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Abstract  

In this article, we prove some fixed point theorems in cone metric spaces by using expansion mapping. 
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1 Introduction and Preliminaries 

Let   be a real Banach space and   a subset of  E. The subset   is called a cone if and only if : 

(i)   is closed , non-empty and         
(ii)         for all       and non-negative real numbers      
(iii)    (  )      

     Given a cone      we define a partial ordering   on   with respect to   by     if and only if         
We shall write      if     and       we shall write     if           where       denotes the 

interior of    .The  cone   is called normal if there is a number     such that for all        

       implies ‖ ‖   ‖ ‖. 

The least positive number satisfying the above inequality is called the normal constant of   [1]. 

Definition1.1:[1] 

 Let   be a non-empty set. Suppose that mapping         satisfies  the following : 

(d1)     (   ) for all       and  (   )    if and only if    , 

(d2)   (   )   (   ) for all      , 

(d3)   (   )   (   )   (   ) for all          

Then   is called a cone metric space on   and (   ) is called a cone metric space . 

Definition1.2:[1] 

Let (   ) be a cone metric space,     and         a sequence in   .Then we say that  

(i)         converges to   whenever for every     with      there is a natural number   such that 

 (    )    for all    . We denote this by            or       
(ii)        is a Cauchy sequence whenever for every     with     there is a natural number   

such that  (     )    for all        
(iii) (   ) is a complete cone metric space if every Cauchy sequence is convergent . 
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2 Main Results 

Theorem 2.1 Let (   ) be a complete cone metric space and the mapping       is onto and satisfies the 

contractive condition  

 (     )       {
 (    )  (    )  (    )  (    )

 (   )
  (   )  (    )  (    )}  

For all        where      is a constant. Then   has a unique fixed point in    

Proof : For each      , since   is onto , there exist      such that        similarly ,we can write 

                                for each        

If         then    is a fixed point of    . 

 Now suppose that          for all      Then 

  (       )    (         )  

                                    {

 (          )  (      )  (        )  (        )

 (        )
 

 (       )  (          )  (      )
}  

                                    {

 (       )  (        )  (         )  (     )

 (        )
 

 (       )  (       )  (       )
}  

                                      (        )  (       )  (       )  (       )  

                                      (       )  (       )   

Case I 

          (       )    (       )      

                           
Which is contradiction. 

 

Case II 

 

         (       )    (       )  

         (       )  
 

 
 (       )  

          (       )     (       )               Where   
 

 
   (      )  

From this we get  (       )      (     )  

Now for     we have  

 (     )   (        )   (          )        (        )  

                   (               )  (     )  

                   
  

   
 (     )  

Let     be given. Choose a natural number    such that 
  

   
 (     )    for all     .Thus,  (     )     

for    . Therefore,         is a Cauchy sequence in (   )  Since (   ) is a complete cone metric space, 

there exists      such that        as           

 If   is continuous, then  (      )   (       )   (     
 )    as    . Therefore,  (      )    and 

so         Thus   has a fixed point in    
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Theorem 2.2 Let (   ) be a complete cone metric space and the mapping       is onto and satisfies the 

contractive condition  

               (     )     (    )  (    )   (    )  (    ) 
 

   

For all        where      is a constant. Then   has a unique fixed point in    

Proof : For each      , since   is onto , there exist      such that        similarly ,we can write 

                                for each        

If         then    is a fixed point of    . 

 Now suppose that          for all      Then 

             (       )    (         )  

                               (          )  (      )   (        )  (        ) 
 

   

                               (       )  (       )   (         )  (     ) 
 

   

                               (       )  (       ) 
 

   

   (       ) 
     (       )  (       )  

      (       )     (       )  

      (       )  
 

   (       )  

      (       )     (       )                     Where   
 

     (      )  

From this we get  (       )      (     )  

Now for     we have  

 (     )   (        )   (          )        (        )  

                   (               )  (     )  

                  
  

   
 (     )  

Let     be given. Choose a natural number    such that 
  

   
 (     )    for all     .Thus,  (     )     

for    . Therefore,         is a Cauchy sequence in (   )  Since (   ) is a complete cone metric space, 

there exists      such that        as           

 If   is continuous, then  (      )   (       )   (     
 )    as    . Therefore,  (      )    and 

so         Thus   has a fixed point in    

Theorem 2.3 Let (   ) be a complete cone metric space and the mapping       is onto and satisfies the 

contractive condition  

 (     )  
 

 

[ (    )  (    )] 

 (    )  (    )
  

For all        where 1      is a constant. Then   has a unique fixed point in    

Proof : For each      , since   is onto , there exist      such that        similarly ,we can write 

                                for each        
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If         then    is a fixed point of    . 

 Now suppose that          for all      Then 

               (       )    (         )  

                                   
 

 

[ (          )  (      )] 

 (        )  (        )
   

                                   
 

 

[ (       )  (       )]
 

 (         )  (     )
  

 (       )  (         )  
 

 
[ (       )   (       )]

   

 (       ) [ (       )   (       )]  
 

 
[ (       )   (       )]

    

 (       )  
 

 
[ (       )   (       )]   

             (       )  (   ) (       )  

                (       )  
   

 
 (       )   

               (       )     (       )               Where   
   

 
   (       ) 

From this we get  (       )      (     )  

Now for     we have  

 (     )   (        )   (          )        (        )  

                   (               )  (     )  

                   
  

   
 (     )  

Let     be given. Choose a natural number    such that 
  

   
 (     )    for all     .Thus,  (     )     

for    . Therefore,         is a Cauchy sequence in (   )  Since (   ) is a complete cone metric space, 

there exists      such that        as           

 If   is continuous, then  (      )   (       )   (     
 )    as    . Therefore,  (      )    and 

so         Thus   has a fixed point in   

Theorem 2.4  Let (   ) be a complete cone metric space and the mapping       is onto and satisfies the 

contractive condition  

 (     )   [
  (    )   (    )

 (    )  (    )
]   [

  (    )   (    )

 (    )  (    )
]  

                       [ (    )   (    )]    (   )   

For all                                 .  

Then   has a unique fixed point in    

Proof : For each      , since   is onto , there exist      such that        similarly ,we can write 

                                for each        

If         then    is a fixed point of    . 
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 Now suppose that          for all      Then 

               (       )    (         )  

  [
  (          )   (      )

 (          )  (      )
]   [

  (        )   (        )

 (        )  (        )
]    

                       [ (          )   (      )]    (       )     

  [
  (       )   (       )

 (       )  (       )
]   [

  (         )   (     )

 (         )  (     )
]    

                       [ (       )   (       )]    (       )      

  [
  (       )  (       ) 

    (       )  (       )

 (       )  (       )
]   [

  (         )

 (         )
]    

                       [ (       )   (       )]    (       )      

  [
  (       )  (       ) 

 

 (       )  (       )
]   [ (         )]    

                       [ (       )   (       )]    (       )      

  [ (       )   (       )]   [ (       )   (       )]    

                       [ (       )   (       )]    (       )      

   (       )    (       )    (       )    (       )    

                        (       )    (       )    (       )      

(       ) (       )  (       ) (       ) 

(       ) (       )  (       ) (       )   

 (       )  
       

(       )
 (       )  

 (       )     (       )               Where   
       

(       )
   

From this we get  (       )      (     )  

Now for     we have  

 (     )   (        )   (          )        (        )  

                   (               )  (     )  

                   
  

   
 (     )  

Let     be given. Choose a natural number    such that 
  

   
 (     )    for all     .Thus,  (     )     

for    . Therefore,         is a Cauchy sequence in (   )  Since (   ) is a complete cone metric space, 

there exists      such that        as           

 If   is continuous, then  (      )   (       )   (     
 )    as    . Therefore,  (      )    and 

so         Thus   has a fixed point in    

Theorem 2.5  Let (   ) be a complete cone metric space and the mapping       is onto and satisfies the 

contractive condition  
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 (     )   
 (    )[ (   )  (    )  (    )]

 (    )  (    )
  

 (    )[ (   )  (    )  (    )]

 (    )  (    )
  

For all                         .  

Then   has a unique fixed point in    

Proof : For each      , since   is onto , there exist      such that        similarly ,we can write 

                                for each        

If         then    is a fixed point of    . 

 Now suppose that          for all      Then 

               (       )    (         )  

  
 (        )[ (       )  (          )  (        )]

 (        )  (        )
  

  
 (          )[ (       )  (        )  (      )]

 (        )  (        )
  

  
 (         )[ (       )  (       )  (     )]

 (         )  (     )
  

  
 (       )[ (       )  (     )  (       )]

 (         )  (     )
  

   [ (       )]   
 (       )[ (       )  (       )]

 (         )
   

   [ (       )]    (       )    

 (    )[ (       )]    

 (       )  
 

    
 (       )    

 (       )     (       )               Where   
 

    
   

From this we get  (       )      (     )  

Now for     we have  

 (     )   (        )   (          )        (        )  

                   (               )  (     )  

                   
  

   
 (     )  

Let     be given. Choose a natural number    such that 
  

   
 (     )    for all     .Thus,  (     )     

for    . Therefore,         is a Cauchy sequence in (   )  Since (   ) is a complete cone metric space, 

there exists      such that        as           

 If   is continuous, then  (      )   (       )   (     
 )    as    . Therefore,  (      )    and 

so         Thus   has a fixed point in    
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