...,, 21  be a random sample of size n drawn from ),,,( 2

10 GNS . Since the shape parameter

  is already identified through the sample kurtosis in section 3.1.1, the unknown parameters of the model 

),,( 2 IXy   are the regression coefficients 0  and 1 , and the error variance
2 . Suppose we take a sample 

of size 5000, from Section 3.1.1 for the simulated data sets it is found that 2024.2ˆ  . Hence the 

distribution with 2ˆ   viz,  
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is fitted to the simulated data sets.  

The new symmetric linear regression model is  

),0(~, 2

10 INSuuxy iii                                 (15) 

Thus, in this section we deal with the problem of estimation of these parameters from the observables y and x for 

a sample of size 5000 whose shape parameter estimate is found to be 2.024.  

Given a set of n iid random vectors n

iiY
1
, each drawn from the generalized new symmetric distribution, the 

joint probability or likelihood of a particular realization, n
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, is given by 
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Taking logarithms of (16) and ignoring additive constants
1
, we obtain the commonly used log-likelihood 

function, ,lnL  for the new symmetric regression model: 

             
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The MLEs of these parameters are provided by taking the derivative with respect to 10 , and 
2 and equating 

to 0, we obtain the normal equations as  
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That is,  

                                                           
1
 Some terms in the density function have been dropped in the log-likelihood function since they do not affect 

the estimation of the parameters. 
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There are no closed form solutions to the likelihood equations. Numerical methods must be applied for 

simultaneously solving the nonlinear equations to obtain  2

10
ˆ,ˆ,ˆ  . We need to use either the Scoring 

algorithm or the Newton-Raphson algorithm. The required numerical evaluations were implemented using 

MathLab R2012b. Recall that the formula for Newton-Raphson is  

                                   
)22(1)()1( SHnn                                                         

where H is the Hessian (second derivative) matrix and S  is the gradient (first derivative) vector of the log-

likelihood function, both evaluated at the current value of the parameter vector.  

That is, 
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(23)                

                                                                                    where 
2

10 ,,    

We generate explanatory variable from uniform distribution and the random error from generalized new 

symmetric distribution with ,45.20  9.41   and 2.0 . Using statistical software Wolfram 

Mathematica 9, we generate data for sample size n =1000, 2000, 3000, 5000 and 10000. The iteration is to be 

repeated until the sequence  )1( n
 
thus obtained converges to the desired degree of accuracy. The results are 

reported in Table 3. Essentially, use of this method requires the prior computation of the Hessian matrix H and 

an initial guess 
)0( for the model parameters 

 
and scale parameter

2 . We now need to take the derivative 

of each of the gradient vector with respect to 10 ,
 
and 

2 to derive the Hessian matrix. Let’s start with 0 . 
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HThus                                                   

       where H is the Hessian matrix and each stuff is as derived in equations (24) through (32).  

3.1.3 Information Matrix and Standard Errors 

The second derivatives of the log-likelihood, given in equations (24) through (32), are complicated nonlinear 

functions of the data whose exact expected values are unknown. Hence, we use moment approximation as in the 

case in H. Cramer (1946). The first 4 central moments (6) are used to simplify the computation.  
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The asymptotic variances and covariances of maximum likelihood estimators are given by the elements of the 

inverse of the Fisher information matrix:   
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Unfortunately, the exact mathematical expressions for the above expectations are very difficult to obtain. 

Therefore, we give the Fisher information matrix for the MLE, which is obtained by using moment 

approximation, see H.Cramer (1946). 

The components of the Fisher information matrix are:     
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The information matrix related to the parameter is thus 
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Consequently, the asymptotic variances and covariances of maximum likelihood estimators are given by the 

elements of the inverse of the Fisher information matrix (41) and then substituting 10 ,  and 
2  by 10

ˆ,ˆ   

and
2̂ . 
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(42) 

The diagonal elements of  ̂Var  will give the asymptotic variances of associated with the coefficients. The 

stuff in the bottom right is the variance of
2 .  

3.2  Least Square Estimation for Model Parameters 

The most widely used technique for estimating the unknown regression coefficients in a standard linear 

regression model is undeniably, the method of ordinary least squares (OLS). The least square estimates of 0

and 1  are the values which minimize  

                               



n

i

ii xySS
1

2

10                                                         (43) 

And provide the OLS estimators 0̂ and 1̂  as 
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where 
n

x

x

n

i

i
 1

 and 
n

y

y

n

i

i
 1 . Table 3 summarizes the results of the OLS estimation of the model to the 

simulated data sets.  

Table 3: OLS Estimation Output for the Simulation Data 

Nonlinear OLS Summary of Residual Errors 

Equation DF Model DF Error SSE MSE Root 

MSE 

R-Square Adj R-Sq 

y 2 9998 430.1 0.0430 0.2074 0.9791 0.9790 

Nonlinear OLS Parameter Estimates 

Parameter Estimate Approx 

Std Err 

t Value Approx 

Pr > |t| 

   

0  -2.45381 0.00413 -593.47 <.0001    

      1   4.906041 0.00718 683.56 <.0001    

Number of Observations Statistics for System 

 Used 10000 objective 0.0430  

 Missing  0 Objective*N 430.0562  

3.3 Simulation and Results 

To better understand, compare and observe their practical performance, the methods developed in this work will 

be evaluated with simulation studies. This is done by generation of artificial data from an assumed model and 

application of the estimation methods to the generated data. All computations were carried out using Wolfram 

Mathematica software (version 9), SAS (version 9), and MathLab (version R2012b). To facilitate exposition of 

the method of estimation we considered linear model of the form (1) and for illustrative purposes we get a set of 

simulated data ),( ii yx for sample sizes of n=1000, 2000, 3000, 5000, 10000. (The sample size in this case, 

10,000, is relatively large, and so finite sample bias is less of an issue.) The dependent y  variable is simulated 

from generalized new symmetric distribution with mean 0, variance 1 and shape parameter 2 based on random 

variable inversion method, while the predictor x  variable is generated uniformly between 0 and 1. Summary 

statistics of simulations for the regression model using maximum likelihood procedure are presented in Table 4.  

Table 4: Summary of ML Estimation of the regression model parameters based on simulations of the new 

symmetric distribution for ;β0 455.2ˆ   ;β1 9050.4ˆ  and ,0430.0ˆ 2σ  with n=1000, 2000, 3000, 

5000 and 10000. 
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n Parameter Estimate Standar

d Error 

Wald 95% Conf. Limits Chi-

Square 

Pr > 

ChiSq 

LL 

Lower Upper  

1000 

 

 

0  -2.4573 0.0132 -2.4832 -2.4315 34734.5 <.0001 166.2385 

1  4.9190 0.0222 4.8755 4.9625 49052.2 <.0001 

  0.2049 0.0046 0.1961 0.2141   

2000 
0  

-2.4525 0.0092 -2.4706 -2.4344 70653.4 <.0001 339.8547 

1  
4.8866 0.0160 4.8553 4.9179 93687.4 <.0001 

  0.2042 0.0032 0.1979 0.2106   

3000 
0  -2.4247 0.0065 -2.4373 -2.4120 140901 <.0001 839.5490 

1  4.8523 0.0113 4.8301 4.8745 183976 <.0001 

  0.1766 0.0023 0.1722 0.1811   

5000 
0  -2.4507 0.0057 -2.4620 -2.4395 182311 <.0001 945.3037 

1  4.9021 0.0100 4.8825 4.9216 241132 <.0001 

  0.2046 0.0020 0.2006 0.2086   

10000 
0  -2.4538 0.0041 -2.4619 -2.4457 352273 <.0001 1542.7372 

1  4.9060 0.0072 4.8920 4.9201 467353 <.0001 

  0.2074 0.0015 0.2045 0.2103   

From numerical results in Table 4, we conclude that if the sample size n is increased, then  

i. The estimated standard errors of the estimators are decreased. This indicates that the maximum likelihood 

estimates provide asymptotically normally distributed and consistent estimators for the parameters;  

ii. The asymptotic variances of the estimators are decreased; and 

iii. The confidence interval lengths of the parameters are decreased.  

The value of ̂ that maximizes the likelihood function are thus  

             

   '0430.0,9060.4,4538.2'ˆ,ˆ,ˆˆ 2

10                         (45) 

It can also be verified that the Hessian matrix (33) evaluated at ;4538.2ˆ
0   ;9060.4ˆ

1  and 

,0430.0ˆ 2  is a negative definite matrix. These ensure that this solution does indeed provide a maximum. 

The fitted simple linear model with new symmetric error terms to the simulated data is: 

                 XY 4.90602.4538ˆ                                                                     (46) 

The estimated standard errors of the estimators are just the square roots of the diagonal elements of the variance-

covariance matrix given in (42). That is,  

                
0.0041)ˆ.(. 0 es , 0.0072)ˆ.(. 1 es  and 0.0015)ˆ.(. es               (47) 

Table 5 summarizes the results of the ML estimation based on the sample of size 10,000.  
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Table 5: Maximum Likelihood Estimation Output for the Simulation Data 

Criteria for Assessing Goodness of Fit 

Criterion  DF Value Value/DF   

Deviance  9998 430.0562 0.0430   

Scaled Deviance  9998 10000.000 1.0002   

Pearson Chi-Square  9998 430.0562 0.0430   

Scaled Pearson 
2X   9998 10000.000 1.0002   

Log Likelihood 1542.7372    

Algorithm converged. 

Analysis of Parameter Estimates 

Parameter DF Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Chi- 

Square 

Pr > 

Chi-Sq 

0  1 -2.4538 0.0041 -2.4619 -2.4457 352273 <.0001 

  1 4.9060 0.0072 4.8920 4.9201 467353 <.0001 

  1 0.2074 0.0015 0.2045 0.2103   

NOTE: The scale parameter was estimated by maximum likelihood. 

In the "Criteria for Assessing Goodness of Fit" table displayed in Table 5, the value of the deviance divided by 

its degrees of freedom is less than 1. A p-value is not computed for the scaled deviance; however, a scaled 

deviance that is approximately equal to its degrees of freedom is a possible indication of a good model fit. 

3.4  Properties of the Estimators  

In this section, the asymptotic behavior of the estimators obtained in Section 3.2 are studied. The GNS  family 

satisfies all the regularity conditions, and therefore we have the following results. See for more details, Casella 

and Berger (2002). 

The maximum likelihood estimators  2

10
ˆ,ˆ,ˆˆ    of (

2

10 ,,  ) are consistent estimators. 

Proof: From (42) it is clear that each variance tends to zero as n  so that we conclude the estimators are 

consistent since they are composed of i.i.d. observations.  This is also supported graphically in Figure 4. It is 

observed that the bias first increase as n increases and then start decreasing. 
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Figure 4: Bias versus sample size 

 22

1100
ˆ,ˆ,ˆ  n  is asymptotically normal with mean vector 0 and the variance covariance 

matrix given in (42).  

Proof: The asymptotic normality of the estimators  'ˆ,ˆ,ˆˆ 2

10  
 

here follows as in the i.i.d. case 

(H.Cramer, 1946) and we have that 
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It follows that the MLEs are asymptotically normal.  

Maximum likelihood estimators  2

10
ˆ,ˆ,ˆˆ    of (

2

10 ,,  ) are efficient estimators. 

Proof: An estimator whose variance is as small as Cramer-Rao lower bound when the sample size tends to 

infinity is called asymptotically efficiency. It can be shown that the Cramer Rao lower bound for 0̂ , 1̂  and 

2̂   are respectively                   
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This means that any unbiased estimator that achieves this lower bound is efficient and no better unbiased 

estimator is possible. Now look back at the variance-covariance matrix in Eq. (3.30). It is interesting to note that 

the variances of the estimators in the variance-covariance matrix (42) do asymptotically coincide with Cramer-

Rao lower bound (49). This means that our MLEs are 100% asymptotically efficient.  

4. Comparative Study of the model  

4.1 Comparison of ML and OLS Estimators 

In this section Maximum Likelihood and Ordinary Least Square estimation methods are compared in fitting the 

simple linear model with generalized new symmetric error terms with a sample size n=10,000. One-step-ahead 

forecasting is commonly used to compare the performance of different models (Clements and Hendry, 1997; 

Chiang et al., 2009). For each estimation techniques bias, mean square error (MSE) and relative mean square 

error (RMSE) are calculated; where  

        

 

.)ˆ(

)ˆ()ˆvar()ˆ(
2

OLS

MLOLS

MSE

MSEMSE
RMSE

and

biasMSE










                                                            (50)  

RMSE is useful to measure the quality of the parameter estimation. Positive values of the RMSE can be 

expressed as there is a proportional decrease in the MSE of a given estimator with respect to OLS method. The 

computational result is presented in Table 6.  

Table 6: Bias and MSE of Simulation Results for n=10,000 

Methods Parameter Bias MSE RMSE 

OLS  
0  -0.00381 

3.16E-05 0.01 

 
1  0.006041 

8.805E-05 0.002 

   0.0074 0.043 0 

ML  
0  -0.0038 3.125E-05 0.01 

 
1  0.0060 8.784E-05 0.002 

   0.0074 0.043 0 

Table 6 gives summary results for comparison criteria confirming the fact that deviations from normality cause 

OLS estimators to be poor estimators. The results reported in Table 6 also show that ML estimators have both 
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smaller one-step-ahead forecast bias and MSE; and have positive values of RMSE than the LS estimators. This 

revealed that ML estimation technique exhibits the stronger performance than OLS.  

4.2 Comparison of linear regression models with new symmetric and normally distributed errors  

To the simulated data set, we fit both simple linear regression models under normality and new symmetric 

assumptions. In order to choose the best model among the fitted ones we computed the Akaike’s information 

criterion AIC and the Bayesian information criterion BIC with model diagnostics root mean square error 

(RMSE). In this case, we expect that the proposed model would be chosen as our best model according to the 

minimum of AIC or BIC, and that the model parameters would be estimated correctly, since our true model is 

generated under the NS assumption. The output of simulation study for both the models using various sample 

sizes are presented in Table 7. Table 7: Summary of Estimation result for normal and new symmetric error 

Model 

 

n 

Normal New symmetric  

AIC BIC RMSE AIC BIC RMSE 

1000 -3112.5252 -3110.5172 0.21071 -3166.3541 -3164.3461 0.20512 

2000 -6321.8686 -6319.8646 0.20578 -6351.4636 -6349.4596 0.20426 

3000 -10388.294 -10386.291 0.17698 -10400.239 -10398.236 0.17663 

5000 -15809.819 -15807.817 0.20573 -15864.483 -15862.482 0.20461 

10000 -31306.402 -31304.401 0.20900 -31460.245 -31458.244 0.20740 

           

The model with the smallest AIC or BIC among all competing models is deemed the best model where it can be 

seen that the SP distribution provides the best fit to the data. Both the information criteria methods (AIC and 

BIC) and the model diagnostics (RMSE) indicate that linear model with new symmetrically distributed error 

terms consistently performed best for all of the sample sizes. This can also be consistently noticed from Figure 5 

through 7.  
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         Figure 5: Graphical comparisons of SP and Normal Distributions using AIC  

 

         Figure 6: Graphical comparisons of SP and Normal Distributions using BIC 
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                   Figure 7: Graphical comparisons of NS and Normal Distributions using RMSE 

From Figure 5 and 6, NS and normal are almost indistinguishable.  However, from RMSE we note that the NS 

regression model is better than the normal regression model.  

5. Summary and Conclusions  

In this paper, we presented a new model to deal with nonnormality in linear models, as possible alternatives to 

the linear regression model with normal error terms. We developed NS linear model which can be used to model 

random phenomena whose observations’ tails are thicker than those of normal distribution which is used often in 

the literature. The maximum likelihood estimators of the model parameters are derived and their asymptotic 

properties are studied. Through simulation studies these estimators are compared with ordinary least square 

estimators. The simulated results reveal that the ML estimators are more efficient than LSE in terms of the 

relative efficiency of one-step-ahead forecast bias and mean square error.  A comparative study of the developed 

linear model with that of Gaussian errors revealed that the proposed model gives good fit to the simulated data 

sets.  The proposed model is useful for analyzing data sets arising from agricultural experiments; portfolio 

management, space experiment and a wide range of other platykurtic nature practical problems. 
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