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Abstract

In this paper, we investigate numerical solutions of odd higher order differential equations, particularly the fifth,
seventh and ninth order linear and nonlinear boundary value problems (BVPs) with two point boundary
conditions. We exploit Galerkin weighted residual method with Legendre polynomials as basis functions.
Special care has been taken to satisfy the corresponding homogeneous form of boundary conditions where the
essential types of boundary conditions are given. The method is formulated as a rigorous matrix form. Several
numerical examples, of both linear and nonlinear BVPs available in the literature, are presented to illustrate the
reliability and efficiency of the proposed method. The present method is quite efficient and yields better results
when compared with the existing methods.
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1. Introduction

From the literature on the numerical solutions of BVPs, it is observed that the higher order differential equations
arise in some branches of applied mathematics, engineering and many other fields of advanced physical sciences.
Particularly, the solutions of fifth order BVPs arise in the mathematical modeling of viscoelastic flows in (Davis,
Karageorghis & Philips, 1988), the seventh order BVPs arise in modeling induction motors with two rotor
circuits in (Richards & Sarma, 1994), and the ninth order boundary value problems are known to arise in
hydrodynamic, hydro magnetic stability and applied sciences. The performance of the induction motor behavior
is modeled by a fifth order differential equation (Siddiqi, Akram & Iftikhar, 2012). This model is constructed
with two stator state variables, two rotor state variables and one shaft speed. Generally, two more variables must
be added to account for the effects of a second rotor circuit representing deep bars, a starting cage or rotor
distributed parameters (Siddigi & Iftikhar, 2013) . For neglecting the computational burden of additional state
variables when additional rotor circuits are needed, the model is often bounded to the fifth order. The rotor
impedance is done under the assumption that the frequency of rotor currents depends on rotor speed. This
process is appropriate for the steady state response with sinusoidal voltage, but it does not hold up during the
transient conditions, when the rotor frequency is not a single value (Siddiqi, Akram & Iftikhar, 2012). So this
behavior is modeled in the seventh order differential equation . Recently, the BVPs of ninth order have been
developed due to their mathematical importance and the potential for applications in hydrodynamic, hydro
magnetic stability. Agarwal (1986) discussed extensively the existence and uniqueness theorem of solutions of
such BVPs in his book without any numerical examples. Caglar & Twizell (1999) used sixth degree B-spline
functions for the numerical solution of fifth order BVPs where their approach is divergent and unexpected
situation is found near the boundaries of the interval. The spline methods have been discussed for the solution of
other higher order BVPs. Siddiqi & Twizell (1997, 1998, 1996) applied twelfth, tenth, eighth and sixth degree
splines for solving linear BVPs of orders 12, 10, 8 and 6 successively. Kasi Viswanadham, Murali Krishna &
Prabhakara (2010) presented the numerical solution of fifth order BVPs by collocation method with sixth order
B-splines. Lamnii, Mraoui, Sbhibih & Tijini (2008) derived sextic spline solution of fifth order BVPs. The
numerical solution of fifth order BVPs by the decomposition method was developed in (Wazwaz, 2001).
Recently, Erturk (2007) has investigated differential transformation method for solving nonlinear fifth order
BVPs. Siddigi, Akram & Iftikhar (2012) presented the solutions of seventh order BVPs by the differential
transformation method and variational iteration technique respectively. Very recently the solution of seventh
order BVPs was developed in (Siddiqi & Iftikhar, 2013) using variation of parameters method. The modified
variational iteration method has been applied for solving tenth and ninth order BVPs in (Mohyud-Din &
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Yildirim, 2010). Nadjafi & Zahmatkesh (2010) also investigated the homotopy perturbation method for solving

higher order BVPs.

In the present paper, first we shall employ the Galerkin weighted residual method (Reddy, 1991) with Legendre
polynomials (Davis &Robinowitz, 2007) as basis functions for the numerical solution of fifth, seventh and ninth

order linear BVPs of the following form:

d°u d%  d%u _ d% u b
CS§+C4W+C3§+CZF+01&+COU =r,a<x<

u@=Agub)=Byu(a)=A,u'(b)=B,u"(@=A,
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Tax Cdx® Cdx® dxt Cdx® P dx?
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(2)
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(32)

(3b)

where A;,i=0,12,3,4 and B;,1=0123 are finite real constants and c;,i=0,1,---9 and r are all continuous

functions defined on the interval [a, b].

However, in section 2 of this paper, we give a short description on Legendre polynomials. In section 3, the
formulations are presented for solving linear fifth, seventh and ninth order BVPs by the Galerkin weighted
residual method. Numerical examples and results for both linear and nonlinear BVPs are considered to verify the

proposed formulation and the solutions are compared with the existing methods in the literature in section 4.

2. Legendre Polynomials

The general form of the Legendre polynomials of degree N is defined by
" d"
2"(n!) dx"

P, (x) = [A-x*)"], n>1

Now we modify the above Legendre polynomials as

n

L. (%) {% (;jx” (x2 - ' —(—1)”}(x—1), n>1

We write first few modified Legendre polynomials over the interval [0, 1]:
L (x) =2x(x—1), L,(x) =6x(x—1)?, Ly(x) = 2x(x—1)(10x? —15x +6),
L, (x) = 20x —110x? +230x° — 210x* + 70x°
Ls (X) = —30x + 240x? — 770x> +1190x* —882x° + 252x° ,

Lg (X) = 42x — 462x2 +2100x° — 4830x* +5922x° —3696x° + 924X’

L, (x) = —56x +812x? — 4956x° +15750x* — 28182x° + 28644x° —15444x" +3432x°

Lg(x) = 72x—1332x* +10500%° — 43890x* +106722x° —156156x° +135564x" —64350x° +12870x°
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Lo (X) = —90x + 2070x? — 20460x> +108570x* —342342x° + 672672x° —832260x " + 630630x° — 267410x°
+48620x°
Ly o(X) =110x —3080x? +37290x° — 244530x* + 966966x° — 2438436x° + 4015440%" — 4302870x° + 2892890x°
~1108536x° +184756x*
nce the modified Legendre polynomials have special properties at x=0 and x=1:L,0)=0 and

Si

L,(@) =0, n>1 respectively, so that they can be used as set of basis function to satisfy the corresponding

homogeneous form of the Dirichlet boundary conditions to derive the matrix formulation in the Galerkin method
to solve a BVP over the interval [0, 1].

3. Matrix Formulation

In this section, we first derive the matrix formulation rigorously for fifth-order linear BVP and then we extend
our idea for solving seventh and ninth order linear BVPs. To solve the BVPs (1) by the Galerkin weighted
residual method we approximate u(x) as

T0) =00+ D ali (), n=1 4)
Here 6,(x) is specified by thetessential boundary conditions, Li n(x) are the Legendre polynomials which must

satisfy the corresponding homogeneous boundary conditions such that L;,(a)=L;,(b)=0 for each
i=123,...,n

Using egn. (4) into egn. (1a), the Galerkin weighted residual equations are

axd taxt ° % dx2
Integrating by parts the terms up to second derivative on the left hand side of (5), we get
fod%, d 4T,
jCS dX5 j n(X)dX _|:C5 j n(X) :I Id [C5 j n(X)]
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4
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In the same way of equation (6;, we have ’
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b

~ b ~
d2d d da
Icz el L;j,n (X)dx :_J‘&[Czl-j,n (X)]d_dx ®
a a
Substituting eqns. (6) — (9) into eqgn. (5) and using approximation for U (x) given in eqn. (4) and after imposing
the boundary conditions given in egn. (1b) and rearranging the terms for the resulting equations we get a system
of equations in matrix form as

ZDi,jai =F;,j=12...,n (10a)

where =
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b
D= j{j [osL ,n(x)] [c4 ,n(x)} 2[c3 (0]~ [chj,n(x)]+olL,-,n(x)]%[Li,n(x)1
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x=b

X=a

{%[%L j,n(x)]} A, (10¢)

X=a
Solving the system (10a), we obtain the values of the parameters a&; and then substituting these parameters into
eqn. (4), we get the approximate solution of the desired BVP (1).

Similarly, for seventh order linear BVP given in eqgn. (2), and for ninth order linear BVP given in eqgn. (3), we
can obtain equivalent system of equations in matrix form. For nonlinear BVP, we first compute the initial values
on neglecting the nonlinear terms and using the system (10). Then using the Newton’s iterative method we find
the numerical approximations for desired nonlinear BVP. This formulation is described through the numerical
examples in the next section.

4. Numerical Examples and Results

To test the applicability of the proposed method, we consider both linear and nonlinear problems which are
available in the literature. For all the examples, the solutions obtained by the proposed method are compared
with the exact solutions. All the calculations are performed by MATLAB 10. The convergence of linear BVP is
calculated by

E =0, (0-0,(3)| <&
where un (x) denotes the approximate solution using n-th polynomials and o (depends on the problem) which

is less than 1072 In addition, the convergence of nonlinear BVP is calculated by the absolute error of two
consecutive iterations such that
aN*t—GN| <5, where § islessthan 107° and N is the Newton’s iteration number.

Example 1: Consider the linear BVP of fifth order (Viswanadham, Krishna & Prabhakara, 2010):

5,

j—5+xu 19x¢0s X + 2x3 cos X + 41sinx — 2x?sinx, ~1< x <1 (11a)
X

u(-1) =u(@) =cosl, u'(-1) =—u’'(l) =—4cosl+sinlu”(-1) = 3cos1l—8sinl (11b)

The analytic solution of the above system is u(x) = (2x2 —Dcosx.
In Table 1, we list the maximum absolute errors for this problem to compare with the existing methods.
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Table 1: Maximum absolute errors for the example 1

X Exact Results 12 Legendre Polynomials
Approximate Abs. Error
-1.0 | 0.5403023059 | 0.5403023059 | 0.0000000E+000
-0.8 | 0.1950778786 | 0.1950778786 | 4.7337134E-013
-0.6 | -0.2310939722 | -0.2310939722 | 3.3925640E-013
-0.4 | -0.6263214759 | -0.6263214759 | 6.9122486E-013
-0.2 | -0.9016612516 | -0.9016612516 | 1.3414825E-012
0.0 | -1.0000000000 | -1.0000000000 | 1.5528689E-012
0.2 | -0.9016612516 | -0.9016612516 | 6.3637984E-013
0.4 | -0.6263214759 | -0.6263214759 | 6.4226402E-013
0.6 | -0.2310939722 | -0.2310939722 | 1.0645096E-012
0.8 | 0.1950778786 | 0.1950778786 | 6.7196249E-013
1.0 | 0.5403023059 | 0.5403023059 | 0.0000000E+000

On the contrary, the maximum absolute error has been obtained by Kasi Viswanadham, Murali Krishna &
Prabhakara ( 2010) is 4.5162x107.

Now the exact and approximate solutions are depicted in Fig. 1 of example 1 for n=12.

04Fr o o
o2k o o
=
==
g of o o
% 5 Exact Solution
=S —0.2F o © Iegendre Approx. L4
g —oaf = of
=3
—0.6f o o
—0.8F (-] -4
(-] -
_1 = - - Do O o - - = aSp v
-1 —0.8 —0.6 —-0.4 —-0.2 (0] 0.2 0.4 0.6 0.8 1

Fig. 1: Graphical representation of exact and approximate solutions of example 1.

Example 2: Consider the linear BVP of seventh order [Siddiqi & Iftikhar, 2013]

d7U X 2
W:—u—e (2x“+12x+35), 0<x<1 (12a)
u(0) =u(@) =0, u'(0) =L, u’'@) =—e,u”"(0) =0,u” (@) = —4e,u"(0) =-3. (12b)

The analytic solution of the above system is u(x) = x(1— x)e*.
The maximum absolute errors for this problem are shown in Table 2 to compare with the existing methods.

On the other hand, the maximum absolute error has been found by Siddigi & Iftikhar (2013) is 7.482x107% In
Fig. 2, the exact and approximate solutions are given for example 2.
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Table 2: Maximum absolute errors for the example 2
X Exact Results 12 Legendre Polynomials
Approximate Abs. Error
0.0 | 0.0000000000 | 0.0000000000 | 6.2597190E-026
0.1 | 0.0994653826 | 0.0994653826 | 5.8911209E-014
0.2 | 0.1954244413 | 0.1954244413 | 1.0269563E-014
0.3 | 0.2834703496 | 0.2834703496 | 1.0608181E-013
0.4 | 0.3580379274 | 0.3580379274 | 6.8500761E-014
0.5 | 0.4121803177 | 0.4121803177 | 9.6977981E-014
0.6 | 0.4373085121 | 0.4373085121 | 7.1442852E-014
0.7 | 0.4228880686 | 0.4228880686 | 6.1228800E-014
0.8 | 0.3560865486 | 0.3560865486 | 5.0015547E-014
0.9 | 0.2213642800 | 0.2213642800 | 5.9674488E-015
1.0 | 0.0000000000 | 0.0000000000 | 0.0000000E+000
A
0.6
0.5
Q 0.4F
=
i 0.3F — Exact Solution
3:: 0.2 © Legendre Approx.
g
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—0.1 - - . - . . - . . =

0.1 0.2

0.3

0.4

0.5

0.6

0.7 0.8 0.9 1

Fig. 2: Graphical representation of exact and approximate solutions of example 2.

Example 3: Consider the following ninth-order linear BVP (Nadjafi and Zahmatkesh (2010), Mohy-ud-Din &

Yildirim (2010), Wazwaz, 2000)

d®u

—— =u-9%*, 0<x<1

dx®

u(0) =1, u() =0, u'(0)=0,u’(l) =—e,u"(0) =—L u"(1) =—2e,u" (0) =—2,u"(1) =—-3e,u™ (0) =3

(133a)

(13b)

Table 3: Maximum absolute errors for the example 3

X

Exact Results

12 Legendre Polunomials

Approximate

Abs. Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.0000000000
0.9946538263
0.9771222065
0.9449011653
0.8950948186
0.8243606354
0.7288475202
0.6041258122
0.4451081857
0.2459603111
0.0000000000

1.0000000000
0.9946538263
0.9771222065
0.9449011653
0.8950948186
0.8243606354
0.7288475202
0.6041258122
0.4451081857
0.2459603111
0.0000000000

0.0000000E+000
1.4432899E-015
3.2196468E-015
4.5519144E-015
4.8849813E-015
3.1086245E-015
5.6621374E-015
4.4408921E-016
3.1641356E-015
4.4408921E-016
0.0000000E+000

The analytic solution of the above system is
summarized in Table 3. On the other hand, the accuracy is found nearly the order 107*° by Mohy-ud-Din and
Yildirim (2010) and by Wazwaz (2000) and nearly the order 10~° by Nadjafi and Zahmatkesh. In Fig. 3, the
exact and approximate solutions are given of example 3 for n=12.

u(x) =@-x)e*

. The numerical results for this problem are
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Fig. 3: Graphical representation of exact and approximate solutions of example 3.

Example 4: Consider the nonlinear BVP of fifth order (Erturk, 2007 and Wazwaz, 2001)
d u
dx®

u(®)=L u@=e,u'(0)=Lu'@)=e,u"(0)=1 (14b)

The exact solution of this BVP is u(x) =e”.

Consider the approximate solution of u(X) as

=u%e™ 0<x<1 (14a)

J(x):¢90(x)+zn:ai Lin(x), n>1 (15)

i=1
Here 6,(x) =1—x(1—e) is specified by the essential boundary conditions in (14b). Also L; ,(0)=L; ,(1) =0
foreach i =1,2,...,n. Using eqgn. (15) into eqn. (14a), the Galerkin weighted residual equations are

j—‘;—aze* L, ()dx =0,k =12,--,n (16)
5 dx '
Integrating first term of (16) by parts, we obtain

- L 2 ~T 3 ~t
55 dL, . (x) g3 d-L, ,(X) g2 d°L, ,(x d4L, - (x
jd L () 0= k,n()dls,l .\ k,;()dg ~ k,;()du +J‘ k;()dud an
de dx  dx 0 dx dx . dx dX0 o dx dx

Putting eqn. (17) into egn. (16) and using approximation for U(x) given in eqn. (15) and after applying the
boundary conditions given in egn. (14b) and rearranging the terms for the resulting equations, we obtain

in“Lk,nm L, , ()

i-1 '([ dx* dx

- 20,67 Lin (X)L 0 (X) _Zaj (Li n (L0 (X)L o (X))e_X]dX

j=1

dx dx® dx dx® dx? dx?

[de,n(x) dSLi,n(x)} [de,nm d3Li,n(x)} [dsz,nm dZLi,n(x)}
- + + g
x=1 x=0 =1

1 3 3
I[ d* 9La9 deo o i { Len(¥) d 90} {de,n(x)d .90}
0 x=0

dx  dx® | dx  dx® |
d’Lyc () d26, d®Ly (x) d°Ly (%) d’Ly (%)
- > > + > + 3 xe—| ——— (18)
dx dx dx dx dx
x=1 x=0 x=1 x=0
The above equation (18) is equivalent to matrix form as
(D+B)A=G (19a)

where the elements of A, B, D, G are a;,b; ,d;  and g, respectively, given by
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dx®

0 =j d*Lien () dLin (9
Lk dx? dx

3
208 Ly (9L () ]dx—[‘“g“ e L"“(X)}

0

dLy o (x) d°L; (%) d %Ly 0 (X) d%L; (%) 19
1T ax dx® " dx? dx? (190)
x=0 x=1
n 1
b == [ (L0 (GO0 (AL (e e (19¢)
= o
1 4
d Lk,n(x) dHO 2 _x de,n(X) d360 de,n(X) d360
Ok —J.l:—dX—ArW'FHO € kan(x)]dxﬂ' X dX3 - X dX3
0 x=1 x=0
d%Le 5 () d26, d?Lyc 5 (%) d°Ly (%) d°Ly (%)
- ' + ’ + ' o—| —n 19d
[ dx?  dx? dx? dx® * dx® (199)
x=1 x=0 x=1 x=0

The initial values of these coefficients a; are obtained by applying Galerkin method to the BVP neglecting the
nonlinear term in (14a). That is, to find initial coefficients we solve the system

DA=G (20a)
whose matrices are constructed from

L4l 0 (0 dL (%) dLy o (%) d3L; (%) dLy (%) 4L, (X)
d; =I : . dx — ' : + ’ ‘
x=1 x=0

5 dx? dx dx dx3 dx dx3

dsz n(X) dzl-i n(X)
+ : : 20b
{ dx? dx? (200)
x=1
t AL (0 do, dLy (%) d36, dLy o (%) d36, d?Ly o (%) d26,
0= - o+ [ 00 | 4™
dx* dx dx  dx? dx  dx® dx? dx?
0 x=1 x=0 x=1
d2L d3L d3L
" k,n(X) " k,n(X) xe— k,n(X) (200)
dx? dx® dx®
Xx=0 X=1 x=0

Once the initial values of @; are obtained from eqn. (20a), they are substituted into eqn. (19a) to obtain new
estimates for the values of @;. This iteration process continues until the converged values of the unknown
parameters are obtained. Substituting the final values of the parameters into eqn. (15), we obtain an approximate
solution of the BVP (14). The maximum absolute errors for this problem are shown in Table 4 with 6 iterations.
On the other hand, the maximum absolute errors have been obtained by Wazwaz (2001) and Erturk (2007) are
4.1x10°® and 1.52x107%°, respectively. We depict the exact and approximate solutions in Fig. 4 of example 4
for n=12.

Example 5: Consider the nonlinear BVP of seventh order (Siddigi, Akram & Iftikhar, 2012)

d’u

dx’

u(@ =14 u@=e u'(0)=4u'@)=e,u"(0)=Lu"@) =e,u”"(0)=1. (21b)

The exact solution of this BVP is u(x) =e* . Following the proposed method illustrated in section 3 as well as in
example 4; the maximum absolute errors for this problem are summarized in Table 5.

—u%e ™, 0<x<1 (21a)
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Table 4: Maximum absolute errors of example 4 using 6 iterations
X | Exact Results 12 Legendre Polynomials
Approximate Abs. Error
0.0 | 1.0000000000 | 1.0000000000 | 0.0000000E+000
0.1 | 1.1051709181 | 1.1051709181 | 2.9918024E-012
0.2 | 1.2214027582 | 1.2214027582 | 3.4379395E-011
0.3 | 1.3498588076 | 1.3498588076 | 1.1878055E-012
0.4 | 1.4918246976 | 1.4918246976 | 2.3980112E-011
0.5 | 1.6487212707 | 1.6487212707 | 3.4213951E-012
0.6 | 1.8221188004 | 1.8221188004 | 3.6519182E-012
0.7 | 2.0137527075 | 2.0137527075 | 2.8570975E-012
0.8 | 2.2255409285 | 2.2255409285 | 1.4395748E-011
0.9 | 2.4596031112 | 2.4596031112 | 2.8618543E-011
1.0 | 2.7182818285 | 2.7182818285 | 1.2759373E-000
A
Ik
2.5F
=) .
‘é Exact Solution
-g © Iegendre Approx.
E’
1.5F
15 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.9 1’ X

Fig. 4: Graphical representation of exact and approximate solutions of example 4.

Table 5: Maximum absolute errors of example 5 using 6 iterations

X Exact Results 12 Legendre Polynomials
Approximate Abs. Error
0.0 | 1.0000000000 | 1.0000000000 | 0.0000000E+000
0.1 | 1.1051709181 | 1.1051709181 | 1.6084911E-011
0.2 | 1.2214027582 | 1.2214027580 | 1.3298251E-011
0.3 | 1.3498588076 | 1.3498588075 | 5.0746074E-011
0.4 | 1.4918246976 | 1.4918246976 | 7.1547213E-012
0.5 | 1.6487212707 | 1.6487212707 | 6.2061467E-011
0.6 | 1.8221188004 | 1.8221188004 | 2.9898306E-012
0.7 | 2.0137527075 | 2.0137527075 | 1.8429702E-013
0.8 | 2.2255409285 | 2.2255409282 | 6.5281114E-011
0.9 | 2.4596031112 | 2.4596031112 | 1.6604496E-011
1.0 | 2.7182818285 | 2.7182818285 | 0.0000000E+000

On the contrary, the maximum absolute error has been obtained by Siddigi , Akram & Iftikhar (2012) is

7.586 x107%. We depict the exact and approximate solutions in Fig. 5 of example 5 for n=12.
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Fig. 5: Graphical representation of exact and approximate solutions of example 5 for.
5. Conclusions

In this paper, Galerkin method has been used for finding the numerical solutions of fifth, seventh and ninth order
linear and nonlinear BVPs with Legendre polynomials as basis functions. The numerical examples available in
the literature have been considered to verify the proposed method. We see from the tables that the numerical
results obtained by our method are better than other existing methods. It may also notice that the numerical
solutions coincide with the exact solution even Legendre polynomials are used in the approximation which are
shown in Figs. [1-5]. The algorithm can be coded easily and may be used for solving any higher order BVP.
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