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Abstract 

Most General insurance companies have faced huge losses arising from fire industrial class of business .It is for 

this reason this study uses extreme value theory approach to model these returns. Traditionally normal 

distribution was applied and could not capture rare events which caused enormous losses. Kenya’s Fire industrial 

insurance data for five insurance companies and average for entire industry was read into R program .The 

objective was to plot the time series data.  The time series plots aimed to capture the trend and the behavior of 

the returns over a seven year period. The returns were then standardized in order to transform the negative 

returns. Using fExtremes in R, the mean excess plot was obtained which helped in measuring the shape of the 

distribution in the tail. The returns were fitted in a GPD Model in which the excess distribution and the tail of the 

underlying distribution were obtained over a chosen threshold. These were significant in capturing the values 

that exceeded the threshold. They were found to be a smooth curve which implied the GPD fit was a good for the 

data. Scatter plot was obtained and a solid line was observed in the scatter plot which was the smooth of the 

scattered residuals. QQ plots were also obtained and followed linear form which implied that the parametric 

model fitted the data well. VaR estimate was finally obtained using extreme value method. The log log empirical 

distribution was also obtained and indicated how the data points were distributed. After the excesses over a high 

threshold were fitted to the GPD, parameters were estimated which were used to estimate VaR at different 

confidence intervals. 

Key words: Extreme Value Theory, Peak Over Threshold, Generalized Pareto Distribution, Value at Risk. 

 

1.0: Introduction 

Modeling large fires is becoming critical in the analysis of disturbances on ecosystems at the landscape and 

larger spatial scales. They have such a tremendous effect on ecosystems that is obvious that mathematical 

modeling of these events will help us understand ecosystem dynamics better. However, most of the current 

ecological models are based on measuring means and variances. 

According to John P Hall (1982) estimating the value of property damaged as a result of fire is more an art than 

science, because there are no generally accepted procedures for loss estimation. Loss adjusters always have a 

difficult time determining what areas were damaged, how badly and estimating the total loss. 

Lack of such procedures undermines consistency in loss estimation from one fire department to another, many 

who use fire loss data for planning and management are understandably nervous about its accuracy; horror 

stories continue to circulate about observers whose estimates of loss at the same fire differ 10 to 1 or more.(p.11) 

In wild-land fires, the poison Model (Davis 1965) and the Truncated Pareto and Lognormal distributions (Strauss 

et al. 1989) have been suggested to model distributions that include large fires. 

The risk of large losses and consequently large insurance claims, have been modeled with Pareto, Gamma, and 

Lognormal distributions for deciding on deductible and premium levels (Nigm et al.1987).  

In large structural fires, a probabilistic approach to fire risk has been pursued to some extent by modeling fire 

growth, damage distribution, and fire spread (Ramachandran 1988). In contrast to wild land fire research, the 

studies on structural fires have concentrated on large fires rather than small ones. 

A lack of adequate modeling of extreme fire causes decisions to be based solely on fire manager’s experience 

and subjective assessment of the situation during large conflagrations (Thomas 1989). 

When one parametric distribution is fitted for all the data, regardless of damage level, the probability of large 

fires will be underrepresented or not represented at all. Alvarado-Celestino (1992) shows that the characteristic 

largest value predicted by a probability distribution when fitted to the entire fire size distribution (e.g. the 

Weibull model). 

In classical statistical modeling, large fires constitute outliers and models usually do not deal with them. One 

approach that has been suggested for outlier detection is to assume that outliers have different distribution from 
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the rest of the observations (Davies and Gather 1993). This has also been suggested by several authors in the 

case of forest fires. In this study the extreme value distribution best describes the large fire distribution. 

There have been previous studies for instance Alexander McNeil’s (1996) study of the Danish data on large 

insurance losses provides us with a good example of use of EVT in this context. The goal of this reference is to 

show additional techniques and plotting strategies which can be employed in similar data in Kenya’s insurance 

industry. 

Until recently, the value-at-risk (VaR) approach was the standard for the risk management industry. VaR 

measures the worst anticipated loss over a period for a given probability and under normal market conditions. It 

can also be said to measure the minimal anticipated loss over a period with a given probability and under 

exceptional market conditions (Longuin 1999).  

The VaR approach (see Jorion 1996) has been the subject of several criticisms. The most significant is that the 

majority of the parametric methods use a normal distribution approximation. 

Using this approximation, the risk of the high quantiles is underestimated, especially for the fat tailed series, 

which are common in financial data. 

Unlike VaR methods, no assumptions are made about the nature of the original distribution of all the 

observations. Some EVT techniques can be used to solve for very high quantiles, which is very useful for 

predicting crashes and extreme-loss situations. 

The advantage of estimating VaR using GPD method is that this method can estimate VaR outside the sampling 

interval. 

Harmantzis et.al. (2005) and Marinelli et.al.(2006) presented the performance of  extreme value theory in VaR 

and expected shortfall estimation compared to the Gaussian and historical simulation models together with other 

heavy tailed approach. From their results it was found that fat tailed models can predict risk more accurately than 

non fat tailed ones and there exists the benefits of EVT framework especially method using GPD. 

 

2.0: Methodology 

Most statistical methods are concerned primarily with what goes on in the center of a statistical distribution, and 

do not pay particular attention to the tails of a distribution, or in other words, the most extreme values at either 

the high or low end. Extreme event risk is present in all areas of risk management – market, credit, day to day 

operation, and insurance. One of the greatest challenges to a risk manager is to implement risk management tools 

which allow for modeling rare but damaging events, and permit the measurement of their consequences. Extreme 

value theory (EVT) plays a vital role in these activities.  

The standard mathematical approach to modeling risks uses the language of probability theory. Risks are random 

variables, mapping unforeseen future states of the world into values representing profits and losses. These risks 

may be considered individually, or seen as part of a stochastic process where present risks depend on previous 

risks. The potential values of a risk have a probability distribution which we will never observe exactly although 

past losses due to similar risks, where available, may provide partial information about that distribution. Extreme 

events occur when a risk takes values from the tail of its distribution.  

We develop a model for risk by selecting a particular probability distribution. We may have estimated this 

distribution through statistical analysis of empirical data. In this case EVT is a tool which attempts to provide us 

with the best possible estimate of the tail area of the distribution. However, even in the absence of useful 

historical data, EVT provides guidance on the kind of distribution we should select so that extreme risks are 

handled conservatively. There are two principal kinds of model for extreme values. The oldest group of models 

is the block maxima models; these are models for the largest observations collected from large samples of 

identically distributed observations. For example, if we record daily or hourly losses and profits from trading a 

particular instrument or group of instruments, the block maxima/minima method provides a model which may be 

appropriate for the quarterly or annual maximum of such values. The block maxima/minima methods are fitted 

with the generalized extreme value (GEV) distribution.  

A more modern group of models is the peaks-over-threshold (POT) models; these are models for all large 

observations which exceed a high threshold. The POT models are generally considered to be the most useful for 

practical applications, due to a number of reasons. First, by taking all exceedances over a suitably high threshold 

into account, they use the data more efficiently. Second, they are easily extended to situations where one wants 

to study how the extreme levels of a variable Y depend on some other variable X for instance, Y may be the level 

of tropospheric ozone on a particular day and X a vector of meteorological variables for that day. This kind of 

problem is almost impossible to handle through the annual maximum method. The POT methods are fitted with 

the generalized Pareto distribution (GPD).  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.2, 2014 

 

50 

 

2.1 Generalized pareto distribution 

The GPD is a two-parameter distribution with distribution function  
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Where β>0, and x≥0 when ξ≥0 and       ⁄ when ξ<0. The parameters ξ and β are referred to respectively 

as the shape and scale parameters.  

The GPD is generalized in the sense that it subsumes certain other distributions under a common parametric 

form. If ξ>0 then is a reparametrized version of the ordinary Pareto distribution (         ⁄         ⁄ ), 

which has a long history in actuarial mathematics as a model for large losses; ξ=0 corresponds to the exponential 

distribution, i.e. a distribution with a medium-sized tail; and ξ<0 is a short-tailed Pareto type II distribution. The 

mean of the GPD is defined provided ξ<1 and is  
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The first case is the most relevant for risk management purposes since the GPD is heavy-tailed when ξ>0. 

Whereas the normal distribution has moments of all orders, a heavy-tailed distribution does not possess a 

complete set of moments. In the case of the GPD with ξ >0 we find that  [  ]is infinite for     ⁄ . When 

    ⁄ , the GPD is an infinite variance (second moment) distribution; when ξ=1/4, the GPD has an infinite 

fourth moment.  

The role of the GPD in EVT is as a natural model for the excess distribution over a high threshold. Certain types 

of large claims data in insurance typically suggest an infinite second moment; similarly econometricians might 

claim that certain market returns indicate a distribution with infinite fourth moment. The normal distribution 

cannot model these phenomena but the GPD is used to capture precisely this kind of behavior.  

 

2.2 Modeling excess distribution 

Let X be a random variable with distribution function F. The distribution of excesses over a threshold u has 

distribution function  

  ( )   {     |   } 

For                     is the right endpoint of F. The excess distribution function   represents the 

probability that a loss exceeds the threshold   by at most an amount  , given the information that it exceeds the 

threshold. In survival analysis the excess distribution function is more commonly known as the residual life 

distribution function ― it expresses the probability that, say, an electrical component which has functioned for u 

units of time fails in the time period [     ]. It is very useful to observe that    can be written in terms of the 

underlying F as 
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The mean excess function of a random variable X with finite mean is given by  

 ( )   (   |   ) 

The mean excess function  ( ) expresses the mean of    as a function of u. In survival analysis, the mean excess 

function is known as the mean residual life function and gives the expected residual lifetime for components 

with different ages. 

Mostly we would assume our underlying   is a distribution with an infinite right endpoint, i.e. it allows the 

possibility of arbitrarily large losses, even if it attributes negligible probability to unreasonably large outcomes, 

e.g. the normal or t distributions. But it is also conceivable, in certain applications that could have a finite right 

endpoint. An example is the beta distribution on the interval [0,1] which attributes zero probability to outcomes 

larger than 1 and which might be used, for example, as the distribution of credit losses expressed as a proportion 

of exposure. 
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2.4 The Pickands-Balkema-de Haans theorem 

The Pickands-Balkema-de Haan limit theorem (Balkema and de Haan, 1974; Pickands, 1975) is a key result in 

EVT and explains the importance of the GPD. We can find a (positive measurable function) β(u) such that  

   
    

   
        

|  ( )      ( )( )|        ( )       

                    (  )  

The theorem shows that under MDA conditions the generalized Pareto distribution is the limiting distribution for 

the distribution of excesses as the threshold tends to the right endpoint. All the common continuous distributions 

of statistics and actuarial science (normal, lognormal,   , t, F, gamma, exponential, uniform, beta, etc.) are in 

MDA(  ) for some ξ, so the above theorem proves to be a very widely applicable result that essentially says that 

the GPD is the natural model for the unknown excess distribution above sufficiently high thresholds.  

 

2.5 Fitting a GPD model 

Given loss data             from  , a random number   will exceed our threshold ; it will be convenient to 

re-label these data   ̃   ̃      ̃ . For each of these exceedances we calculate the amount     ̃    of the 

excess loss. We wish to estimate the parameters  ̂      ̂ of a GPD model by fitting this distribution to the    

excess losses. There are various ways of fitting the GPD including ML and PWM. The former method is more 

commonly used and easy to implement if the excess data can be assumed to be realizations of independent 

random variables, since the joint probability density of the observations will then be a product of marginal 

densities. This is the most general fitting method in statistics and it also allows us to give estimates of statistical 

error (standard errors) for the parameter estimates. Writing      for the density of the GPD, the log-likelihood 

may be easily calculated to be 
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Which must be maximized subject to the parameter constraints that β>0 and    
   

 
               Solving the 

maximization problem yields a GPD model      for the excess distribution  .  

Choice of the threshold is basically a compromise between choosing a sufficiently high threshold so that the 

asymptotic theorem can be considered to be essentially exact and choosing a sufficiently low threshold so that 

we have sufficient material for estimation of the parameters. 

 

3.0 Research results and discussion 

In this chapter an empirical analysis was carried out to model the fire industrial insurance returns of the Kenyan 

Insurance market. Five insurance companies’ returns that were captured and modeled are discussed. The average 

returns for all the companies were calculated and modeled to give the results for the overall industry. The fire 

industrial insurance returns data was fitted in GPD model and discussed. 
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3.1 Fidelity Insurance Company 

 

                                   Fig.1(a)                                                                                  Fig.1(b)       

In Fig.1(a) time series plot for fidelity insurance company shows presence of periodicity.  Original data is then 

transformed to standardize it using the following function log10(X1+1.05-min(X1)) where X1 is the original data. 

The  mean excess plot of Fidelity insurance company returns is obtained. It is observed that the graph declines 

and begins an upward trend as shown in Fig.1b which indicates the presence of a heavy tailed distribution.  

 

                                      Fig.1(c)                                                                       Fig.1(d) 

A threshold of 0.87 is chosen, there are 3 out of 7 returns that exceed the threshold. The excesses were fitted to a 

GPD model using the MLE. The parameter estimates          and           . The shape parameter   is 

greater than 0 implying a heavy tailed distribution. This can be interpreted to mean that the higher the value of 

the shape parameter, the higher the derived return. The distribution for the excesses shows a smooth curve 

meaning GPD fit was a good fit for the data similar for the tail of the underlying distribution as shown in 

Fig.1(c) and Fig.1(d) 
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                                       Fig.1(e)                                                                             Fig.1(f) 

The scatter plot of residuals from a GPD fitted to the data over a threshold of 0.87. The solid line observed is the 

smooth of the scattered residuals as shown in Fig.1(e). The QQ plot follows a linear form as shown in Fig.1(f); 

therefore the parametric model fits the data well. 

 

                                     Fig.1(g) 

In Fig.1(g) the empirical distribution of Fidelity Insurance Company fire returns data fitted defines a CDF 

consistent with data directly observed in the data set. In other words, it defines a CDF, F(x), such that F(x) is 

equal to the proportion of data points in the set less than or equal to x. The Value at Risk (VaR) with 5% level of 

confidence was Kshs.8.91 million. This implies that the coming year’s loss for the entire industry would exceed 

is Kshs.8.91 million. Analogously the same interpretation holds for 1%. In practice when portfolio of loss is 

known, then precautions can be taken to mitigate against it. 
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3.2 Heritage Insurance Company 

 

                                   Fig.2(a)                                                                              Fig.2(b)       

In Fig.2(a) time series plot for Heritage Insurance Company shows presence of periodicity.  Original data is then 

transformed to standardize it using the following function log10(X1+1.05-min(X1)) where X1 is the original data. 

The mean excess plot of Heritage Insurance Company returns is obtained. It is observed that the plot exhibits a 

downward trend as shown in Fig.2(b) which indicates a thin tailed distribution. 

  

                                   Fig.2(c)                                                                              Fig.2(d)       

A threshold of 1.56 is chosen, there are 2 out of 7 returns that exceed the threshold.The excesses were fitted to a 

GPD model using the MLE. The parameter estimates            and        . The shape parameter   is 

less than 0 implying a thin tailed distribution; hence pareto type II is obtained. The distribution for the excesses 

shows a smooth curve meaning GPD fit was a good fit for the data similar for the tail of the underlying 

distribution as shown in Fig.2(c) and Fig.2(d). 

. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.2, 2014 

 

55 

 

                                   Fig.2(e)                                                                               Fig.2(f)       

The scatter plot of residuals from a GPD fitted to the data over a threshold of 1.56. The solid line observed is the 

smooth of the scattered residuals as shown in as shown in Fig.2(e). The QQ plot follows a linear form as shown 

in Fig.2(f).; therefore the parametric model fits the data well. 

 

                                      Fig.2(g) 

In Fig.2(g) the empirical distribution of Heritage Insurance Company fire loss data fitted defines a CDF 

consistent with data directly observed in the data set. In other words, it defines a CDF, F(x), such that F(x) is 

equal to the proportion of data points in the set less than or equal to x. 

The Value at Risk (VaR) with 5% level of confidence was Kshs.51.83 million. This implies that the coming 

year’s loss for the entire industry would exceed is Kshs.51.83 million. Analogously the same interpretation holds 

for 1%. In practice when portfolio of loss is known, then precautions can be taken to mitigate against it. 
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3.3 Kenindia Insurance Company 

 

                                   Fig.3(a)                                                                                  Fig.3(b)       

In Fig.3(a) time series plot for Kenindia Insurance Company shows presence of periodicity.  Original data is 

then transformed to standardize it using the following function log10(X1+1.05-min(X1)) where X1 is the original 

data. The mean excess plot of Kenindia Insurance Company returns is obtained. It is observed that the plot 

exhibits a downward trend as shown in Fig.3(b) which indicates a thin tailed distribution. 

 

                                   Fig.3(c)                                                                                  Fig.3(d)       

A threshold of 1.82 is chosen, there are 2 out of 7 returns that exceed the threshold. The excesses were fitted to a 

GPD model using the MLE. The parameter estimates           and        . The shape parameter   is 

less than 0 implying a thin tailed distribution; hence pareto type II is obtained. The distribution for the excesses 

shows a smooth curve meaning GPD fit was a good fit for the data similar for the tail of the underlying 

distribution as shown in Fig.3(c) and Fig.3(d). 

. 
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                                   Fig.3(e)                                                                                  Fig.3(f)       

The scatter plot of residuals from a GPD fitted to the data over a threshold of 1.82. The solid line observed is the 

smooth of the scattered residuals as shown in Fig.3(e). The QQ plot follows a linear form as shown in Fig.3(f); 

therefore the parametric model fits the data well. 

 

 

                                    Fig.3(g) 

In Fig.3(g)  the empirical distribution of Kenindia Insurance Company fire loss data fitted defines a CDF 

consistent with data directly observed in the data set. In other words, it defines a CDF, F(x), such that F(x) is 

equal to the proportion of data points in the set less than or equal to x. 

The Value at Risk (VaR) with 5% level of confidence was Kshs.51.7 million.This implies that the coming year’s 

loss for the entire industry would exceed is Kshs.51.7 million. Analogously the same interpretation holds for 1%. 

In practice when portfolio of loss is known, then precautions can be taken to mitigate against it. 
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3.4 Mayfair Insurance Company 

 

                                   Fig.4(a)                                                                                  Fig.4(b)       

 

In Fig.4(a) time series plot for Mayfair Insurance Company shows presence of periodicity.  Original data is then 

transformed to standardize it using the following function log10(X1+1.05-min(X1)) where X1 is the original data. 

The mean excess plot of Mayfair Insurance Company returns is obtained. It is observed that the graph declines 

and begins an upward trend as shown in Fig.4(b) which indicates the presence of a heavy tailed distribution. 

 

                                   Fig.4(c)                                                                                  Fig.4(d)       

A threshold of 0.617 is chosen, there are 2 out of 7 returns that exceed the threshold. The excesses were fitted to 

a GPD model using the MLE. The parameter estimates          and            . The shape parameter 

  is greater than 0 implying a heavy tailed distribution. This can be interpreted to mean that the higher the value 

of the shape parameter, the higher the derived return. The distribution for the excesses shows a smooth curve 

meaning GPD fit was a good fit for the data similar for the tail of the underlying distribution as shown in 

Fig.4(c) and Fig.4(d). 
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                                   Fig.4(e)                                                                                  Fig.4(f)       

The scatter plot of residuals from a GPD fitted to the data over a threshold of 0.617. The solid line observed is 

the smooth of the scattered residuals as shown in Fig.4(e). The QQ plot follows a linear form as shown in 

Fig.4(f); therefore the parametric model fits the data well. 

 

                                     Fig.4(g) 

In Fig.4(g) the empirical distribution of Mayfair Insurance Company fire loss data fitted defines a CDF 

consistent with data directly observed in the data set. In other words, it defines a CDF, F(x), such that F(x) is 

equal to the proportion of data points in the set less than or equal to x. 

The Value at Risk (VaR) with 5% level of confidence was Kshs.6.8 million. This implies that the coming year’s 

loss for the entire industry would exceed is Kshs.6.8 million. Analogously the same interpretation holds for 1%. 

In practice when portfolio of loss is known, then precautions can be taken to mitigate against it. 
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3.5 Real Insurance Company 

 

                                   Fig.5(a)                                                                                  Fig.5(b)       

In Fig.5(a) time series plot for Real Insurance Company shows presence of periodicity.  Original data is then 

transformed to standardize it using the following function log10(X1+1.05-min(X1)) where X1 is the original data. 

The mean excess plot of Real Insurance Company returns is obtained. It is observed that the graph declines and 

begins an upward trend as shown in Fig.5(b) which indicates the presence of a heavy tailed distribution. 

 

                                   Fig.5(c)                                                                                  Fig.5(d)       

A threshold of 1.74 is chosen, there are 2 out of 7 returns that exceed the threshold. The excesses were fitted to a 

GPD model using the MLE. The parameter estimates          and           . The shape parameter   is 

greater than 0 implying a heavy tailed distribution. This can be interpreted to mean that the higher the value of 

the shape parameter, the higher the derived return. The distribution for the excesses shows a smooth curve 

meaning GPD fit was a good fit for the data similar for the tail of the underlying distribution as shown in 

Fig.5(c) and Fig.5(d). 
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                                   Fig.5(e)                                                                                Fig.5(f)       

The scatter plot of residuals from a GPD fitted to the data over a threshold of 1.74. The solid line observed is the 

smooth of the scattered residuals as shown in Fig.5(e). The QQ plot follows a linear form as shown in Fig.5(f); 

therefore the parametric model fits the data well. 

 

                                            Fig.5(g) 

In Fig.5(g) the empirical distribution of Real Insurance Company fire loss data fitted defines a CDF consistent 

with data directly observed in the data set. In other words, it defines a CDF, F(x), such that F(x) is equal to the 

proportion of data points in the set less than or equal to x. 

The Value at Risk (VaR) with 5% level of confidence was Kshs.51.24 million. This implies that the coming 

year’s loss for the entire industry would exceed is Kshs.51.24 million. Analogously the same interpretation holds 

for 1%. In practice when portfolio of loss is known, then precautions can be taken to mitigate against it. 
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3.6 Insurance Industry 

 

                                Fig.6(a)                                                      Fig.6(b)       

 

In Fig.6(a) time series plot of the insurance industry on average shows presence of periodicity.  Original data is 

then transformed to standardize it using the following function log10(X1+1.05-min(X1)) where X1 is the original 

data. The mean excess plot of all insurance companies’ average returns is obtained. It is observed that the plot 

exhibits a downward trend  as shown in Fig.6(b) which indicates a thin tailed distribution. 

 

                                  Fig.6(c)                                                         Fig.6(d)       

The scatter plot of residuals from a GPD fitted to the data over a threshold of 2.0. The solid line observed is the 

smooth of the scattered residuals as shown in Fig.6(c). The QQ plot follows a linear form as shown in Fig.6(d); 

therefore the parametric model fits the data well. 
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                                Fig.6(e)                                                      Fig.6(f)       

A threshold of 0.87 is chosen, there are 3 out of 7 returns that exceed the threshold. The excesses were fitted to a 

GPD model using the MLE. The parameter estimates          and        . The shape parameter   is 

greater than 0 implying a heavy tailed distribution. This can be interpreted to mean that the higher the value of 

the shape parameter, the higher the derived return. The distribution for the excesses shows a smooth curve 

meaning GPD fit was a good fit for the data similar for the tail of the underlying distribution as shown in 

Fig.6(e) and Fig.6(f). 

 

                                   Fig.6(g) 

In Fig.6(g) the empirical distribution of all the insurance companies average fire loss data fitted defines a CDF 

consistent with data directly observed in the data set. In other words, it defines a CDF, F(x), such that F(x) is 

equal to the proportion of data points in the set less than or equal to x. 

The Value at Risk (VaR) with 5% level of confidence was Kshs.1.25 million. This implies that the coming year’s 

loss for the entire industry would exceed is Kshs.1.25 million. Analogously the same interpretation holds for 1%. 

In practice when portfolio of loss is known, then precautions can be taken to mitigate against it. 

 

4.0 Conclusion 

The results obtained for the entire general insurance industry of Kenyan market show that the distribution for the 

excesses follows a smooth curve meaning GPD fit was a good fit for the data.  Time series plot of the insurance 

industry on average shows presence of periodicity. Original data was then transformed to standardize it using the 

following function log10(X1+1.05-min(X1)) where X1 was the original data. The mean excess plot of all 

insurance companies’ average returns was obtained. It was also observed that the shape parameter is greater than 

0 hence the distribution was found to be heavy tailed. The scatter plot of residuals from a GPD fitted to the data 
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over a threshold of 2.0. The solid line observed is the smooth of the scattered residuals. The QQ plot follows a 

linear form; therefore the parametric model fits the data well. VaR estimate was finally obtained using extreme 

value method. After the excesses over a high threshold were fitted to the GPD, parameters were estimated which 

were used to estimate VaR. 
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