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Abstract 

In this paper, we investigate numerical solutions of odd higher order differential equations, particularly the fifth, 

seventh and ninth order linear and nonlinear boundary value problems (BVPs) with two point boundary 

conditions.  We exploit Galerkin weighted residual method with Legendre polynomials as basis functions. 

Special care has been taken to satisfy the corresponding homogeneous form of boundary conditions where the 

essential types of boundary conditions are given. The method is formulated as a rigorous matrix form. Several 

numerical examples, of both linear and nonlinear BVPs available in the literature, are presented to illustrate the 

reliability and efficiency of the proposed method. The present method is quite efficient and yields better results 

when compared with the existing methods. 

Keywords: Galerkin method, fifth, seventh and ninth order linear and nonlinear BVPs, Legendre Polynomials. 

1. Introduction 

From the literature on the numerical solutions of BVPs, it is observed that the higher order differential equations 

arise in some branches of applied mathematics, engineering and many other fields of advanced physical sciences. 

Particularly, the solutions of fifth order BVPs arise in the mathematical modeling of viscoelastic flows in (Davis, 

Karageorghis & Philips, 1988), the seventh order BVPs arise in modeling induction motors with two rotor 

circuits in (Richards & Sarma, 1994), and the ninth order boundary value problems are known to arise in 

hydrodynamic, hydro magnetic stability and applied sciences. The performance of the induction motor behavior 

is modeled by a fifth order differential equation (Siddiqi, Akram & Iftikhar, 2012). This model is constructed 

with two stator state variables, two rotor state variables and one shaft speed. Generally, two more variables must 

be added to account for the effects of a second rotor circuit representing deep bars, a starting cage or rotor 

distributed parameters (Siddiqi & Iftikhar, 2013) . For neglecting the computational burden of additional state 

variables when additional rotor circuits are needed, the model is often bounded to the fifth order. The rotor 

impedance is done under the assumption that the frequency of rotor currents depends on rotor speed. This 

process is appropriate for the steady state response with sinusoidal voltage, but it does not hold up during the 

transient conditions, when the rotor frequency is not a single value (Siddiqi, Akram & Iftikhar, 2012). So this 

behavior is modeled in the seventh order differential equation . Recently, the BVPs of ninth order have been 

developed due to their mathematical importance and the potential for applications in hydrodynamic, hydro 

magnetic stability. Agarwal (1986) discussed extensively the existence and uniqueness theorem of solutions of 

such BVPs in his book without any numerical examples. Caglar & Twizell (1999) used sixth degree B-spline 

functions for the numerical solution of fifth order BVPs where their approach is divergent and unexpected 

situation is found near the boundaries of the interval. The spline methods have been discussed for the solution of 

other higher order BVPs. Siddiqi & Twizell (1997, 1998, 1996) applied twelfth, tenth, eighth and sixth degree 

splines for solving linear BVPs of orders 12, 10, 8 and 6 successively. Kasi Viswanadham, Murali Krishna & 

Prabhakara (2010) presented the numerical solution of fifth order BVPs by collocation method with sixth order 

B-splines. Lamnii, Mraoui, Sbibih & Tijini (2008) derived sextic spline solution of fifth order BVPs. The 

numerical solution of fifth order BVPs by the decomposition method was developed in (Wazwaz, 2001). 

Recently, Erturk (2007) has investigated differential transformation method for solving nonlinear fifth order 

BVPs. Siddiqi, Akram & Iftikhar (2012) presented the solutions of seventh order BVPs by the differential 

transformation method and variational iteration technique respectively. Very recently the solution of seventh 

order BVPs was developed in (Siddiqi & Iftikhar, 2013) using variation of parameters method. The modified 

variational iteration method has been applied for solving tenth and ninth order BVPs in (Mohyud-Din & 
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Yildirim, 2010). Nadjafi & Zahmatkesh (2010) also investigated the homotopy perturbation method for solving 

higher order BVPs. 

In the present paper, first we shall employ the Galerkin weighted residual method (Reddy, 1991) with  Legendre 

polynomials (Davis &Robinowitz, 2007) as basis functions for the numerical solution of  fifth, seventh and ninth 

order linear BVPs of the following form: 

5 4 3 2

5 4 3 2 1 05 4 3 2
,

d u d u d u d u du
c c c c c c u r a x b

dxdx dx dx dx
             (1a) 

21100 )(,)(,)(,)(,)( AauBbuAauBbuAau                  (1b) 
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,

d u d u d u d u d u d u du
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and 
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where 4,3,2,1,0, iAi  and 3,2,1,0, jB j  are finite real constants and 9,1,0, ici  and r  are all continuous 

functions defined on the interval [a, b].  

However, in section 2 of this paper, we give a short description on Legendre polynomials. In section 3, the 

formulations are presented for solving linear fifth, seventh and ninth order BVPs by the Galerkin weighted 

residual method. Numerical examples and results for both linear and nonlinear BVPs are considered to verify the 

proposed formulation and the solutions are compared with the existing methods in the literature in section 4. 

2. Legendre Polynomials  

The general form of the Legendre polynomials of degree n  is defined by  

1],)1[(
)!(2

)1(
)( 2 


 nx

dx

d

n
xP n

n

n

n

n

n         

Now we modify the above Legendre polynomials as 

  1),1()1(
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1
)( 2 
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




 nxxx

dx

d

n
xL nn

n

n
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We write first few modified Legendre polynomials over the interval [0, 1]: 

)1(2)(1  xxxL , 
2

2 )1(6)(  xxxL , )61510)(1(2)( 2
3  xxxxxL , 

5432
4 7021023011020)( xxxxxxL   

65432
5 252882119077024030)( xxxxxxxL  , 

765432
6 924369659224830210046242)( xxxxxxxxL   

8765432
7 343215444286442818215750495681256)( xxxxxxxxxL   

98765432
8 12870643501355641561561067224389010500133272)( xxxxxxxxxxL   
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98765432
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Si

nce the modified Legendre polynomials have special properties at 0x
 

and 1x : 0)0( nL
 

and 

1,0)1(  nLn  respectively, so that they can be used as set of basis function to satisfy the corresponding 

homogeneous form of the Dirichlet boundary conditions to derive the matrix formulation in the Galerkin method 

to solve a BVP over the interval [0, 1]. 

3.  Matrix Formulation  

In this section, we first derive the matrix formulation rigorously for fifth-order linear BVP and then we extend 

our idea for solving seventh and ninth order linear BVPs. To solve the BVPs (1) by the Galerkin weighted 

residual method we approximate )(xu  as 

1,)()()(~

1

,0  


nxLaxxu

n

i

nii        (4) 

Here )(0 x  is specified by the essential boundary conditions, )(, xL ni  are the Legendre polynomials which must 

satisfy the corresponding homogeneous boundary conditions such that 0)()( ,,  bLaL nini  for each 

.,,3,2,1 ni    

Using eqn. (4) into eqn. (1a), the Galerkin weighted residual equations are 
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Integrating by parts the terms up to second derivative on the left hand side of (5), we get  

  













b

a

b

a

nj

b

a

njnj dx
dx

ud
xLc

dx

d

dx

ud
xLcdxxL

dx

ud
c

4

4

,54

4

,5,5

5

5

~
)(

~
)()(

~

    dx
dx

ud
xLc

dx

d

dx

ud
xLc

dx

d
b

a

nj

b

a

nj 3

3

,52

2

3

3

,5

~
)(

~
)( 












   [Since 0)()( ,,  bLaL njnj ] 

      dx
dx

ud
xLc

dx

d

dx

ud
xLc

dx

d

dx

ud
xLc

dx

d
b

a

nj

b

a

nj

b

a

nj 2

2

,53

3

2

2

,52

2

3

3

,5

~
)(

~
)(

~
)( 

























  

3 2 2 3 4

5 , 5 , 5 , 5 ,3 2 2 3 4
( ) ( ) ( ) ( )

b b b

j n j n j n j n

aa a

d d u d d u d du d du
c L x c L x c L x c L x dx

dx dx dxdx dx dx dx dx

     
                       

     
      (6)  

In the same way of equation (6), we have 
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Substituting eqns. (6) – (9) into eqn. (5) and using approximation for )(~ xu  given in eqn. (4) and after imposing 

the boundary conditions given in eqn. (1b) and rearranging the terms for the resulting equations we get a system 

of equations in matrix form as  

 njFaD ji

n

i

ji ,,2,1,

1

, 


                                                    (10a) 

where 
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                     (10c) 

Solving the system (10a), we obtain the values of the parameters ia  and then substituting these parameters into 

eqn. (4), we get the approximate solution of the desired BVP (1). 

Similarly, for seventh order linear BVP given in eqn. (2), and for ninth order linear BVP given in eqn. (3), we 

can obtain equivalent system of equations in matrix form. For nonlinear BVP, we first compute the initial values 

on neglecting the nonlinear terms and using the system (10). Then using the Newton’s iterative method we find 

the numerical approximations for desired nonlinear BVP. This formulation is described through the numerical 

examples in the next section. 

4. Numerical Examples and Results 

To test the applicability of the proposed method, we consider both linear and nonlinear problems which are 

available in the literature. For all the examples, the solutions obtained by the proposed method are compared 

with the exact solutions. All the calculations are performed by MATLAB 10. The convergence of linear BVP is 

calculated by                            

  )(~)(~
1 xuxuE nn  

where )(~ xnu  denotes the approximate solution using n-th polynomials and   (depends on the problem) which 

is less than 1210 .  In addition, the convergence of nonlinear BVP is calculated by the absolute error of two 

consecutive iterations such that  

 N
n

N
n uu ~~ 1 , where   is less than 1010  and N  is the Newton’s iteration number. 

 

Example 1: Consider the linear BVP of fifth order (Viswanadham, Krishna & Prabhakara, 2010): 

11,sin2sin41cos2cos19 23

5

5

 xxxxxxxxxu
dx

ud
            (11a)                 

1sin81cos3)1(,1sin1cos4)1()1(,1cos)1()1(  uuuuu             (11b) 

The analytic solution of the above system is .cos)12()( 2 xxxu   

In Table 1, we list the maximum absolute errors for this problem to compare with the existing methods. 
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Table 1: Maximum absolute errors for the example 1 

x  Exact Results 12 Legendre Polynomials 

Approximate Abs. Error 

-1.0 

-0.8 

-0.6 

-0.4 

-0.2 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.5403023059 

0.1950778786 

-0.2310939722 

-0.6263214759 

-0.9016612516 

-1.0000000000 

-0.9016612516 

-0.6263214759 

-0.2310939722 

0.1950778786 

0.5403023059 

0.5403023059 

0.1950778786 

-0.2310939722 

-0.6263214759 

-0.9016612516 

-1.0000000000 

-0.9016612516 

-0.6263214759 

-0.2310939722 

0.1950778786 

0.5403023059 

0.0000000E+000  

4.7337134E-013  

3.3925640E-013  

6.9122486E-013  

1.3414825E-012  

1.5528689E-012  

6.3637984E-013  

6.4226402E-013  

1.0645096E-012  

6.7196249E-013  

0.0000000E+000 

 

On the contrary, the maximum absolute error has been obtained by Kasi Viswanadham, Murali Krishna & 

Prabhakara ( 2010)  is 4105162.4  . 

Now the exact and approximate solutions are depicted in Fig. 1 of example 1 for 12n .  

 
Fig. 1: Graphical representation of exact and approximate solutions of example 1.   

 

Example 2: Consider the linear BVP of seventh order [Siddiqi & Iftikhar, 2013] 

10),35122( 2

7

7

 xxxeu
dx

ud x                      (12a)                 

3)0(,4)1(,0)0(,)1(,1)0(,0)1()0(  ueuueuuuu .            (12b) 

The analytic solution of the above system is 
xexxxu )1()(  . 

The maximum absolute errors for this problem are shown in Table 2 to compare with the existing methods. 

On the other hand, the maximum absolute error has been found by Siddiqi & Iftikhar (2013) is .10482.7 10   In 

Fig. 2, the exact and approximate solutions are given for example 2. 
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Table 2: Maximum absolute errors for the example 2 

x  Exact Results 12 Legendre Polynomials 

Approximate Abs. Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0000000000 

0.0994653826 

0.1954244413 

0.2834703496 

0.3580379274 

0.4121803177 

0.4373085121 

0.4228880686 

0.3560865486 

0.2213642800 

0.0000000000 

0.0000000000 

0.0994653826 

0.1954244413 

0.2834703496 

0.3580379274 

0.4121803177 

0.4373085121 

0.4228880686 

0.3560865486 

0.2213642800 

0.0000000000 

6.2597190E-026  

5.8911209E-014  

1.0269563E-014  

1.0608181E-013  

6.8500761E-014  

9.6977981E-014  

7.1442852E-014  

6.1228800E-014  

5.0015547E-014  

5.9674488E-015  

0.0000000E+000 

 

 
Fig. 2: Graphical representation of exact and approximate solutions of example 2.  

 

Example 3: Consider the following ninth-order linear BVP (Nadjafi and Zahmatkesh (2010), Mohy-ud-Din & 

Yildirim (2010), Wazwaz, 2000)                                                 

10,9
9

9

 xeu
dx

ud x              (13a) 

3)0(,3)1(,2)0(,2)1(,1)0(,)1(,0)0(,0)1(,1)0( )(  ivueuueuueuuuu   (13b) 

 

Table 3: Maximum absolute errors for the example 3 
x  Exact Results 12 Legendre Polunomials 

Approximate  Abs. Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.0000000000 

0.9946538263 

0.9771222065 

0.9449011653 

0.8950948186 

0.8243606354 

0.7288475202 

0.6041258122 

0.4451081857 

0.2459603111 

0.0000000000 

1.0000000000 

0.9946538263 

0.9771222065 

0.9449011653 

0.8950948186 

0.8243606354 

0.7288475202 

0.6041258122 

0.4451081857 

0.2459603111 

0.0000000000 

0.0000000E+000  

1.4432899E-015  

3.2196468E-015  

4.5519144E-015  

4.8849813E-015  

3.1086245E-015  

5.6621374E-015  

4.4408921E-016  

3.1641356E-015  

4.4408921E-016  

0.0000000E+000 

The analytic solution of the above system is 
xexxu )1()(  . The numerical results for this problem are 

summarized in Table 3. On the other hand, the accuracy is found nearly the order 
1010

 by Mohy-ud-Din and 

Yildirim (2010) and by Wazwaz (2000) and nearly the order 
910

 by Nadjafi and Zahmatkesh. In Fig. 3, the 

exact and approximate solutions are given of example 3 for 12n .  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.5, 2014 

 

7 

 
Fig. 3: Graphical representation of exact and approximate solutions of example 3. 

 

Example 4: Consider the nonlinear BVP of fifth order (Erturk, 2007 and Wazwaz, 2001) 

10,2

5

5

  xeu
dx

ud x                     (14a)                 

1)0(,)1(,1)0(,)1(,1)0(  ueuueuu                        (14b) 

The exact solution of this BVP is .)( xexu   

Consider the approximate solution of )(xu  as  

1,)()()(~

1

,0  


nxLaxxu

n

i

nii         (15) 

Here )1(1)(0 exx   is specified by the essential boundary conditions in (14b). Also 0)1()0( ,,  nini LL  

for each ni ,,2,1  . Using eqn. (15) into eqn. (14a), the Galerkin weighted residual equations are                       

 











 

1

0

,
2

5

5

,,2,1,0)(~
~

nkdxxLeu
dx

ud
nk

x                    (16)         

Integrating first term of (16) by parts, we obtain 

dx
dx

ud

dx

xLd

dx

ud

dx

xLd

dx

ud

dx

xLd

dx

ud

dx

xdL
dxxL

dx

ud nknknknk

nk

~)(~)(~)(~)(
)(

~ 1

0

4

,
41

0

1

0

3

,
3

1

0

2

2

2

,
21

0

3

3
,

,5

5

 









































         (17) 

Putting eqn. (17) into eqn. (16) and using approximation for )(~ xu  given in eqn. (15) and after applying the 

boundary conditions given in eqn. (14b) and rearranging the terms for the resulting equations, we obtain 

dxexLxLxLaxLxLe
dx

xdL

dx

xLdn

i

n

j

x
nknjnijnkni

xnink

  
 

























1

1

0 1

,,,,,0

,

4

,
4

))()()(()()(2
)()(

  

i

x

nink

x

nink

x

nink
a

dx

xLd

dx

xLd

dx

xLd

dx

xdL

dx

xLd

dx

xdL





















































 1

2

,
2

2

,
2

0

3

,
3

,

1

3

,
3

, )()()()()()(
 


0

3

0
3

,

1

3

0
3

,
1

0

,
2

0
0

4

,
4 )()(

)(
)(





































 

x

nk

x

nk

nk
xnk

dx

d

dx

xdL

dx

d

dx

xdL
dxxLe

dx

d

dx

xLd 



 

0

3

,
3

1

3

,
3

0

2

,
2

1

2

0
2

2

,
2 )()()()(






























































x

nk

x

nk

x

nk

x

nk

dx

xLd
e

dx

xLd

dx

xLd

dx

d

dx

xLd 
                 (18) 

The above equation (18) is equivalent to matrix form as 

GABD  )(            (19a) 

where the elements of A, B, D, G are kikii dba ,, ,, and kg  respectively, given by 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.5, 2014 

 

8 


1

3

,
3

,
1

0

,,0

,

4

,
4

,

)()(
)()(2

)()(


























 

x

nink

nkni
xnink

ki
dx

xLd

dx

xdL
dxxLxLe

dx

xdL

dx

xLd
d   

1

2

,
2

2

,
2

0

3

,
3

, )()()()(
































x

nink

x

nink

dx

xLd

dx

xLd

dx

xLd

dx

xdL
                (19b)  

 




n

j

x
nknjnijki dxexLxLxLab

1

1

0

,,,, ))()()((                                          (19c)  


0

3

0
3

,

1

3

0
3

,
1

0

,
2

0
0

4

,
4 )()(

)(
)(





































 

x

nk

x

nk

nk
xnk

k
dx

d

dx

xdL

dx

d

dx

xdL
dxxLe

dx

d

dx

xLd
g





           

0

3

,
3

1

3

,
3

0

2

,
2

1

2

0
2

2

,
2 )()()()(






























































x

nk

x

nk

x

nk

x

nk

dx

xLd
e

dx

xLd

dx

xLd

dx

d

dx

xLd 
                   (19d) 

The initial values of these coefficients ia  are obtained by applying Galerkin method to the BVP neglecting the 

nonlinear term in (14a). That is, to find initial coefficients we solve the system  

GDA            (20a) 

whose matrices are constructed from  

0

3

,
3

,

1

3

,
3

,
1

0

,

4

,
4

,

)()()()()()(






























 

x

nink

x

ninknink

ki
dx

xLd

dx

xdL

dx

xLd

dx

xdL
dx

dx

xdL

dx

xLd
d  

1

2

,
2

2

,
2 )()(

















x

nink

dx

xLd

dx

xLd
                   (20b)              

1

2

0
2

2

,
2

0

3

0
3

,

1

3

0
3

,
1

0

0

4

,
4 )()()()(









































 

x

nk

x

nk

x

nknk

k
dx

d

dx

xLd

dx

d

dx

xdL

dx

d

dx

xdL
dx

dx

d

dx

xLd
g


 

       

0

3

,
3

1

3

,
3

0

2

,
2 )()()(















































x

nk

x

nk

x

nk

dx

xLd
e

dx

xLd

dx

xLd
          (20c) 

 

Once the initial values of ia  are obtained from eqn. (20a), they are substituted into eqn. (19a) to obtain new 

estimates for the values of ia . This iteration process continues until the converged values of the unknown 

parameters are obtained. Substituting the final values of the parameters into eqn. (15), we obtain an approximate 

solution of the BVP (14). The maximum absolute errors for this problem are shown in Table 4 with 6 iterations. 

On the other hand, the maximum absolute errors have been obtained by Wazwaz (2001) and Erturk (2007) are 
8101.4   and ,1052.1 10  respectively. We depict the exact and approximate solutions in Fig. 4 of example 4 

for 12n . 

 

Example 5: Consider the nonlinear BVP of seventh order (Siddiqi, Akram & Iftikhar, 2012) 

 10,2

7

7

  xeu
dx

ud x                         (21a)                 

1)0(,)1(,1)0(,)1(,1)0(,)1(,1)0(  ueuueuueuu .                      (21b) 

The exact solution of this BVP is 
xexu )( . Following the proposed method illustrated in section 3 as well as in 

example 4; the maximum absolute errors for this problem are summarized in Table 5. 
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Table 4: Maximum absolute errors of example 4 using 6 iterations 

x  Exact Results 12 Legendre Polynomials 

Approximate Abs. Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.0000000000 

1.1051709181 

1.2214027582 

1.3498588076 

1.4918246976 

1.6487212707 

1.8221188004 

2.0137527075 

2.2255409285 

2.4596031112 

2.7182818285 

1.0000000000 

1.1051709181 

1.2214027582 

1.3498588076 

1.4918246976 

1.6487212707 

1.8221188004 

2.0137527075 

2.2255409285 

2.4596031112 

2.7182818285 

0.0000000E+000 

2.9918024E-012  

3.4379395E-011  

1.1878055E-012  

2.3980112E-011  

3.4213951E-012  

3.6519182E-012  

2.8570975E-012  

1.4395748E-011 

2.8618543E-011  

1.2759373E-000 

 
Fig. 4: Graphical representation of exact and approximate solutions of example 4. 

Table 5:  Maximum absolute errors of example 5 using 6 iterations 

x  Exact Results 12 Legendre Polynomials 

Approximate  Abs. Error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.0000000000 

1.1051709181 

1.2214027582 

1.3498588076 

1.4918246976 

1.6487212707 

1.8221188004 

2.0137527075 

2.2255409285 

2.4596031112 

2.7182818285 

1.0000000000 

1.1051709181 

1.2214027580 

1.3498588075 

1.4918246976 

1.6487212707 

1.8221188004 

2.0137527075 

2.2255409282 

2.4596031112 

2.7182818285 

0.0000000E+000  

1.6084911E-011  

1.3298251E-011  

5.0746074E-011  

7.1547213E-012  

6.2061467E-011  

2.9898306E-012  

1.8429702E-013  

6.5281114E-011  

1.6604496E-011  

0.0000000E+000 

 

On the contrary, the maximum absolute error has been obtained by Siddiqi , Akram & Iftikhar (2012) is 
1010586.7  . We depict the exact and approximate solutions in Fig. 5 of example 5 for 12n .  
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Fig. 5: Graphical representation of exact and approximate solutions of example 5 for. 

5. Conclusions     

In this paper, Galerkin method has been used for finding the numerical solutions of fifth, seventh and ninth order 

linear and nonlinear BVPs with Legendre polynomials as basis functions. The numerical examples available in 

the literature have been considered to verify the proposed method. We see from the tables that the numerical 

results obtained by our method are better than other existing methods. It may also notice that the numerical 

solutions coincide with the exact solution even Legendre polynomials are used in the approximation which are 

shown in Figs. [1-5]. The algorithm can be coded easily and may be used for solving any higher order BVP. 
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