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Abstract 
In the present paper we establish some fixed point theorems in Banach space taking rational expression. Our 

Result Generalize the result of many authors. 
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Introduction: Fixed point has drawn the attentions of the authors working in non-linear analysis, the study of 

non-expansive mapping and the existence of fixed point. The non-expansive mappings include contraction as 

well as contractive mappings. Browder [1] was the first mathematician to study non-expansive mappings; he 

applied these results for proving the existence of solutions of certain integral equations. 

       It is well known that differential and the integral equations that arise in physical problems are generally 

non-linear, therefore the fixed point technique provides a powerful tool for obtaining the solutions of these 

equations which otherwise are difficult to solve by ordinary methods. No doubt, it is also true that some 

qualitative properties of the solution of related equations is lost by functional analysis approach. Many attempts 

have been made in this direction to formulate fixed point theorems. Schauder, J. formulated the well known 

Schauder’s fixed point principle in 1930. 

Browder [1], Gohde [6] and Kirk [10] have independently proved a fixed point theorem for non-expansive 

mappings defined on a closed bounded and convex subset of a uniformly convex Banach space and in the spaces 

with richer generalizations of non-expansive mappings, prominent being Datson [2], Emmanuele [3], Goebel 

[4], Goebel and Zlotkienwicz [5], Iseki [7], Sharma & Rajput [11], Singh and Chatterjee [13]. They have 

derived valuable results with non-contraction mapping in Banach space. 

Our object in this chapter is to prove some fixed and common fixed point theorems using Banach space. 

 Our results include the results of Goebel and Zlotkiewicz [5], Iseki [7], Sharma and Bajaj [12], Khan 

[9], Jain and Jain [8]. We shall prove:- 

 

Theorem-1 : 

Let F be a mapping of a Banach space x into itself. If F satisfies the following conditions; 

1. F2
 = I, where I is the identity mapping.                                  ……….(1.1) 

2. ‖ ( )   ( )‖                                                                         ……….(1.2)      

 ≤ a1 [‖   ( )‖   ‖   ( )‖] + a2 [‖   ‖   
      +    Max {   }                                                      
Where  

P = 
‖   ( )‖‖   ( )‖  ‖   ( )‖ ‖   ( )‖

‖   ‖
       

‖   ( )‖ ‖   ( )‖  ‖   ( )‖ ‖   ( )‖

‖   ‖
 

    For every x,y  X, where 0 < a1,a2,a3 and 4a1 + a2 + 8a3 < 2, then F has a fixed point, if a2 + a3 < 

1,then F has a unique fixed point.           

Proof: Suppose x be a point in Banach space X. Taking  

y = 
 

 
 (F+I) (x) 

z = F(y) and  

u = 2y-z 

We have 

‖   ‖ = ‖ ( )     ( )‖ = ‖ ( )    ( ( ))‖  
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≤ a1 [‖   ( )‖   ‖ ( )     ( )‖  + a2 ‖   ( )‖ + a3max [P, Q] 

P =
 ‖   ( )‖ ‖   ( )‖ ‖   ( )‖ ‖   ( )‖ 

‖   ‖
 and Q = 

 ‖   ( )‖ ‖   ( )‖ ‖   ( )‖ ‖   ( )‖ 

‖   ‖
 

Case 1: when max [P, Q] = P  

Then ‖   ‖ 

≤ a1 [‖   ( )‖   ‖ ( )     ( )‖  + a2 ‖   ( )‖ + a3[
‖   ( )‖‖ ( )    ( )‖  ‖    ( )‖‖ ( )   ( )‖

‖   ( )‖
] 

= a1 [‖   ( )‖   ‖ ( )    ‖  + a2 ‖   ( )‖ + a3[
‖   ( )‖‖ ( )   ‖  ‖   ‖‖ ( )   ( )‖

‖   ( )‖
] 

= a1 [‖   ( )‖   ‖ ( )    ‖  + a2 ‖
 

 
(   )( )   ( )‖ + a3[

‖   ( )‖‖ ( )   ‖  ‖
 

 
(   )( )  ‖‖ ( )   ( )‖

‖
 

 
(   )( )  ( )‖

] 

= a1 [‖   ( )‖   ‖ ( )    ‖  + 
  

 
‖   ( )‖ + 2a3 ‖   ( )‖ + a3 ‖ ( )   ( )‖ 

= a1 [‖   ( )‖   ‖    ( )‖  + 
  

 
‖   ( )‖ + 3a3 ‖   ( )‖ +a3 ‖ ( )   ‖ 

= a1[‖   ( )‖ + ‖   ( )‖] +
  

 
‖   ( )‖ 

= (a1 + 3  ) [ ‖    ( )‖  + (    
  

 
  

  

 
 ) ‖   ( )‖  

Therefore , 

‖   ‖ ≤ (a1 + 3a3) [ ‖    ( )‖  + (    
  

 
  

  

 
 ) ‖   ( )‖  

Also  

‖   ‖ = ‖      ‖ = ‖(   )( )    ( )   ‖ = ‖ ( )   ( )‖ 

≤ a1 [‖   ( )‖   ‖   ( )‖  + a2 ‖   ‖ + a3[
‖   ( )‖‖    ( )‖  ‖   ( )‖‖    ( )‖

‖   ‖
] 

= a1 [‖   ( )‖   ‖   ( )‖  + a2 ‖  
 

 
(   )( )‖   

+ a3[
‖   ( )‖‖    ( )‖  ‖   ( )‖‖

 

 
(   )( )   ( )‖

‖  
 

 
(   )( )‖

] 

= a1 [‖   ( )‖   ‖    ( )‖  + 
  

 
‖   ( )‖ + 2a3 ‖   ( )‖ + a3 ‖   ‖ 

 + a3 ‖   ( )‖  

= (a1 + 3a3) [ ‖    ( )‖  + (    
  

 
  

  

 
 ) ‖   ( )‖ . 

Therefore, 

‖   ‖ ≤ (a1 + 3a3) [ ‖    ( )‖  + (    
  

 
  

  

 
 ) ‖   ( )‖ .                        ……. (1.3) 

Now 

‖   ‖≤ ‖   ‖  + ‖   ‖   

= (a1 + 3a3) [ ‖    ( )‖  + (    
  

 
  

  

 
 ) ‖   ( )‖ + (a1 + 3a3) [ ‖    ( )‖  + (    

  

 
  

  

 
 ) ‖  

 ( )‖ 
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= 2(a1 + 3a3) [ ‖    ( )‖  + 2(    
  

 
  

  

 
 ) ‖   ( )‖ 

Thus, ‖   ‖   2(a1 + 3a3) [ ‖    ( )‖  + 2(    
  

 
  

  

 
 ) ‖   ( )‖           …….  (1.4) 

Also,‖   ‖  ‖ ( )  (    )‖ 

                        =‖ ( )      ‖ 

                        = 2‖ ( )   ‖ 

Combining (1.3) and (1.4), we have 

   ‖   ( )‖   [(  +3a3) ‖   ( )‖ + (a1 + a2/2 +   /2) ‖    ( )‖ ] 

Therefore ‖   ( )‖    ‖   ( )‖ 

Where 

  q=
(         )

(        )
    

 since 4a1 + a2 +7a3 < 2 

 on taking 

G = 
 

 
(   )                   X 

‖  ( )   ( )‖  ‖ ( )   ‖ 

                                                                              = 
 

 
‖   ( )‖ 

                                                                              < 
 

 ⁄  ‖   ( )‖ 

  By the definition of q, we claim that {G
n 
(x)} is a Cauchy sequence in X. Therefore, by the property of 

completeness, G
n 
(x)} converges to some element    in X. 

i.e.        ( ) = x0 

Which implies G( x0 )  =  x0 

Hence F(x0) = x0 

i.e. x0 is a fixed point of F. 

For the uniqueness, if possible let y0 (≠ x0) be another fixed point of F. Then 

‖       ‖= ‖ (  )    (  )‖ 

≤ a1 [ ‖    –   (  )‖  +  ‖    –   (  ) ‖ ] + a2 ‖   –   ‖  

+ a3 
‖    (  )‖ ‖    (  )‖ ‖    (  )‖‖    (  )‖ 

‖     ‖
 

=a2‖       ‖ + a3

‖    (  )‖‖    (  )‖

‖     ‖
 

= (a2+a3)‖     ‖ 

Since a2 +a3 < 1 ,therefore 

ǁx0 - y0‖  = 0 

Hence  x0  = y0  . 

Case 2: when max [P, Q] = Q 

Then ‖   ‖ 

≤ a1 [‖   ( )‖   ‖ ( )     ( )‖  + a2 ‖   ( )‖ + a3[
‖   ( )‖‖     ( )‖  ‖ ( )   ( )‖‖ ( )   ( )‖

‖   ( )‖
] 

= a1 [‖   ( )‖   ‖ ( )    ‖  + a2 ‖   ( )‖ + a3[
‖   ( )‖‖    ‖  ‖ ( )  ‖‖ ( )   ( )‖

‖   ( )‖
] 
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= a1 [‖   ( )‖   ‖ ( )    ‖  + a2 ‖
 

 
(   )( )   ( )‖ + a3[

‖   ( )‖‖
 

 
(   )( )  ‖ ‖ ( )   ‖‖ ( )   ( )‖

‖
 

 
(   )( )  ( )‖

] 

= a1 [‖   ( )‖   ‖ ( )    ‖  + 
  

 
‖   ( )‖ + a3 ‖   ( )‖ +2 a3 ‖ ( )   ( )‖ 

= a1 [‖   ( )‖   ‖    ( )‖  + 
  

 
‖   ( )‖ + a3 ‖   ( )‖ +2a3 [ ‖ ( )   ‖+‖   ( )‖  

= a1 [‖   ( )‖ +‖   ( )‖] +
  

 
‖   ( )‖+3a3‖   ( )‖+2a31/2‖   ( )‖ 

= (a1 + 3  ) [ ‖    ( )‖  + (    
  

 
    ) ‖   ( )‖  

Therefore, 

‖   ‖ ≤ (a1 + 3a3) [ ‖    ( )‖  + (    
  

 
     ) ‖   ( )‖  

Also  

‖   ‖ = ‖      ‖ = ‖(   )( )    ( )   ‖ = ‖ ( )   ( )‖ 

≤ a1 [‖   ( )‖   ‖   ( )‖  + a2 ‖   ‖ + a3[
‖   ( )‖‖    ( )‖  ‖   ( )‖‖    ( )‖

‖   ‖
] 

= a1 [‖   ( )‖   ‖   ( )‖  + a2 ‖  
 

 
(   )( )‖   

+ a3[
‖   ( )‖‖    ( )‖  ‖   ( )‖‖

 

 
(   )( )   ( )‖

‖  
 

 
(   )( )‖

] 

= a1 [‖   ( )‖   ‖    ( )‖  + 
  

 
‖   ( )‖ + 2a3‖   ‖  + a3 ‖   ( )‖ 

 + a3 ‖   ( )‖  

= (a1 + 3a3) [ ‖    ( )‖  + (    
  

 
     ) ‖   ( )‖ . 

Therefore, 

‖   ‖ ≤ (a1 + 3a3) [ ‖    ( )‖  + (    
  

 
    ) ‖   ( )‖ .                        ……. (1.5) 

Now 

‖   ‖≤ ‖   ‖  + ‖   ‖   

= (a1 + 3a3) [ ‖    ( )‖  + (    
  

 
     ) ‖   ( )‖ + (a1 + 3a3) [ ‖    ( )‖  + (    

  

 
     ) 

‖   ( )‖ 

= 2(a1 + 3a3) [ ‖    ( )‖  + 2(    
  

 
     ) ‖   ( )‖ 

Thus, ‖   ‖   2(a1 + 3a3) [ ‖    ( )‖  + 2(    
  

 
    ) ‖   ( )‖           …….  (1.6) 

Also,‖   ‖  ‖ ( )  (    )‖ 

                        =‖ ( )      ‖ 

                        = 2‖ ( )   ‖ 

Combining (1.5) and (1.6), we have 
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   ‖   ( )‖   [(  +3a3) ‖   ( )‖ + (a1 + a2/2 + a3)  ‖   ( )‖ ] 

Therefore ‖   ( )‖    ‖   ( )‖ 

Where 

  q=
(          )

(        )
    

 since 4a1 + a2 +8a3 < 2 

 on taking 

G = 
 

 
(   )                   X 

‖  ( )   ( )‖  ‖ ( )   ‖ 

                                                                                      =‖
 

 
(   )( )   ‖  

                                                                              =
 

 
‖   ( )‖ 

                                                                              < 
 

 ⁄  ‖   ( )‖ 

  By the definition of q, we claim that {G
n
(x)} is a Cauchy sequence in X. Therefore, by the property of 

completeness, {G
n 
(x)} converges to some element    in X. 

i.e.        ( ) = x0 

Which implies G( x0 )  =  x0 

Hence F(x0) = x0 

 i.e. x0 is a fixed point of F. 

For the uniqueness, if possible let y0 (≠ x0) be another fixed point of F. Then 

‖       ‖= ‖ (  )    (  )‖ 

≤ a1 [ ‖    –   (  )‖  +  ‖    –   (  ) ‖ ] + a2 ‖   –   ‖  

+ a3 
‖    (  )‖ ‖    (  )‖ ‖    (  )‖‖    (  )‖ 

‖     ‖
 

=a2‖       ‖  

Since a2 < 1, therefore 

‖x0 - y0‖  = 0 

Hence x0 = y0   
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