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Abstract 

This paper introduces the notion of semi-compatible self- maps in 2- metric spaces and establishes a fixed point 

theorem for six self maps, satisfying an implicit relation through semi-compatibility of a pair of self-maps. 
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1.  Introduction 

 The concept of 2- metric space was initially given by Gahler [3] whose abstract properties 

were suggested by the area of functions in Euclidean space. Iseki [4] set out the tradition of proving fixed point 

theorem in 2- metric space employing various contractive conditions. Later on, Naidu and Prasad [7] introduced 

the concept of compatible maps in 2- metric spaces. In [2] Cho, Sharma and Sahu introduced the concept of 

semi-compatibility maps in d- topological spaces.  

They defined a pair of self-maps (S, T) to be semi-compatible if the condition (i) Sy = Ty  STy = TSy (ii) 

{Sxn}  x, {Txn}  x  STxn  Tx, as n  , holds. However, (ii) implies (i), taking xn = y and x = Ty = Sy. 

So in a 2- metric space, we define semi-compatibility by the condition (ii) only. 

2.  Preliminaries 

  Definition 2.1.  Let X be a non-empty set with real-valued function d on X x X x X satisfying the 

following : 

 

(1) d(x,y,z) = 0 if at least two of x, y, z are equal, 

(2) d(x, y, z) = d(p(x, y, z)) for all x, y, z  X and each permutation  

                                       p(x, y, z) of x, y, z. 

(3) d(x, y, z) ≤ d(x, y, w) + d(x, w, z) + d(w, y, z)  

for all x, y, z, w  X. 

The function ‘d’ is called a 2- metric on X and the pair (X, d) is called a 2-metric space. 

  Definition 2.2.   A sequence {xn} is said to be 2-convergent to a point  

x  X if limn d(xn, x, a) = 0, and is said to be 2- Cauchy sequence if  

limn,m d(xn, xm, a) = 0 for all ‘a’  X. The 2- metric space (X, d) is called complete if every Cauchy 

sequence in X converges in X converges to a point of X. 

Definition 2.3.   For a pair of self-maps (S, T) on a 2-metric space  

(X, d): 

(1)   (S, T) is said to be compatible if limnd(STxn, TSxn, a) = 0 for all ‘a’  X, whenever the sequence 

{xn} is a sequence in X such that limnTxn = limnSxn = x. 

(2)   (S, T) is said to be semi-compatible if limnd(STxn, Tx, a) = 0 for all ‘a’  X, whenever the sequence 

{xn} is a sequence in X such that limnTxn = limnSxn = x. 

(3)     (S, T) is said to be weak-compatible or coincidently commuting if Sy = Ty for some y  X then TSy 

= STy.  

Proposition 2.1.   If S and T are semi-compatible self-maps on a 2-metric space (X, d) then the pair (S, 

T) is weak- compatible. 

Proposition 2.2.   If S and T are compatible self-maps on a 2-metric space (X, d) and T is continuous 

then the pair (S, T) is semi-compatible. 

However, weak-compatibility does not imply semi-compatibility. It is clear from following Example 

2.1 that the pair of self-maps (A, B) is weak compatible but is not semi-compatible. 

Here we give an example of pair of self-maps (I, A) on a 2-metric space, which is compatible but not 

semi-compatible. Further we see that the semi- compatibility of a pair (A, I) need not imply the semi-

compatibility of (I, A). 
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Example 2.1.    Let X = {0, 1/2, 1/4, 1/8, 1/16,…,1/2
n
,…}. Define d : X x X x X  (0, ) by  

 

                      1,    if x, y, z are distinct and  

d(x, y, z) =         

                       0,   otherwise 

 

Then (X, d) is a 2-metric space. Let ‘I’ be the identity on X and define a self map ‘A’ as follows: 

A(1/2
n
) = 1/2

n+3
 , A(0) = 1/2 and xn = 1/2

n
. Then 

 limnd(Ixn, 0, a) = limnd(xn, 0, a) = 0, 

 limnd(Axn, 0, a) = limn d(1/2
n+3

, 0, a) = 0 

for all ‘a’ X. Thus {xn} and {Axn} converges to x = 0. Now, the pair (I, A) is commuting. Hence it is 

compatible. But {IAxn} = {Axn}  0  A(0) as {Axn}  0, and we get that (I, A) is not semi-compatible. 

Also, for any sequence {xn}  x 

 limnd(AIxn, Ix, a) = limnd(Axn, x, a) = 0. 

Thus (A, I) is semi-compatible. 

 The above example gives an important aspect of semi-compatibility since the pair (I, A) is commuting, 

hence it is weakly commuting, compatible and weak compatible but it is not semi-compatible. 

  

 Note : A pair of self maps (S, T) which is semi-compatible need not to be compatible. Also, semi-

compatibility of the pair (S, T) need not imply the semi-compatibility of (T, S). 

  Definition 2.4.([8])  Let F4 be the class of upper semi – continuous functions on the right from (
+
)

4
  

 such that for some h  (0,1) 

       (1) F (u , v, u, v)  0 implies v  hu. 

     (2)       F ( u, v, v, u)  0 implies v  hu. 

               (3)  F(u, u, 0, 0, )  0 implies u = 0. 

    REMARK 2.1.   It follows from the first two conditions of F4 that for F  F4,  

(1) F(0, L, 0, L)   0 implies L = 0. 

(2) F(0,L, L, 0)   0 implies L = 0. 

         S.L. Singh [9] proved the following. 

  Lemma2.3. ([9])   Let {xn} be a sequence in a complete 2-metric space X. If there exists a h (0, 1) 

such that  

                                       d(xn, xn+1, a )  h d(xn-1, xn, a) 

   for all ‘a’  X and all ‘n’, then {xn} converges to a point in X. 

             Lemma 2.4.   Let A, B, C, D, S and T are six self maps on a complete metric space (X, d) such that  

            (1) S(X)  CD(X) & T(X)  AB(X) 

            (2) For some F  F4 

              F[d(Sx, Ty, z), d(ABx, CDy, z), d(ABx, Sx, z), d(CDy, Ty, z)]  0 ,  

for all x, y, z  X. 
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Then the sequence {yn} converges to a point in X , where the sequences {xn} and {yn} are defined by  

Sx2n = CDx2n+1 = y2n+1  and Tx2n+1 = AB x2n+2 = y2n+2 for n = 0, 1, 2,… 

   Proof.   Let x0  X, from condition (1), there exist x1, x2  X such that 

Sx0 = CDx1 = y0 and Tx1 = ABx2 = y1. 

Inductively, we can construct sequences {xn} and {yn} in X such that 

Sx2n = CDx2n+1 = y2n+1 and  Tx2n+1 = ABx2n+2 = y2n+2 for n = 0, 1, 2… 

    Put x = x2n and y = x2n+1 in (3) 

    F[d(Sx2n, Tx2n+1, z), d(ABx2n, CDx2n+1,  z), d(ABx2n, Sx2n, z), 

                                                                        d(CDTx2n+1, Tx2n+1,  z)]  0, 

for all x, y, z  X 

    F[d(y2n+1, y2n+2, z), d(y2n+1, y2n, z), d(y2n+1, y2n, z), d(y2n+2, y2n+1, z)]   0, 

     F[U, V, U, V]  0 implies that V  h U, where U = d(y2n, y2n+1, z), and  

V = d(y2n+1, y2n+2 ,z) and h  (0,1). So 

     d(y2n+1, y2n+2, z)   h d(y2n, y2n+1, z), for h  (0,1). 

   Similarly, if we take x = x2n and y = x2n-1 in (3), then we get  

    F[d(Sx2n,Tx2n-1, z), d(ABx2n, CDx2n-1,  z), d(ABx2n, Sx2n, z), 

                                                                                   d(CDx2n-1, Tx2n-1,  z)]  0, 

implies that 

    F[d(y2n+1, y2n, z), d(y2n-1, y2n, z), d(y2n+1, y2n, z), d(y2n, y2n-1, z)]   0,  

for all z  X. That is, F[U, V, V, U]  0 implies that V  h U, where U = d(y2n, y2n-1, z), and V = d(y2n+1, y2n, z) 

and h  (0,1). So 

    d(y2n,y2n-1,z)  h d(y2n-1,y2n-2,z), for h  (0,1). 

Therefore, for all ‘n’ even or odd d(yn, yn+1, z)  h d(yn-1, yn, z), for h  (0,1). By Lemma 2.3, {yn} converges to 

some u  X.. 

 It has been shown in [3] that, although ‘d’ is a continuous function of any of its three augments, it need  not to 

be continuous in two augments. If it is continuous in two augments then it is continuous in all three augments. 

For brevity,‘d’ which is continuous in all of its augments, will be called continuous. 

From now on, the 2-metric‘d’ is assumed to be continuous. 

3. Main results 

Theorem 3.1.   Let A, B, C, D, S and T are six self maps on a complete 2-metric space (X, d) satisfying  

(i) S(X)  CD(X) and T(X)  AB(X) 

(ii) For some F  F4 

             F[d(Sx,Ty, z), d(ABx, CDy, z), d(ABx, Sx,  z), d(CDy, Ty, z)]  0 ,  

          for all x, y, z  X. 

(iii) AB = BA , CD = DC, SB = BS, TD = DT 

(iv) either AB or S is continuous. 

 (v)    (S, AB) is semi-compatible and (T, CR) is weak-compatible. 

Then the six self maps A, B, C, D, S and T have a unique common fixed point in X . 
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       Proof.  Let x0  X, from condition (i) there exist x1, x2  X   

    such that Sx0 = CDx1 = y0, Tx1 = ABx2 = y1. 

       Inductively, we can construct sequences {xn} and {yn} in X such that 

                  Sx2n = CDx2n+1 = y2n  and Tx2n+1 = ABx2n+2 = y2n+1 for n = 0, 1, 2, … 

 By Lemma 2.4, {yn}  u  X. Also its subsequences converges as follows,  

                      i.e.     {Tx2n+1}  u  and {CDx2n+1}  u, 

                               {Sx2n}  u and {ABx2n}  u. 

       Case I: AB is continuous. 

As AB is continuous, (AB)
2
 x2n  ABu  and  (AB)Sx2n  ABu 

As (S, AB) is compatible, we have S(AB)x2n  ABu. 

       Step1:  Putting  x = ABx2n , y =  x2n+1 in (ii), we get 

                     

 F[d(SABx2n, Tx2n+1, z), d(CDx2n+1, ABABx2n, z), d(SABx2n, ABABx2n, z), d(Tx2n+1, CDx2n+1, z)]  0 

letting n   , we get  

                    F[d(ABu, u, z), d(u, ABu, z), d(ABu, ABu, z), d(u, u, z)]  0 

implies that 

                    F[d(ABu, u, z), d(ABu, u, z), 0,0]  0 

which gives,  d(ABu, u, z) = 0. Hence ABu = u. 

        Step2:  Putting x = u and y = x2n+1 in (ii), we get 

                   F[d(Su, Tx2n+1, z), d(CRx2n+1, ABu, z), d(Su, ABu, z), d(Tx2n+1, CRx2n+1, z)]  0 

letting  n  , 

                     F[d(Su, u, z), d(u, u, z), d(Su, u, z), d(u, u, z)]  0 

 implies that 

                      F[d(Su, u, z), d(Su, u, z), 0, 0]  0 

which gives , d(Su, u, z) = 0 . Hence Su = u. 

        Step3:   Putting  x = Bu, y = x2n+1 in condition (ii), we get  

                  

                      F[d(SBu, Tx2n+1, z), d(CDx2n+1, ABBu, z), d(SBu, ABBu, z), 

                                                   d(Tx2n+1, CDx2n+1, z)]  0, 

as AB = BA, SB = BS, so we have 

S(Bu) = B( Su) = Bu and  ( AB)(Bu) = B(ABu) = Bu  

letting n  , we get 

                   F[d(Bu, u, z), d(u, Bu, z), d(Bu, Bu, z), d(u, u, z)]  0, 

implies that 

                  F[d(Bu, u, z), d(Bu, u, z), 0, 0]  0, 

that is,  d(Bu, u, z) = 0 implies that Bu = u. Therefore Au = Bu = Su = u 

        As S(X)  CD(X) , therefore there exist v  X such that u = Su = CD = v. 

        Step 5. Putting x = x2n , y = v in condition (ii) , we get  
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 F[d(Sx2n,Tv, z), d(CDv, ABx2n, z), d(Sx2n,ABx2n, z),  

                                                                      d(Tv,CRv ,z)]  0 

letting  n  , we get 

                  F[d(u,Tv, z), d(u, u, z), d(u, u, z), d(Tv, u, z)]  0  

implies that 

                 F[d(u, Tv, z), d(u, Tv, z), 0, 0]  0 

that is d(u, Tv, z) = 0 implies that u = Tv. Hence CDv = u = Tv 

               as (T, CD) is weak- compatible , we have  

               CDTv = TCDv, thus   CDu = Tu . 

       Step 5. Putting x = x2n, y = u  in condition (ii) we get  

                   F[d(Sx2n, Tu, z), d(CDu, ABx2n, z), d(Sx2n, ABx2n, z), 

                                                                            d(Tu, CDu, z)]  0  

letting  n  , we get 

                   F[d(u, Tu, z), d(Tu, u, z), d(u, u, z), d(Tu, Tu, z)]  0 

implies that 

                   F[d(u, Tu, z), d(Tu, u, z), 0, 0]  0 

which gives, d(u, Tu, z) = 0,  implies that u = Tu 

       Step 6.   Putting x = x2n, y = Du 

                   F[d(Sx2n,TDu, z), d(CDDu, ABx2n, z), d(Sx2n, ABx2n, z),  

                                                d(TDu, CDDu, z)]  0 

       as TD = DT and CD = DC , therefore TDu = DTu = Du 

and CD(Du) = D(CDu) = Du. Letting  n  , we get 

                   F[d(u, Du, z), d(Du, u, z), d(u, u, z), d(Du, Du, z)]  0 

implies that 

                  F[d(u, Du, z), d(Du, u, z), 0, 0]  0, that is 

                     d(u, Du, z) = 0 , implies that u = Du,  and  CDu = Du = u implies that Cu = u . 

                 Hence Cu = Du = Tu = u. 

Combining (3) and (4), we get 

 Au = Bu = Su = Tu = Du = Cu = u.  

Hence the six self maps have a common fixed point in this case. 

          Case II:   S is continuous. 

As S is continuous, S
2
x2n  Su and S (ABx

2n
)  Su , and 

as (S, AB) is semi compatible, (AB) Sx2n  Su. 

          Step 7.   Putting x = Sx2n, y = x2n+1 in condition (ii), we have 

                     F[d(SSx2n,Tx2n+1,z), d(CD2n+1,ABSx2n,z), d(SSx2n,ABSx2n, z),     

                                                      d(Tx2n+1,CDx2n+1 ,z)]  0 

letting  n  , we get 
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                     F[d(Su, u, z), d(u, Su, z), d(Su, Su, z), d(u, u, z)]  0 

implies that 

                     F[d(Su, u, z), d(Su, u, z), 0, 0]  0 

which gives, d(u, Su, z) = 0 implies that u = Su 

                   using steps 4-6 gives us Tu = CDu = Cu = Du = u. 

                  Step 8.   As T(X)  AB(X) , there exist w   X, such that u = Tu = ABw 

putting x = w, y = x2n+1 in condition (ii), we get  

                              F[d(Sw,Tx2n+1, z), d(CDx2n+1, ABw, z), d(CDx2n+1, Sw, z),  

                                                            d(ABw, Tx2n+1, z)]  0        

letting  n  , we get 

                     F[d(Sw, u, z), d(u, u, z), d(u, Sw, z), d(u, u, z)]  0 

implies that 

                     F[d(Sw, u, z), d(Sw, u, z), 0, 0]  0 

which gives, Sw = u  = ABw 

as (L, AB) is weakly compatible, therefore Su = ABu. Also Bu = u, follows from step 3. 

Thus Au = Bu = Su = u and we obtain u is the common fixed point of the six maps in this case also. 

                 Step 9 (Uniqueness):   Let u1 be another common fixed point of A, B, C, D, S and T. Then, Au1 = Bu1 = 

Cu1 = Du1= Su1 = Tu1= u1. Put x = u and y = u1 in (ii), we get 

                             F[d(u, u1, z), d(u, u1, z), d(u, u, z), d(u1,u1, z)]  0, 

implies that 

                             F[d(u, u1, z), d(u, u1, z), 0, 0]  0, for all z  X. 

Which gives, d(u, u1, z) = 0 implies that  u = u1.  Hence u is a unique common fixed point of A, B, C, D, S and T. 

     Proposition 3.2.   Let F be a function from (
+
)

4
   such that F(t1, t2, t3, t4) = t1 – a

2
t2 – b

2
t3 – c

4
t4, where a, b, 

c  
+
 with b < 1, c < 1 and a > 1. Then  F F4. 

  Proof.   For u, v 
+
, F(u, v, u, v)  0 implies that v  h1u, where h1 = 

22

21

ca

b




 < 1, as b

2
 < 1, 1 - b

2
 > 0 

and as a
2
 + c

2
 > 1 so 1/ a

2
 + c

2
 < 1 .Again, F(u, v, v, u)  0 implies that v   h2u, where h2 =  

22

21

ba

c




  < 1, as  

c
2
 < 1, 1 - c

2
 > 0 and as a

2
 + b

2
 > 1 so , 

22

1

ba 
 < 1. F(u, u, 0, 0)  0 implies that (1 – a

2
) u   0, which implies 

that (a
2
 – 1) u   0, (a

2
 > 1). So u  0, which gives u = 0. Now, take h = max{h1, h2}. Hence F F4. 

 Corollary 3.3.   Let A, B, C, D, S and T  be six self-maps of a complete 2-metric space (X, d) satisfying (i), 

(iii), (iv) and (v) for some a, b, c,  
+
,  a > 1, b < 1, c < 1, 

       d(ABx, CDy, z)  a d(Sx, Ty, z) + b d(Sx, ABx, z) + c d(Ty, CDy, z) 

 for all x, y, z   X, 

 or 

       (vi) d(ABx, CDy, Z)   (Sx, Ty, z) for all x, y, z  X and some  

                        a >1. 
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         Then the six self-maps A, B, C, D, S and T have a unique common fixed point in X. 

Theorem 3.4.   Let S, T, C and A be four self-maps of a complete 2-metric space (X, d) satisfying 

following conditions 

     (i)   S is continuous 

     (ii)   S(X)   C(X) and T(X)  A(X) 

     (iii)   for some F   F4, 

    F[d(Sx, Ty, z), d(Ax, Cy, z), d(Ax, Sx, z), d(Cy, Ty, z)]   0 for all x, y, z  X. 

    (iv)   (S, A) is semi-compatible and the pair (C, T) is weak-compatible. 

Then S, T, C and A have a unique common fixed point. 

Proof.   The result follows from Theorem 3.1, by taking 

              CD = C and AB = A.          

  Corollary 3.5.  Let A, S and T be three self-maps of a complete 2-metric space (X, d) satisfying (i), (ii), 

(iii) and (iv) for some a, b, c   R
+
 , a >1, b < 1, c < 1,  

                      d(Sx, Ty, z)   a d(Ax, Ay, z) + b d(Ax, Sx, z) + c d(Ay, Ty, z) 

or  

(v)     d(Sx, Ty, z)  a d(Ax, Ay, z) for all x, y, z  X and  

                       some a >1 

 Then A, S and T have a unique common fixed point. 

           Corollary 3.6.  Let A, S and C be three self-maps of a complete 2-metric space (X, d). If S is continuous 

and  

(i)    S(X)  A(X) C(X)  

(ii)    for some F  F4 , 

            F[d(Sx, Sy, z),d(Ax, Cy, z),d(Ax, Sx, z),d(Cy, Sy, z)]  0 

for all x, y, z   X. 

   (iii)    (S, C) is semi-compatible and (A, S) is weak- compatible. 

Then C, A and S have a unique common fixed point. 

Proof.   The result follows from Theorem 3.4, by taking T = S.  

Corollary 3.7. Let A and T be two surjective self-maps of a complete 2-metric space (X, d) such that 

(i)   for some a, b, c  R
+
 , a >1 and b, c   [0,1], 

         d(Sx, Ty, z)  a d(x, y, z) + b d (x, Sx, z) + c d(y, Ty, z) 

(ii)       d(Sx, Ty, z)  a d (x, y, z) for all x, y, z   X and some a > 1.  

Then A and T have a unique common fixed point. 
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