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ABSTRACT 

One of the most widespread methods of modeling nature through elementary particles is to use field theory. In 

this paper this leads to the study of super spaces and super manifolds based on topological spaces without norm. 

To generalize and simplify the model to be valid in algebraic setting one needs to express it in category theory.  

However this might take time to achieve.  In this paper, we introduce bornology and use it instead of topology in 

the modeling of elementary particles.  The set with bornology is called by Kriegl and Michor convenient vector 

space.  When the superstructure is added to it, we get convenient vector superspace.  This space is shown, 

following Kriegl and Michor to be a Cartesian closed category.  This should show us the way of modeling of 

field theory using category theory.  This generality however has not been done in this paper. 

 

1.0 INTRODUCTION 

The main part of the paper studies smooth mappings and their calculus. Let us now try to describe the basic ideas 

of smooth calculus.  As Kriegl and Michor mentioned, one can say that it is a more or less unique consequences 

of taking variational calculus seriously.  We start by looking at the space of smooth curves ),( EIRC 
with 

values in a locally convex space E  and note that it does not depend on the topology of E only on the 

underlying system of bounded sets.  This is due to the fact, that for a smooth curve difference quotients converge 

to the derivative much better than arbitrary converging nets or filters, smooth curves have integral in E if and 

only if a weak completeness condition is satisfied [1].  It appeared as bornologically complete or locally 

complete we call it 
C - complete.  This is equivalent to the condition that scalarwise smooth curves are 

smooth.  All calculus in this thesis will be done on convenient vector superspace.  These are locally convex 

vector super spaces which are C complete.  Note that the locally convex topology on convenient vector 

super space can vary in some range only the system of bounded sets must remain the same. 

A mapping between convenient vector super space is called smooth if it maps smooth curves to smooth curves, 

and everything else that is existence, smoothness, and linearity of derivatives, the chain rule, and also the most 

important feature, Cartesian closedness holds without any restriction, as pointed out [1] in some convenient 

vector spaces there are smooth functions which are not continuous in the locally convex topology.  
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2.0 LITERATURE REVIEW 

 2.1.1 CONVENIENT LINEAR SUPER SPACES AND THEIR MAPPINGS 

2.1.2 DEFINITION (Convex Superset) 

Let (x1, y1) and (x2, y2) be point in a superspace. Then if (x1, y1) + )1(   (x2, y2), IR   ,10   also 

belong to the same subsuperset, then the subsuperset is a convex super set. 

 

 2.1.3  DEFINITION (Bounded Superset) 

A neighbourhood Uxo  is bounded if for every convex bounded neighbourhood of (0,0), Uo, there exist

oxo UIR  :   The set of all bounded subsets form a bornology of the space. 

 2.1.4 DEFINITION (Locally Convex Superspace) 

A locally convex superspace E is a vector space together with a Hausdorff topology such that addition 

EEE   and scalar multiplication  EIRxE   are continuous and have a basis of neighborhoods 

consisting of convex sets. 

 2.1.5 DEFINITION (Bornological Superspace) 

A locally convex vector super space E is called bornological if and only if  

For any locally convex vector super spaces E,F any bounded linear mapping FET : is continuous.. 

 

 2.1.6 DEFINITION 3 (Convenient Superspace][Compare with the earlier] 

 Let E be a locally convex vector super space.  E is said to be 
c  complete or convenient if one of the following 

equivalent completeness conditions are satisfied:  

 

1. Any Lipschitz curve  in E is locally integrable. 

2. For any ),(1 ERCC  , there is ),(2 ERCC  with 1

1

2 CC   (existence of an anti-

derivative). 

1. E is C closed in any locally convex super space. 

2. If EIRC :  is a curve such that IRIRLoc :  is smooth for all
*EL  then c is smooth.  

(Existence of supersmooth maps.) 

3. Any Mackey-Cauchy sequence E is mackey complete. 

4. If   is bounded closed absolutely convex then bE  is locally convex topological space. This 

property is called locally complete.   

5. Any continuous linear mapping from a space into E  has a continuous extension to the completion 

of the space. 

 

2.1.7 DEFINITION (Super  Matrix) 

The Matrix 

 















           elements commutingelements 

elements inganticommutelements 

inganticommut

Commuting
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Where multiplication and addition are performed like in ordinary matrices is called a supermatrix. 

 

2.1.8 DEFINITION (SUPERGEOMETRY) 

 

A vector superspace with matrices as its endomorphism is called a vector super-geometry 

Example in E
2
 

2.1.9 DEFINITION [SUPER SMOOTH MAPPING] 

A mapping between convenient vector super spaces is called smooth if it maps smooth curves to smooth curves.  

A curve is supersmooth if it is differentiable at every point. 

 

2.1.10 DE FINITION [Superderivative in a Bornological space] 

 

Let X and Y be locally convex topological super space,  a system of bounded convex balanced and closed 

sets in X and Y respectively, B and C with dashes or not are sets from  a system of bounded convex, 

balanced and closed sets in X and Y respectively, B and C with dashes or not are sets from  and 

respectively.  W is an open set in X.  Then map Ywf : is D superdifferentiable at the point WX o if 

there exist an ),( YXLA such that 

AhafRafho  )()()(  

 

tcthoUaxuthUBhUBC  )(),,(:  .  We shall denote A by )(' af .   

 

 2.1.11 DEFINITION (Synthetic Derivative) 

 

Let X, Y be rings, yxf : be a homomorphism between rings, then if  xdxbx !,  

dbxfdxf  )()(  

where d is such that 02 d  

 

Theorem 1: 

 

In a field, the superderivative is a synthetic derivative. 

 

Proof. 

In synthetic setting, 02 d and the ring structure is used in the products ab and 
2d .  In Bornological spaces, 

b is bounded and hence 



hd

ho
,0

)(
then 0(h)=0 in synthetic setting. This then implies that 

bdafdaf  )()( where d belongs to the bornological space X. 

 

Theorem 2  [Compare with 1] 
 

Let ))(
iiiii EUUU  be C open subsets in locally convex super spaces, which need not be 

C complete.  Then a super mapping FxUUf i 2: is smooth if and only if the canonically associated 

super mapping ),(: 2 FUCUf i

v  exist and is supersmooth. 
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Proof: 

As in [1] but the rules of superstructures must be follows. From the above we have the following implication. 

),(: 21 FUCUf v  is supersmooth. 

 

),(: 2 FUCfoc  is smooth for all smooth curves 1C in 1U  

),(:2 FIRCIRocofC v   is smooth for all smooth curves iiUC  

FCofCxCCfo v

ox  2

1

*

21 :)()( is smooth for all smooth curves 1C in iU  

PxUUf  21: is smooth 

 

Here the last equivalent is seen as follows: Each curve into 21xUU  is of the form  oxCCCC )(), 2121  

where   is the diagonal mapping. 

 

Conversely FIRcfo 2

21 :)c x (  is smooth for all smooth curves i  Uinci  since the product and all the 

composite of smooth mapping is supersmooth.. 

 

Note:  that the derivative as in 3.1.9 has been put into consideration and the superspaces may be without norm. 

 

The theorem above shows that: 

 

Collorary I 

 

A convenient vector superspace is a Cartesian closed category. 

 

Proof: 

 

(a)  ),(: 2 FUCUf i

v   is a terminal object in ),( 2 FUC 
.  Thus property (a) of Cartesian closedness 

is fulfilled. 

 

(b) For any two objects 1U  and 2U  in 
CE then 

 CE x E 21 xUU .  Thus property (b) of 

definition of Cartesian closedness is fulfilled. 

(c) Every C, has a right adjoint xC in 
,C thus property (c) of definition of Cartesian closedness is fulfilled. 

 

Corollary (2) 

 

Let E, F, G etc be locally convex spaces, and let U, V be C open subsets of such. Then the following 

canonical super mapping are supersmooth. 

 

1. f(x)x)F(f, x U),(.  FUCEv  

2. Ins. y)(x,(YxF), x ,(   EFCE  

3. G)V, x ()),(,(::)   ( UCGVCUC    

4. )),(CG)V, x (:)  ( v GVUC    

5. ,),(),,(),(),(: foggfGUCFUxCGFCComp  
 

6.      

21 ,, FFxCEECC D  

7. )),()),(),,(( 22 gohofhgfFECFECC  
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8. ),(),(: FiEiCFEC II     for any index set. 

 

Proof: 

 

1. The mapping associated to iavev.  Cartesian closedness in the identity on ),( FUC 
, which is 

C , 

thus ev is also 
C . 

2. The mapping associated to viains. Cartesian closedness is the identity on 1F  x  E  hence ins is 
C  

3. The mapping associated to 
)  (  via Cartesian closedness is a smooth composition of evaluation 

f(x)(y)y)x,(f,: xid)( evevo  

4. We apply Cartesian closedness twice to get the associated mapping  

        ),,(),(( yxfyxf  which is just a smooth evaluation mapping. 

5. The mapping associated to comp.via Cartesian closedness is ))((),,( xgfxgf   which is the smooth 

mapping ev.o(id x ev). 

6. The mapping associated to the one in question by applying Cartesian closed twice is 

))(((),,,( xfhgxhgf  , which is the 
C mapping evo(vd x ev) o (id x id x ev). 

7. Up to a flip of factors the mapping associated via Cartesian closedness is the product of the evaluation 

mapping iii FFEC 

iE x ),( . 

2.1.12 LEMMA 

 

A curve into 
C  closed subspace of a space is supersmooth if and only if it is supersmooth into the total super 

space.   

 

Proof 

 

Since the derivative of a supersmooth curve is mackey limit of the difference quotient, the 
C  closedness 

implies that this limit belong to the super subspace.  Thus we deduce inductively that all super derivatives belong 

to the super subspace and hence the curve is supersmooth into the super subspace.  

 

Corollary: 

The supersmooth mapping on open subset of 
mn

o XxX 1  in the sense of definition are exactly the usual 

supersmooth mappings. 

 

Proof 

 

Both conditions are of local nature, so we may assume that the open subset of 
mn

o XxX 1  is an open box and in 

turn even 
mn

o XxX 1   itself. 

FXxXif mn

o  1  :f  is supersmooth then by Cartesian closedness, for each coordinate the respective 

associated mapping 
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),  (  : 1

1

1 FXxXCXxXf mn

o

nmn

o


 is supersmooth, so again by Cartesian closedness we have 

,)(  vifif so all first partial derivatives exist and are super smooth, inductively, all iterated partial 

derivatives exist and are supersmooth, thus continuous, so f is supersmooth in the usual sense. 

 

2.1.13 DEFINITION [Second Super Derivative] 

 A 
2C  mapping AU  is called 

2G at Ua  if the second derivative )(" af , is a symmetric bilinear 

map AAxA  such that ),).((" khaf is a quadratic form with coefficients in A. 

Theorem 

 A G
2
 and G

1
 mapping AU   is also G

2
 at Ua  if 0),)(("  khaf  

 Proof 

 Since f   is G’ we have )()()(' aVhaUhhaf    

 Thus 

 )1..().........),('()),('(),)((" kaVhkaUhkhaf    

 replacing k by  KK  and using the symmetry in h and k we obtain, 

 )2...(..........).........).('()).('(   haUKkaUh  and 

 )3....().........).('())('())('())).('(  haVKhaUKkavhkaUh  

 taking eK    in (2) gives 

 )(').(' aUhhaU   

 eK   and 0h in (3) gives 

 )).('(.)(' eavhhaU   

 Therefore if, 

 0)),('(),)(("  kavhkhaf  

 then, 

 ),)((" khaf is given by a quadratic form with coefficient in A. 

 ,),(')( eaUaf   eaVafaf ).(')()(   

  

2.1.13 PROPOSITION 

To an entire function IRIR   given by )1.........(:
0







n

n

n Xcxf  corresponds a 
C mapping AA  

given by 





0

:
n

n

nacaf  
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 Proof 

(i) The mapping is defined from A into A:  a  term ipf i ,.........   
ip
iil

i




........
in f(a) is well defined because it 

contains only finite number of terms of the formal series which defines a, and the series (1) is absolutely 

convergent for all x. 

(ii) f  is 
c in the locally convex topology and 

G indeed 

 






 
0

1 ))()()(
n

n

n

n

n aacacaf  

 

  121 ))1(()(' n

n

nn

n
aChaannachhaf  A G

k
 mapping, with K large 

enough for the application at hand, is also called super smooth. 

 

2.1.14 REMARKS 

 

The definition of supersmoothness extends in a standard way to mappings from A
n
  into A

p
 or more generally 

from qmA -A x   into qmA -A x '  such a mapping is graded or super, if the derivative is given by an 

)q'x '()( mxqn  matrix with elements in A1 that is there exist elements of 'A x ' -qmA  denoted fc , 

fj   such that 

 
 

 
in

i

q

j

j

i

i fhifhhaf
1 1

).('  

,)( mAhh i

        Aqhh j )(  

 

2.1.15 DEFINITION [Super polynomial] 

A supersmooth mapping ][:   FFFEf  is called a superpolynomial if some derivative fd n
vanishes 

on ][   EEE .  The largest   such that 0fd p
is called the degree of the polynomial. The mapping f is 

called a monomial of degree   if it is of the form ),....()( xxfxf   for some ),(L o FEsymf  . 

2.1.16 DEFINITION [Approximation Property in vector Superspace] 

  

Another important addition property of convenient vector superspace is the approximation property i.e. the 

denseness of EE'  in ),( EEL .  A convenient vector super space E is said to have the bornological 

approximation property if EE  in L(E,E) with respect to the bornological topology. It is said to have the 

C approximation property if this is true with respect to the ]),[( EELC 
. 

2.1.17 LEMMA: (Curves into Limits) 

 

A curve into a 
C closed subspace of a space is supersmooth if and only if it is supersmooth into total space.  In 

particulars a curve is supersmooth into a projective limit if and only if all its components are supersmooth. 
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Proof 

Since the derivative of supersmooth curve is the mackey limit of the difference quotient, the 
C closedness 

implies that this limit belongs to the subspace.  Thus we deduce inductively that all derivatives belong to the 

subspace, and hence the curve is supersmooth into the subspace.  The result on projective limit now follows, 

since obviously a curve is supersmooth into a product, if all its components are supersmooth. 

  

Theorem (Simplest Case of Exponential Law)(Kriegl) 

 

 Let IRIRf 2: be an arbitrary mapping.  Then all iterated partial derivatives exist and are locally bounded if 

and only if the associated mapping ),(: IRIRCIRf v  exist as a super curve where ),( IRIRC 
is 

considered as the Frechet space with ),( IRIRC 
, is considered as the Frechet space with the topology of 

uniform convergency of each derivative on compact sets.  Furthermore, we have )(),( vv fdf  and 

)(*)( 2

vvv fddoff  . 

2.1.18 CALCULUS OF MAPPINGS: 

 

The concept of a supersmooth curve with values in a locally convex vector super space is easy and without 

problems. Let E be a locally convex vector space. 

2.1.19 DEFINITION [Super Differentiable Curves] 

A curve EIRC : is called differentiable if the derivative )
)()

(lim)('
s

tcst
ctc

os





 at t  exist for all t

.  A curve EIRC " is called super smooth 
c is all iterated derivatives exist. It is called 

nC for some finite 

n if its iterated derivatives up to order n exist and are continuous. 

 

Collary [Smoothness of the difference quotient] 

For a supersmooth curve EIRC : the different quotient 

 

sfor t      (t)c'                  

sfor t 
)()(

),(













st

sctc
st

 

is a smooth mapping EIR 2
 

Proof 

We have  





'

)(('
)()(

),:
o

drstrsc
st

sctc
stf and it is smooth 

EIR 2
.  The left hand side has 

values in E, and for st  this is also true for all iterated directional derivatives.  It remains to consider the 

derivatives for t=s.  The iterated directional derivatives are given by, 

 
11

0
)(('),( drstrscdvstvfd pp

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.2, 2014 

 

115 

 

 
1

0
))((' drstrscdv p

 

where dv  act on the (t,s) variables.  The later integrand is for t=s just a linear combination of derivatives of c 

which are independent of r, hence Estvfd p ),( .  The mapping f is supersmooth into E. 

Likewise, a mapping ][:  EEEIRf n
is called supersmooth if all iterated partial derivaties 

pi
i

xoi
ipfi








 ....................1

 exist. 

For all  i........n..........1 ipi  

A curve ERc :  is called locally Lipschitzian if every point IRr  has a neighbourhood U such that the 

Lipschitz condition is satisfied on U, i.e. the set. 












Uststsctc
st

,;:)()((
1

 is bounded. 

Note that this implies that the curve satisfies the Lipschitz condition on each bounded interval, since for (tI)  

increasing  

titi

tictic

tot

tt

tt

tctc

n

ii

on

on















1

)(1(1)()(
 

is in the absolutely convex hull of a finite union of bounded sets.  A curve EIRc : is called 
kLip or 

 )1(kC if all derivatives up to order K exist and are locally Lipschitzian. For those properties we have the 

following implications. 

nnm cpLC 

1

1
 

differentiable c , 

In fact, continuity of the derivatives implies locally its boundness. 

 

Lemma [continuous Linear Mapping are supersmooth] 

A continuous linear mapping FEL : between locally convex vector superspaces maps kLip curves in E 

to k

i pL curves in F, for all  k0 , and for 0k  one has ).)('()()'( tcLtLoe   

 

Proof. 

As a linear map L commutes with difference quotients, hence the image of Lipschitz curve is Lipschitz since L is 

bounded. As a continuous map it commutes with the formation at the respective limits.  Hence 

)).)('()()'( tcLtLoC    

Note that a differentiable curve is continuous and that a continuously differentiable curve is locally Lipschitz:  

For *EL  [The space of all continuous linear functionals on E] we have 

 
st

sLoctLoc

st

sctc
L
















 ))(()(()()(
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=  
1

0
,))(()'( drrstsLoc which is bounded, 

Since )'(Loc  is locally bounded 

Proposition: Integral of Lipschitz Curves: 

Let ][]1,0[:   EEEc  be a Lipschitz curve into a Mackey complete space. Then the Riemann integral 

exist in E as (Mackey) limit of the Riemann sums. 

 

2.1.20 DEFINITION: [THE INTEGRAL](Kriegl) 

For continuous curves EIRC : the definite integral is given by   
b

a
acfbce ))(())((  

 

2.1.21 COROLLARY: [BASICS ON THE INTEGRAL] 

For a continuous curve EIRc :     we have 

1.  
o

a

b

a
LoccL )()( for all EL  

2.  
d

a

d

b

b

a
ccc  

3.  
b

a

b

a
cao

)(

)(
')(




 for ),(' IRRc  

4. 
b

a
c lies in the closed convex hull in Ê of the set  btatcab  :)()( in E 

5.  
b

a
EEIRc ˆ),(:: is linear 

6. (Fundamental theorem of calculus).  For each c’= curve c: EIR   we have 
s

t
ctcsc ')()(  

 All the above curves are on superstructures. 

 

2.1.22 LEMMA [Integral of Continuous Curves] 

Let EIRC : be a continuous curve in a locally convex vector super space.  Then there is a unique 

differentiable curve   EIRc ˆ: in the completion Ê of E such that 0))(( ofc and oCfc )'(  

 

Proof 

We show uniqueness first.  Let EIRC ˆ:1  be a curve with derivative C and 0)0(1 C .  For every *EL  

The composite LoC, is an anti-derivative of Loc with initial value O, so it is uniquely determined, and since 

*E  separates point C, is also uniquely determined. 

 

Now we show the existence, we have that Ê  is (isomorphic to) the closure of E is the obviously 

complete space ],*[ REL equip .  We define IREtfc *:))((  by 
t

o
dsslocL .))((  It is a bounded 
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linear functional on equipE *
 since for an equicontinuous subset *E the set  ],[  ,:))(( tosLsLoc 

is bounded so    );*(: IReuipELIRc . 

Now we show that  c  is differentiable with derivative oc . 

lroc
t

rcrtc
















 
))((

))((()(
  

= 







 rt

t

o

r

o
rloctslovdssloc

t

i
))(())(())((  

 



tr

r

i

o
dsrctsrcLdsrlocsloc

t

i
)()(())(())((  

Let  *E be eqicontinuous and let o .  Then there exist neighbourhood U of o such that   LUL )(  

for all lo .  For sufficiently small t , all ]1,0[SI and fixed r we have Urctsrc )()(  .  So 

 
1

/))()((
o

dsrctsrcL  .  This shows that the difference quotient of  c  at r converges to ))(( rc  

uniformly on equicontinuous subset. 

It remains to show that  Etc ˆ))((  .  By the mean value theorem the difference quotient. 

   )())((
1

octc
t

 is contained in the closed convex hull in ),*( IRequiEL of the subset.  

tsosc :)(  of E.  so it lies in Ê . 

 

2.1.22 DIFFERENTIATION OF AN INTEGRAL 

We return to the question of differentiation an integral, so let FExIRf : be supersmooth, and let F̂  be the 

completion of the locally convex space F.  Then we may form the function FEfo
ˆ:  defined


i

o
dttxfx ),( .  We claim that it is super smooth, and that, directional derivative is given 


i

o
o dttxdvfxdvf .),()(  By Cartesian closedness the associated mapping ),(: FIRCEf v  is super 

smooth, so the mapping  FEof v

o

ˆ:
1

 is super smooth since integration is a bounded linear operator and 

dttsvxf
s

svxfo
s

xdvf
o

os

so ))()(
2

)(
1








 



  

=   





1 1

sv)(x)dtf(x ),(
o o

os dvdttsvxf
s
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3.0 CONCLUSION 

 

In this paper the theorem on the Cartesian closedness of convenient vector spaces, provided by Kriegl Michor 

has been shown to be valid in bornological topological spaces without norm. The super structures have been 

studied in a convenient vector space without norm. Mapping and smooth mappings have been derived; their 

properties have been studied with their calculus. 

 

Super derivatives have been introduced in this paper. Here Super derivatives in convenient vector space without 

norm have been introduced for the first time. The properties of these derivatives have been worked in super 

structures. It has been shown for the first time that a super derivative can be approximated to a synthetic 

derivative in   . 

Approximation property and super polynomial vector spaces have been defined proved in convenient vector 

space without norm 

 

4.0 APPLICATIONS 

In conclusion this summary has shown that the three model studies, i.e., super mathematics due to its unification 

of laws in physics, synthetic mathematics and analysis in bornological spaces due to their generality in 

mathematics can be combined to one model through category theory. The main result in this paper is that it has 

shown that the three models are valid in sequential complete topological spaces without norm. 
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