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Abstract

In this paper a hybrid consistency of Block by Block method and finite difference method was proposed to solve
two-dimensional linear and nonlinear Volterra integro-partial differential equations. This hybridization is based
on using both finite difference forward formal method for derivatives required for the formulation and then
applying Block by Block method. The numerical solution of examples and the comparison with the
corresponding exact solution are performed and the results revealed that the method gives good accuracy and
an efficiency of this hybridization.
1. Introduction
The purpose of this paper is to employ the two-dimensional nonlinear Volterra integro-partial differential
equations, which are often encountered in many branches of physics, chemistry and engineering. Different
methods are used to integral equations which are investigated from many physical applications such as the mixed
problems in the theory of elasticity. There are many methods to solve this type of problems such as Moss (1982)
in [38] used numerical solution of one-dimensional integral equations with convolution kernel. Ladopoulos
(1988) in [31] studies numerical solution of the multi-dimensional singular integrals and integral equations.
Atkinson (1992) in [8] gave a survey of numerical methods for solving nonlinear one-dimensional integral
equations. Su and Sakar (1999) in [47] used the moment method for solving the two-dimensional Fredholm
integral equations of the first kind. Brunner et al (1999) in [1] applied splitting methods for partial Volterra
integro-differential equations. Yalginbas and Sezer (2000) in [2] studies the approximate solution of high-order
linear Volterra-Fredholm integro-differential equations under the mixed conditions in terms of Taylor
polynomials about any point. El-Borai (2006) in [3] gave some stochastic Fractional integro-differential
equations mild solutions of the nonlocal Cauch problem for the considered classes are studied. (2007) in [4]
applied the stability of some stochastic integro-partial differential equations consider the Black-Scholes market
consists of a bank account or a bond and a stock. Babolian et al (2008) in [5] gave new direct method to solve
nonlinear Volterra-Fredholm integral and integro-differential equations using operational matrix with Block-
puise. Mohoseni Moghadam and Saeedi (2010) in [6] using application of differential transforms for solving
two-dimensional Volterra integro-partial differential equations.
2. The Proposed Problem Method

In this section, we present a numerical method to solve

O*p(x t O*p(x t O*p(x ,t O (Xt O (Xt
S S S, L

=f (x,t)+ﬂ,j|.f[F(t,r)k(x,y)G(r,y,¢(y,r))dydr, 0<t <T <1

This method consists of three phases.
In phase one, we rewrite this equation as a system of linear Volterra integro-partial differential equations.

To do so, we choose a sufficiently small step size h, , and we assume a=X,<X;<..<X, =b isa
partition of the interval [a,b ] with h, =(b —a)/N .-

Then, at each point X, (1.1) becomes
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b
Replacing the integral Ik (Xn,y)j/(r,y,¢(y,r))dy by a numerical integration rule of the form
a

n
ZW i knj Vi (z‘,yj ,¢j (z‘)) where , then an approximate to (2.1) can be found as a system of Volterra
j=0

integro-partial differential equations:
o°g, (t o%g, (t o°g, (t og, (t og, (t
L0, A0 () ok (), ()
OX OX ot ot OX ot
n t
=f, (t)+/12ijnj IF (t,r)yj (T,yj ,¢j (’l'))d’l', n=01..,N,
j=0 0
In phase two, we use the block-by-block method to solve such system of integral equations of Volterra type. The
following subsection explains how this method works.

2.1 Block-by-Block Method
Assume that we need to solve an equation of the form.

u(t):v(t)+lH(t,s,u(s))13 ...... (2.5)

The idea behind the block-by-block method is to divide the interval [0,t] into a mesh

1, (1)

0=t, <t, <..<t, <..<ty =t <T , and then we try to evaluate the value of the unknown function u (t)

at these points except at t =0, where we have that U =0 =v(0).
Using any known rule, say Simpson's rule, we have

u (t2)=v(t2)+/1h—§{H (ttot (tp))+4H (tutuu (t))+H (L Lu () (2.6)

To obtain a value for U (t, ), we introduce the point t,, =h, /2, h =t/N
rule rule again to obtain.

h
u(t,)= v(t1)+l€t{H (t1.t0:0 (1)) + 4H (t,ty000 (ty, )+ H (ttu (tl))} ...... 2.7)
Replacing the value U (tj/z) by a quadratic interpolation using the values U,,U; and U, , we have
3 3 1
u (tm) =gY (to)+zu (tl)—gu t) L (2.8)

So that we can compute U (tl) by

¢» and then we use Simpson's

3

u(t,)= v(t1)+/1h§t{H (t,.tou (ty))+4H (tl,tw,{gu (t0)+zu (tl)—%u (tZ)D+ H (t,.t,,u (tl))}

Equations (2.6) and (2.9) are a pair of simultaneous equations for U (t1) and U (tz). For sufficiently small ht ,

u (tl) and U (tz) can be found uniquely using any procedure such as Newton's method.
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In general, for m=0,1,2,...,N, —1, the approximate solution of (2.5) is evaluated using the following two
equations:

h
u (t2m+l) ( 2m+l +ﬂ’h Zk H ( 2m+1’ ' (ts ))+i§t{H (t2m+l’t2m’u (th ))+
...... (2.10)
3 3 1
4H ( 2m+1? 2m+1/2’|:8u (t2m )+Zu (t2m+l)_§u (t2m+2):|)+H ( 2m+1? 2m-¢—1’u (t2m+1))}
h
u (t2m+2) ( 2m+2 +ﬂ’h Zk H ( 2m+2’ (ts ))+2’?t{H (t2m+2’t2m ,U (t2m ))+
s0 s T (2.11)
4H (t2m+2’t2m+l’u (t2m+l))+H (t2m+2’t2m+27u (t2m+2 ))}
where
K, =1{1,4,2,...,2,4,1}, $=012,..,2m
S (2.12)

t2m+]/2 :th +?
Then the problem in VFIPDE as follows

a82¢n gt)+ﬁaz¢” (t)+;/az¢”z(t)+5a¢” (t)+86¢n (t)
OX ox ot ot OX ot
h

/IiW j htzmksF (t2m+1'ts )k (Xn ' yj )GJ (ts 7¢n (ts ))+ﬂ€t{|: (t2m+1’t2m )Gn (t2m 1¢n (t2m ))+Gn (th !¢n (th ))
j=1 s=0
n (t2m+2'¢n (t2m+2 )):D+ F ( 2m+1? 2m+l)Gn (t2m+1'¢n (t2m+1))}

+:u¢n (t):fn (t2m+l)+

1

3 3
4F ( 2m+11 2m+]/2 |:8 +ZGn (t2m+l'¢n (t2m+1))_§G

Now to find the left side of equation (2.13) assume that we need to solve an equation of the form
ou ou ou ou ou
=+ +H—| = +=]| +u,(t,)=Y,(t,)
OX ox ot ot X Jom \Ot ) o T T (2.14)
n,m n,m n,m ’ ,

where if m is odd number

\Pn (t ) f (2m+1 +AZW h zk F 2m+1 s)k (Xn’yj)Gj(ts’¢n (ts))+ﬂ'h_3t{|:(t2m+l’t2m )Gn (th’¢n (th ))+

s=0

1

4F ( 2m+1? 2m+1/2 |:3 +§Gn (t2m+1'¢n (t2m+1))_§Gn (t2m+2’¢n (t2m+2)):|)+ F ( 2m+1? 2m+1)Gn (t2m+1'¢n (t2m+1))}

8 4
and if m is even number

( ) f 2m+2)+/IZW h zk F 2m+2 s k( yj)Gj(ts'¢n (ts))+ﬂ'h€l{F (t2m+2't2m )Gn (t2m1¢n (th))
+4F( 2m+2? 2m+1) n( 2m+2!¢n( 2m+1))+|:( 2m+21 2m+2) n (t2m+2’¢n (t2m+2))}

We use the forward finite difference formal to solve the equations (2.14)
1 1
F[uml (tm )_Zun (tm )+un—l (tm ):|+ h h |:un+1 (tm+1)_un+l (tm )_un (tm+1)+un (tm )]
X Xt
1 1
+h_t2[un (tm+l)_2un (tm)+un(tm—l)]+h_|:un+1(tm :|+—|:U m+1 (tm ):|+un(tm):\Pn (tm)

...... (2.15)
2.2 Hybriding of the Block-by-Block Method and Finite Difference Method on the NVFIPDE
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Combining the previous results, we obtain a new scheme defined by the following two equations:

a{ri[z[¢n+1 (t2m+1)_2¢n (t2m+1)+¢n—1 (t2m+1):|}+ﬂ{hlh|:¢n+l (t2m+2)_¢n+l (t2m+1)_¢n (t2m+2)+¢n (t2m+1):|}

*7{:5[5”" (tyra)— 26, (o) + 6, (Lo )]}+5 {hl[qﬁm (tana)— 4, (tm)]}w{;[aﬁn (tani2) ~ ¢ (tm)]}

X

h

n 2m
+:u¢n (t2m+l) :fn (t2m+1)+/lzw j htstF (t2m+1’t5 )k (X n? yj )GJ (ts ’¢n (ts ))+/1§[{F (t2m+1’t2m )Gn (th !¢n (th ))+
j=1 s=0

3 3 1
4F [t2m+l’t2m+l/2'|:§Gn (t2m1¢n (th ))+ZGn (t2m+1'¢n (t2m+1))_§Gn (t2m+2’¢n (t2m+2 )):|j+ F (t2m+l’t2m+1)Gn (t2m+1'¢n (t2m+1))}

a{h—lf[m (tr )20, () 41 (tw)]}w{ﬁ[m (tar2)= s ()~ () 41 (tzm)]}
+y{hit2[¢n (tr )26, (1) 44, (tm)]}w{%m (t2) 4 (t )]}w{%m (1)) (tm)]}

n 2m h
+,u¢n (t2m+2):fn (t2m+2)+ﬂ’zw j htzksF (t2m+2’ts )k (any j )GJ (ts 1¢n (ts ))+ﬂ‘?t{l: (t2m+2’t2m )Gn (th 1¢n (th ))+
j=1 s=0

4F (t2m+2’t2m+l)Gn (t2m+21¢n (t2m+1))+ F (t2m+2't2m+2 )Gn (t2m+21¢n (t2m+2))}
...... (2.17)

3. Examples
We use the block by block and finite differential method to solve numerically the following examples when

(i) Case 1:If the equations in linear form 7/('[ , X ,¢(X t )) = ¢(X [t ),
(i) Case 2: If the equations in nonlinear form ;/(t , X ,¢(X t )) = ¢2 (X R )
Example 3.1. Solve the VFIPDE

2 t1
Zt—f+2—f:f (x ,t)+/1.([.([sin(x +y )sz(t,x,¢(x ,t))dyd 7; where 1=1,0<t<T. .. (31)

Such that ¢(x,0)=0, ¢(0,t)=t?

The exact solution of this integral equation is ¢(X 1 ) =tzsin(x ) Tables 1 and Tables 2 list the error at
different values of X and t for different value of N, (number of partitions of the interval [a,b] and 2N ,)
(number of partitions of the interval [O,T ] ;T =0.5).

Table 1 The error at different values of X and t for different value of N, )

Appro. Case 1 Appro_ Case 2

(0.5,0.1)
(0.5,0.2)
(0.5,0.3)
(0.5,0.4)

(0.5,0.5)
(0.5,0.6)
(0.5,0.7)
(0.5,0.8)
(0.5,0.9)
(0.5,1.0)

Example 3.2. Solve the VFIPDE
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o°¢ o¢ faxe .

2 o ! (X’t)”Me rtxg(xt))dyds 32
where 2201, Ogt <T.

Such that ¢(x,0)=0, ¢(0,t)=t?

24 X
The exact solution of this integral equation is ¢(X 1t ) =1°€". Tables 1 and tables 2 list the error at
different values of X and t for different value of N, (number of partitions of the interval [a,b] and 2N,)

(number of partitions of the interval [O,T ] ;T =0.5).
Table 2 (The error at different values of X and t for different value of N, )

Appro. Case 1 Error Case 1 Appro. Case 2 Error Case 2

(0.5,0.1)

(0.5,0.2)

(0.5,0.3)

(0.5,0.4)

(0.5,0.5)

(0.5,0.6)

(0.5,0.7)

(0.5,0.8)

(0.5,0.9)

(0.5,1.0)

4. Conclusion
Two rules of numerical integro-partial differential methods are used to solve (2.1). One of these rules is of order

O (hX ), the rectangle method, which is applied on the integral with respect to the variable X. The other
method is of higher-order O (ht“), the block-by-block method, and used finite difference formal to solve (2.1),

and is applied on the integral with respect to the variable t where we used the fact that ¢(X ,O) =f (X ,O).
More information about the solution could allow us to use higher-order method with the block-by-block method.
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