

Some Fixed Point Theorem for Expansion onto Mappings on Cone metric Spaces

Rajesh Shrivastava¹,Ramakant Bhardwaj², Manish Sharma²* ¹Department of Mathematics, Govt. Science & Commerce College Benazir Bhopal, M.P., India ²Department of Mathematics, Truba Institute of Engg. and Information Technology Bhopal, M.P., India

Abstract

In this article, we prove some fixed point theorems in cone metric spaces by using expansion mapping.

Key Words

Cone metric space, fixed point, Common fixed point, expansion mapping.

MR(2000) Subject classification 47H10,54H25

1 Introduction and Preliminaries

Let *E* be a real Banach space and *P* a subset of *E*. The subset *P* is called a cone if and only if :

- (i) *P* is closed, non-empty and $P \neq \{0\}$
- (ii) $ax + by \in P$ for all $x, y \in P$ and non-negative real numbers a, b.
- (iii) $P \cap (-P) = \{0\}$

Given a cone $P \subset E$, we define a partial ordering \leq on *E* with respect to *P* by $x \leq y$ if and only if $y - x \in P$. We shall write x < y if $x \leq y$ and $x \neq y$; we shall write $x \ll y$ if $y - x \in intP$, where *intP* denotes the interior of *P*. The cone *P* is called normal if there is a number K > 0 such that for all $x, y \in E$,

 $0 \le x \le y$ implies $||x|| \le K ||y||$.

The least positive number satisfying the above inequality is called the normal constant of P [1].

Definition1.1:[1]

Let *X* be a non-empty set. Suppose that mapping $d: X \times X \to E$ satisfies the following :

 $(d_1) \ 0 \le d(x, y)$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y,

- (d₂) d(x, y) = d(y, x) for all $x, y \in X$,
- (d₃) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.

Then d is called a cone metric space on X and (X, d) is called a cone metric space.

Definition1.2:[1]

Let (X, d) be a cone metric space, $x \in X$ and $\{x_n\}_{n \ge 1}$ a sequence in X. Then we say that

- (i) $\{x_n\}_{n\geq 1}$ converges to x whenever for every $c \in E$ with $0 \ll c$, there is a natural number N such that $d(x_n, x) \leq c$ for all $n \geq N$. We denote this by $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.
- (ii) $\{x_n\}_{n\geq 1}$ is a Cauchy sequence whenever for every $c \in E$ with $0 \ll c$ there is a natural number N such that $d(x_n, x_m) \ll c$ for all $n, m \geq N$.
- (iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

2 Main Results

Theorem 2.1 Let (X, d) be a complete cone metric space and the mapping $T: X \to X$ is onto and satisfies the contractive condition

 $d(Tx,Ty) \ge K \min\left\{\frac{d(x,Tx).d(y,Ty)+d(x,Ty).d(y,Tx)}{d(x,y)}, d(x,y), d(x,Tx), d(y,Ty)\right\}$

For all $x, y \in X$, where K > 1 is a constant. Then T has a unique fixed point in X.

Proof : For each $x_0 \in X$, since *T* is onto, there exist $x_1 \in X$ such that $Tx_1 = x_0$ similarly, we can write

 $x_n = T x_{n+1}$ for each $n \ge 1$

If $x_{n-1} = x_n$ then x_n is a fixed point of T.

Now suppose that $x_{n-1} \neq x_n$ for all $n \ge 1$. Then

$$\begin{aligned} d(x_n, x_{n-1}) &= d(Tx_{n+1}, Tx_n) \\ &\geq K \min \left\{ \frac{\frac{d(x_{n+1}, Tx_{n+1}) \cdot d(x_n, Tx_n) + d(x_{n+1}, Tx_n) \cdot d(x_n, Tx_{n+1})}{d(x_{n+1}, x_n)}, d(x_{n+1}, Tx_{n+1}), d(x_n, Tx_n)}, \right\} \\ &\geq K \min \left\{ \frac{\frac{d(x_{n+1}, x_n) \cdot d(x_n, x_{n-1}) + d(x_{n+1}, x_{n-1}) \cdot d(x_n, x_n)}{d(x_{n+1}, x_n)}}{d(x_{n+1}, x_n)}, d(x_n, x_{n-1})}, \right\} \\ &\geq K \min \left\{ d(x_n, x_{n-1}), d(x_{n+1}, x_n), d(x_{n+1}, x_n), d(x_n, x_{n-1})} \right\} \\ &\geq K \min \left\{ d(x_{n+1}, x_n), d(x_n, x_{n-1}) \right\} \end{aligned}$$

Case I

 $d(x_n, x_{n-1}) \ge K d(x_n, x_{n-1})$ $\implies 1 \ge K$

Which is contradiction.

Case II

$$d(x_n, x_{n-1}) \ge Kd(x_{n+1}, x_n)$$

$$d(x_{n+1}, x_n) \le \frac{1}{K} d(x_n, x_{n-1})$$

$$d(x_{n+1}, x_n) \le h d(x_n, x_{n-1})$$

Where $h = \frac{1}{K} < 1$ (As $K > 1$)

From this we get $d(x_n, x_{n+1}) \le h^n d(x_0, x_1)$

Now for n < m we have

$$\begin{aligned} d(x_n, x_m) &\leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots \dots + d(x_{m-1}, x_m) \\ &\leq (h^n + h^{n+1} + \dots \dots + h^{m-1}) d(x_0, x_1) \\ &\leq \frac{h^n}{1-h} d(x_0, x_1) \end{aligned}$$

Let $0 \le c$ be given. Choose a natural number N_1 such that $\frac{h^n}{1-h}d(x_0, x_1) \le c$ for all $n \ge N_1$. Thus, $d(x_n, x_m) \le c$, for n < m. Therefore, $\{x_n\}_{n\ge 1}$ is a Cauchy sequence in (X, d). Since (X, d) is a complete cone metric space, there exists $x^* \in X$ such that $x_n \to x$ as $n \to \infty$.

If *T* is continuous, then $d(Tx^*, x^*) \le d(Tx_n, Tx^*) + d(Tx_n, x^*) \to 0$ as $n \to \infty$. Therefore, $d(Tx^*, x^*) = 0$ and so $Tx^* = x^*$. Thus *T* has a fixed point in *X*.

Theorem 2.2 Let (X, d) be a complete cone metric space and the mapping $T: X \to X$ is onto and satisfies the contractive condition

$$d(Tx, Ty) \ge K\{d(x, Tx), d(y, Ty) + d(x, Ty), d(y, Tx)\}^{\frac{1}{2}}$$

For all $x, y \in X$, where K > 1 is a constant. Then T has a unique fixed point in X.

Proof: For each $x_0 \in X$, since T is onto, there exist $x_1 \in X$ such that $Tx_1 = x_0$ similarly, we can write

$$x_n = T x_{n+1}$$
 for each $n \ge 1$

If $x_{n-1} = x_n$ then x_n is a fixed point of T.

Now suppose that
$$x_{n-1} \neq x_n$$
 for all $n \ge 1$. Then

$$d(x_n, x_{n-1}) = d(Tx_{n+1}, Tx_n)$$

$$\geq K\{d(x_{n+1}, Tx_{n+1}) \cdot d(x_n, Tx_n) + d(x_{n+1}, Tx_n) \cdot d(x_n, Tx_{n+1})\}^{\frac{1}{2}}$$

$$\geq K\{d(x_{n+1}, x_n) \cdot d(x_n, x_{n-1}) + d(x_{n+1}, x_{n-1}) \cdot d(x_n, x_n)\}^{\frac{1}{2}}$$

$$\geq K\{d(x_{n+1}, x_n) \cdot d(x_n, x_{n-1})\}^{\frac{1}{2}}$$

 $\{d(x_n, x_{n-1})\}^2 \ge K^2 d(x_{n+1}, x_n). d(x_n, x_{n-1})$

$$\begin{aligned} d(x_n, x_{n-1}) &\geq K^2 d(x_{n+1}, x_n) \\ d(x_n, x_{n+1}) &\leq \frac{1}{K^2} d(x_{n-1}, x_n) \\ d(x_n, x_{n+1}) &\leq h \, d(x_{n-1}, x_n) \end{aligned}$$
 Where $h = \frac{1}{K^2} < 1 \; (As \; K > 1)$

From this we get $d(x_n, x_{n+1}) \le h^n d(x_0, x_1)$

Now for n < m we have

$$d(x_n, x_m) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots \dots + d(x_{m-1}, x_m)$$
$$\le (h^n + h^{n+1} + \dots \dots + h^{m-1}) d(x_0, x_1)$$
$$\le \frac{h^n}{1-h} d(x_0, x_1)$$

Let $0 \le c$ be given. Choose a natural number N_1 such that $\frac{h^n}{1-h}d(x_0, x_1) \le c$ for all $n \ge N_1$. Thus, $d(x_n, x_m) \le c$, for n < m. Therefore, $\{x_n\}_{n\ge 1}$ is a Cauchy sequence in (X, d). Since (X, d) is a complete cone metric space, there exists $x^* \in X$ such that $x_n \to x$ as $n \to \infty$.

If *T* is continuous, then $d(Tx^*, x^*) \le d(Tx_n, Tx^*) + d(Tx_n, x^*) \to 0$ as $n \to \infty$. Therefore, $d(Tx^*, x^*) = 0$ and so $Tx^* = x^*$. Thus *T* has a fixed point in *X*.

Theorem 2.3 Let (X, d) be a complete cone metric space and the mapping $T: X \to X$ is onto and satisfies the contractive condition

$$d(Tx,Ty) \geq \frac{\kappa}{2} \frac{\left[d(x,Tx) + d(y,Ty)\right]^2}{d(x,Ty) + d(y,Tx)}$$

For all $x, y \in X$, where $1 < K \le 2$ is a constant. Then *T* has a unique fixed point in *X*.

Proof : For each $x_0 \in X$, since T is onto, there exist $x_1 \in X$ such that $Tx_1 = x_0$ similarly, we can write

$$x_n = T x_{n+1}$$
 for each $n \ge 1$

If $x_{n-1} = x_n$ then x_n is a fixed point of T.

Now suppose that $x_{n-1} \neq x_n$ for all $n \ge 1$. Then

$$d(x_n, x_{n-1}) = d(Tx_{n+1}, Tx_n)$$

$$\geq \frac{K}{2} \frac{[d(x_{n+1}, Tx_{n+1}) + d(x_n, Tx_n)]^2}{d(x_{n+1}, Tx_n) + d(x_n, Tx_{n+1})}$$

$$\geq \frac{K}{2} \frac{[d(x_{n+1}, x_n) + d(x_n, x_{n-1})]^2}{d(x_{n+1}, x_{n-1}) + d(x_n, x_n)}$$

$$\begin{aligned} d(x_n, x_{n-1}). \ d(x_{n+1}, x_{n-1}) &\geq \frac{\kappa}{2} [d(x_{n+1}, x_n) + d(x_n, x_{n-1})]^2 \\ d(x_n, x_{n-1}). [d(x_{n-1}, x_n) + d(x_n, x_{n+1})] &\geq \frac{\kappa}{2} [d(x_{n+1}, x_n) + d(x_n, x_{n-1})]^2 \\ d(x_n, x_{n-1}) &\geq \frac{\kappa}{2} [d(x_{n+1}, x_n) + d(x_n, x_{n-1})] \\ Kd(x_{n+1}, x_n) &\leq (2 - K) d(x_n, x_{n-1}) \\ d(x_{n+1}, x_n) &\leq \frac{2 - \kappa}{K} d(x_n, x_{n-1}) \\ d(x_{n+1}, x_n) &\leq h \ d(x_n, x_{n-1}) \end{aligned}$$
 Where $h = \frac{2 - \kappa}{K} < 1 \ (As1 < K \leq 2)$

From this we get $d(x_n, x_{n+1}) \le h^n d(x_0, x_1)$

Now for n < m we have

$$\begin{aligned} d(x_n, x_m) &\leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots \dots + d(x_{m-1}, x_m) \\ &\leq (h^n + h^{n+1} + \dots \dots + h^{m-1}) d(x_0, x_1) \\ &\leq \frac{h^n}{1-h} d(x_0, x_1) \end{aligned}$$

Let $0 \le c$ be given. Choose a natural number N_1 such that $\frac{h^n}{1-h}d(x_0, x_1) \le c$ for all $n \ge N_1$. Thus, $d(x_n, x_m) \le c$, for n < m. Therefore, $\{x_n\}_{n\ge 1}$ is a Cauchy sequence in (X, d). Since (X, d) is a complete cone metric space, there exists $x^* \in X$ such that $x_n \to x$ as $n \to \infty$.

If *T* is continuous, then $d(Tx^*, x^*) \le d(Tx_n, Tx^*) + d(Tx_n, x^*) \to 0$ as $n \to \infty$. Therefore, $d(Tx^*, x^*) = 0$ and so $Tx^* = x^*$. Thus *T* has a fixed point in *X*

Theorem 2.4 Let (X, d) be a complete cone metric space and the mapping $T: X \to X$ is onto and satisfies the contractive condition

$$d(Tx, Ty) \ge \alpha \left[\frac{d^2(x, Tx) + d^2(y, Ty)}{d(x, Tx) - d(y, Ty)} \right] + \beta \left[\frac{d^2(x, Ty) + d^2(y, Tx)}{d(x, Ty) - d(y, Tx)} \right]$$
$$+ \gamma \left[d(x, Tx) + d(y, Ty) \right] + \delta d(x, y)$$

For all $x, y \in X, \alpha > 1, \beta > 1, \gamma > 1, \delta > 1$ and $2\gamma + \delta > 1$.

Then *T* has a unique fixed point in *X*.

Proof : For each $x_0 \in X$, since *T* is onto, there exist $x_1 \in X$ such that $Tx_1 = x_0$ similarly, we can write

$$x_n = T x_{n+1}$$
 for each $n \ge 1$

If $x_{n-1} = x_n$ then x_n is a fixed point of T.

Now suppose that $x_{n-1} \neq x_n$ for all $n \ge 1$. Then

$$\begin{split} d(x_n, x_{n-1}) &= d(Tx_{n+1}, Tx_n) \\ &\geq \alpha \left[\frac{d^2(x_{n+1}, Tx_{n+1}) + d^2(x_n, Tx_n)}{d(x_{n+1}, Tx_{n+1}) - d(x_n, Tx_n)} \right] + \beta \left[\frac{d^2(x_{n+1}, Tx_n) + d^2(x_n, Tx_{n+1})}{d(x_{n+1}, Tx_{n+1}) - d(x_n, Tx_n)} \right] \\ &+ \gamma \left[d(x_{n+1}, Tx_{n+1}) + d(x_n, Tx_n) \right] + \delta d(x_{n+1}, x_n) \\ &\geq \alpha \left[\frac{d^2(x_{n+1}, x_n) + d^2(x_n, x_{n-1})}{d(x_{n+1}, x_n) - d(x_n, x_{n-1})} \right] + \beta \left[\frac{d^2(x_{n+1}, x_{n-1}) + d^2(x_n, x_n)}{d(x_{n+1}, x_n) - d(x_n, x_{n-1})} \right] \\ &+ \gamma \left[d(x_{n+1}, x_n) - d(x_n, x_{n-1}) \right] + \beta \left[\frac{d^2(x_{n+1}, x_{n-1}) - d(x_n, x_n)}{d(x_{n+1}, x_n) - d(x_n, x_{n-1})} \right] \\ &= \alpha \left[\frac{\left[d(x_{n+1}, x_n) - d(x_n, x_{n-1}) \right]^2 + 2d(x_{n+1}, x_n) - d(x_{n+1}, x_n)}{d(x_{n+1}, x_{n-1})} \right] \\ &+ \gamma \left[d(x_{n+1}, x_n) + d(x_n, x_{n-1}) \right] + \beta d(x_{n+1}, x_n) \\ &\geq \alpha \left[\frac{\left[d(x_{n+1}, x_n) - d(x_n, x_{n-1}) \right]^2 + \beta \left[d(x_{n+1}, x_{n-1}) \right]}{d(x_{n+1}, x_n) - d(x_n, x_{n-1})} \right] + \beta \left[d(x_{n+1}, x_n) \right] \\ &= \alpha \left[d(x_{n+1}, x_n) - d(x_n, x_{n-1}) \right] + \beta \left[d(x_{n+1}, x_n) - d(x_{n-1}, x_n) \right] \\ &+ \gamma \left[d(x_{n+1}, x_n) + d(x_n, x_{n-1}) \right] + \delta d(x_{n+1}, x_n) \\ &\geq \alpha d(x_{n+1}, x_n) - \alpha d(x_n, x_{n-1}) + \beta d(x_{n+1}, x_n) - \beta d(x_{n-1}, x_n) \\ &+ \gamma d(x_{n+1}, x_n) + \gamma d(x_n, x_{n-1}) + \delta d(x_{n+1}, x_n) \\ &\qquad (1 + \alpha + \beta - \gamma) d(x_n, x_{n-1}) \geq (\alpha + \beta + \gamma + \delta) d(x_{n+1}, x_n) \end{aligned}$$

 $\begin{aligned} d(x_{n+1}, x_n) &\leq \frac{1 + \alpha + \beta - \gamma}{(\alpha + \beta + \gamma + \delta)} d(x_n, x_{n-1}) \\ d(x_{n+1}, x_n) &\leq h \, d(x_n, x_{n-1}) \end{aligned}$ Where $h = \frac{1 + \alpha + \beta - \gamma}{(\alpha + \beta + \gamma + \delta)} < 1$

From this we get $d(x_n, x_{n+1}) \le h^n d(x_0, x_1)$

Now for n < m we have

$$d(x_n, x_m) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$\le (h^n + h^{n+1} + \dots + h^{m-1}) d(x_0, x_1)$$

$$\le \frac{h^n}{1-h} d(x_0, x_1)$$

Let $0 \le c$ be given. Choose a natural number N_1 such that $\frac{h^n}{1-h}d(x_0, x_1) \le c$ for all $n \ge N_1$. Thus, $d(x_n, x_m) \le c$, for n < m. Therefore, $\{x_n\}_{n\ge 1}$ is a Cauchy sequence in (X, d). Since (X, d) is a complete cone metric space, there exists $x^* \in X$ such that $x_n \to x$ as $n \to \infty$.

If *T* is continuous, then $d(Tx^*, x^*) \le d(Tx_n, Tx^*) + d(Tx_n, x^*) \to 0$ as $n \to \infty$. Therefore, $d(Tx^*, x^*) = 0$ and so $Tx^* = x^*$. Thus *T* has a fixed point in *X*.

Theorem 2.5 Let (X, d) be a complete cone metric space and the mapping $T: X \to X$ is onto and satisfies the contractive condition

 $d(Tx, Ty) \ge \alpha \frac{d(x, Ty)[d(x, y) + d(x, Tx) + d(y, Tx)]}{d(x, Ty) + d(y, Tx)} + \beta \frac{d(x, Tx)[d(x, y) + d(y, Tx) + d(y, Ty)]}{d(x, Ty) + d(y, Tx)}$

For all $x, y \in X, \alpha > 1, \beta > 1$ and $2\alpha + \beta > 1$.

Then *T* has a unique fixed point in *X*.

Proof : For each $x_0 \in X$, since T is onto, there exist $x_1 \in X$ such that $Tx_1 = x_0$ similarly, we can write

 $x_n = T x_{n+1}$ for each $n \ge 1$

If $x_{n-1} = x_n$ then x_n is a fixed point of T.

Now suppose that $x_{n-1} \neq x_n$ for all $n \ge 1$. Then

 $d(x_n, x_{n-1}) = d(Tx_{n+1}, Tx_n)$

 $\geq \alpha \frac{d(x_{n+1},Tx_n)[d(x_{n+1},x_n)+d(x_{n+1},Tx_{n+1})+d(x_n,Tx_{n+1})]}{d(x_{n+1},Tx_n)+d(x_n,Tx_{n+1})}$

$$+\beta \frac{d(x_{n+1},Tx_{n+1})[d(x_{n+1},x_n)+d(x_n,Tx_{n+1})+d(x_n,Tx_n)]}{d(x_{n+1},Tx_n)+d(x_n,Tx_{n+1})}$$

$$\geq \alpha \frac{d(x_{n+1}, x_{n-1})[d(x_{n+1}, x_n) + d(x_{n+1}, x_n) + d(x_n, x_n)]}{d(x_{n+1}, x_{n-1}) + d(x_n, x_n)}$$

$$+\beta \frac{d(x_{n+1},x_n)[d(x_{n+1},x_n)+d(x_n,x_n)+d(x_n,x_{n-1})]}{d(x_{n+1},x_{n-1})+d(x_n,x_n)}$$

$$\geq 2\alpha[d(x_{n+1}, x_n)] + \beta \frac{d(x_{n+1}, x_n)[d(x_{n+1}, x_n) + d(x_n, x_{n-1})]}{d(x_{n+1}, x_{n-1})}$$

- $\geq 2\alpha[d(x_{n+1}, x_n)] + \beta d(x_{n+1}, x_n)$
- $\geq (2\alpha + \beta)[d(x_{n+1}, x_n)]$

$$d(x_{n+1}, x_n) \le \frac{1}{2\alpha + \beta} d(x_n, x_{n-1})$$

$$d(x_{n+1}, x_n) \le h d(x_n, x_{n-1})$$
 Where $h = \frac{1}{2\alpha + \beta} < 1$

From this we get $d(x_n, x_{n+1}) \le h^n d(x_0, x_1)$

Now for n < m we have

$$d(x_n, x_m) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots \dots + d(x_{m-1}, x_m)$$

$$\le (h^n + h^{n+1} + \dots \dots + h^{m-1}) d(x_0, x_1)$$

$$\le \frac{h^n}{1-h} d(x_0, x_1)$$

Let $0 \le c$ be given. Choose a natural number N_1 such that $\frac{h^n}{1-h}d(x_0, x_1) \le c$ for all $n \ge N_1$. Thus, $d(x_n, x_m) \le c$, for n < m. Therefore, $\{x_n\}_{n\ge 1}$ is a Cauchy sequence in (X, d). Since (X, d) is a complete cone metric space, there exists $x^* \in X$ such that $x_n \to x$ as $n \to \infty$.

If *T* is continuous, then $d(Tx^*, x^*) \le d(Tx_n, Tx^*) + d(Tx_n, x^*) \to 0$ as $n \to \infty$. Therefore, $d(Tx^*, x^*) = 0$ and so $Tx^* = x^*$. Thus *T* has a fixed point in *X*.

References

[1] Huang,L.-G., Zhang, X. : Cone metric spaces and fixed point theorems of contractive mapping . J.Math. Anal. Appl., 332, 1468-1476(2007)

[2] Rezapour, Sh., Hamlbarani, R.: Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings". J.Math. Anal. Appl.,345(2), 719-724(2008)

[3] Abbas. M., Jungck, G.:Common fixed point results for noncommuting mappings without continuty in cone metric spaces. J. Math Anal.Appl.,341(1),416-420(2008)

[4] Hic,D.,Rakocevic,V.: Common fixed point for maps on cone metric space. J. Math Anal Appl.,341,876-882(2008)

[5] Raja, P., Vaezpour, S. M.: Some extensions of Banachs contraction principle in complete cone metric spaces. Fixed Point Theory Appl., 2008, 11 pp., Article ID 768294(2008)

[6] Rezapour, Sh., Haghi, R. H.: Fixed point of multifunctions on cone metric spaces. Numer. Funct. Anal. Opt., 30 (78), 825-832 (2009)

[7] Radonevic, s.: common fixed points under contractive conditions in cone metric spaces. Computer Math., Apply., 58(6), 1273-1278 (2009)

[8] Haghi, R. H., Rezapour, Sh.: Fixed points of multifunctions on regular cone metric spaces. Expo. Math., 28(1), 71-77 (2010)

[9] Zhang, S. S.: Weak convergence theorem for Lipschizian pseudocontraction semigroups in Banach spaces. Acta Mthematica Sinica, english Series, 29(2), 337-344 (2010)

[10] Turkoglu, D., Abuloha, M.: Cone metric spaces and fixed point theorems in diametrically contractive mappings. Acta Mathematica Sinica, English Series, 26(3), 489-496 (2010)

[11] Rezapour, Sh., Haghi, R. H.: Two results about fixed point of multifunctions. Bull. Iranian Math. Soc., 36(2), 279-287 (2010)

[12] Rezapour, Sh., Derafshour, M.: Some common fixed point results in cone metric spaces. Journal of Nonlinear and Conver Analysis, in press

[13] Azam, A., Arshad, M., Bgeg, I.: Banach contraction principle on cone rectangular metric spaces. Appl. Anal. Descreta Math., 3(2), 236-241 (2009)

[14] Aage, T., Salunke, J.N.: Some Fixed Point Theorem for Expansion onto Mappings on Cone metric Spaces. Acta Mathematica Sinica, 27(2), 1101-1106 (2011)