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Abstract 

This paper examined and analyzed the desire of Traveling Salesman Problem (TSP) to find the cheapest way of 

visiting all given set of cities and returning to the starting point.     We presented a unique decomposition 

approach model for TSP in which the requirements and features of practical application in communication 

network, road transportation and supply chains are put into consideration.  We used a Mathematical Modeling 

solution with the application of Ant Colony Search Algorithm (ACSA) approach for result computation.  In our 

approach, different Agents were created for difference purposes.   Information agent gathered information about 

best tour and detected the solution agent that arrived at a given point with information message containing 

details of where the solution agent has come from as well as best tour cost.  The place ant performs local 

pheromone decay on the relevant links.   This help to avoid random visit to irrelevant edges and allows the place 

ant to calculate the cost of tour of all place ants including the latest pheromone level on the links to each of the 

place ants.   The solution agent uses available information to decide  which node to visit next and informs the 

place ant of  its decision to move to a given destination and update better tour  previously sampled while 

information about where to go next also obtained.  The place ant updates its pheromone value for that link using 

the equivalent of the algorithm for local pheromone update.  The cycle continues until solution agent arrives at 

its destination.   

The main advantage of our approach is that it permits the use of mixed integer programming and combinatorial 

optimization techniques to compute real optimal routing path, solving the problem in practice by returning actual 

shortest route with its numerical value and not the best effort result as provided by some previous models and 

analytical methods. The implementation was carried out using C# programming language.  Data used were 

generated and the performance evaluation of the model was carried out through simulation using Matlab 7.0.  

The result shows that by considering all possible paths between a node as the source and another as the 

destination, all possible routes for a particular journey with shortest route in each case were generated.    

 

Keywords:  Ant Colony, Combinatorial Optimization, Mixed Integer Programming, Pheromone, Search 

Algorithm and Traveling Salesman.  

 

1.  Introduction 

The Travelling Salesman Problem (TSP) is a problem in combinatorial optimization studied in operations 

research and theoretical computer science. Given a list of cities and their pairwise distances, the task is to find a 

shortest possible tour that visits each city exactly once. The problem was first formulated as a mathematical 

problem in 1930 and is one of the most intensively studied problems in optimization. It is used as a benchmark 

for many optimization methods. Even though the problem is computationally difficult, a large number of 

heuristics and exact methods are known, so that some instances with tens of thousands of cities can be solved. 

The TSP has several applications even in its purest formulation, such as planning, logistics, and the manufacture 

of microchips. Slightly modified, it appears as a sub-problem in many areas, such as DNA sequencing. In these 

applications, the city represents, for example, customers, soldering points, or DNA fragments, and the distance 

represents travelling times or cost, or a similarity measure between DNA fragments. 

In the theory of computational complexity, the decision version of TSP belongs to the class of complete Network 

Problems (NP).  Thus, it is assumed that there is no efficient algorithm for solving TSPs.  As explained by Lenin 

and Mohan (2006), ant colony search algorithms, to some extent, mimic the behaviour of real ants.  Real ants are 
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capable of finding the shortest path from food sources to the nest without using visual cues.  They are also 

capable of adapting to changes in the environment.     

 Brueckner (2002) first introduced the concept of a pheromone infrastructure in the context of manufacturing 

control.  Parunak et al. (2004) observed that place agents manage four pheromone functions, namely: 

aggregation, evaporation, propagation and sensing. According to Ridge et al. (2005), pheromone infrastructure 

can be used to methodically move the Ant Colony Optimization algorithm into a probability and deterministic 

environment.  Since the aim of the Traveling Salesman Problem (TSP) is to find the cheapest way of visiting a 

given set of cities where the cost of travel between each pair of them is given, including the return to the starting 

point, TSP is a very good example of a larger class of problems known as combinatorial optimization problems. 

Thus TSP belongs to the so called NP (nondeterministic polynomial) hard complexity class. TSP is a well 

studied example of NP-hard problem, Applegate et al. (2006). Obviously the physical distances can be 

considered as constant values in a given relation.  Furthermore the actual costs are rarely constant and 

predictable, so fuzzy cost coefficient can be applied in order to represent the uncertainty, Ammar and Youness 

(2005), Kikuchi and Chakroborty (2006).   

Considering these characteristics the original TSP should be reconstructed, so that realistic solutions can be 

developed.  For solving the road-transport TSP (RTTSP), we apply As numerical example, a modified road-

transport TSP (RTTSP) instance is considered, in which the elements of cost matrix are dependent on the steps 

they are selected to carry on with.  Rather than enumerating all possibilities, successful algorithms for solving 

the TSP problem shall capable of eliminating most of the roundtrips without ever actually considering them.   As 

indicated by Dorigo et al (1996), these applications include but not limited to the following: Minimum Spanning 

Tree Problem (MST ), Resource Location and Discovery in peer-to-peer network system, Vehicle Routing, 

Sequential Ordering, Connection-oriented Network Routing, Connectionless Network Routing, Optical Network 

Routing, Constraint Satisfaction, 2D-HP Protein folding, etc. 

2. Previous related models 

Many heuristic searches and algorithms have been suggested with their practical importance and wide range of 

application in Applegate et al. (2006), Ding et al (2007):, Shi et al.(2007), Bontoux and Feillet (2008),  Yu-Wan 

et al (2007) and Dorigo (1992).   However, the question whether or not there is a good algorithm for the TSP has 

not been settled.  Nowadays numerous successful implementations of the Ant Colony Optimization (ACO) 

metaheuristic are available and properties of ants behaviour are being used to resolve many Optimization 

Problems that can be reduced to finding shortest paths.  Dorigo, et al.  (1996) observed that ACO had been 

applied to many different combinatorial optimization problems but careful study of these models revealed that 

they are just best effort results.   

 

3. Ant colony scheme  

The Ant Colony Optimization (ACO) concept is applied in this work to solve problem of TSP over a road 

network environment by creating a population of artificial ants that searches for optimal solutions (shortest 

paths) according to the problem’s constraints.  Artificial ants are used as agents that imitate the behaviour of real 

ants.  However, the artificial Ant Colony System (ACS) used in this work has the following differences in 

comparison with a real Ant Colony System (ACS), (i) artificial ants have memory; (ii) they are not completely 

blind; and (iii) they live in an environment where time is discrete.  In addition, the artificial ACS has the 

following characteristics adopted from real ACS, (i) artificial ants have a probabilistic preference for routes with 

a larger amount of pheromone (ii) shorter routes tend to have larger rates of growth in their amount of 

pheromone and (iii) the ants use an indirect communication system based on the amount of pheromone deposited 

in each route. 

As noted by Dorigo et al.  (1996)],  ants while almost blind, manage to establish shortest route paths from their 

colony to feeding sources and back only by communicating information by laying on the ground a substance 

called pheromone.  In our model, ants are send in regular intervals to randomly select path similar to the routing 

algorithm used in Dorigo et al. (1996) framework.   The different between our model and Dorigo et al.  (1996) is 

the intelligent ability of ants through which they are able to collect delay as well as congestion information and 

use “pheromone data” left by previous ants to smooth their movement.  After reaching target destination they 

return on the same path and update visited links with information they collected on the way.  The positive 

feedback is the trail of pheromone left by ants that had found the food.   So each pheromone trail leads to some 

destination.  The negative feedback is the evaporation of the pheromone with each iteration of the algorithm.  
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Smaller amount of pheromone attracts ants with less probability, therefore longer routes are chosen less 

frequently (i.e. worse paths are abandoned).  

 

4. The Architecture of the Proposed Model 

This paper focuses on developing a model for ants route using the information stored locally on the links to 

decide which next link they should choose.  After finding the next link, the search ant sends direct message to 

the source link which is handed over to another ant called updating ant that routes through all the visited nests to 

update routing information stored on them.  Meanwhile the searching ant can continue the search or die.  Each 

ant class inherits from abstract class provides basic properties used by all ants such as:  (i)  TTL (Time To Live):  

This controls the number of hops an ant can make.  It is initialized with default TTL value when the ant is 

created and then it is decreased by one after each run on the nest. When it reaches zero the ant dies (ii) Run 

method:  The main ant algorithm is implemented in this method that is executed by nest after receiving an ant 

object (iii) Kill method: This is used by nest when ant has TTL = 0, ant can make some final operations before it 

is destroyed and (iv) Species:  This returns the class name of the ant. 

An Ant Search System (ASS) platform proposed as the basic framework on which the algorithm should be 

implemented is as shown in Figure 2 below.   The pheromone applied to edges is an abstraction of the chemical 

markers used by real ants.  Edges with high pheromone levels are more attractive to ants.  All ants build their 

tours using a probabilistic decision rule.  The local pheromone update involves decaying the pheromone level on 

an edge traversed by an ant by a small amount.  Once all ants have built a tour, pheromone is deposited along the 

best ant’s tour in a global pheromone update.  The whole process then repeats.   The ASS platform architecture 

of the system and the solution agent lifecycle consists of the interactions with the pheromone infrastructure is 

depicts in Figures 2 and 3 respectively. The two major types of ants used in this model are search ant and update 

ant.   

Level 1 in Figure 3 gathered information about best tour and detected the solution agent arrival at a given point 

with information message containing details of where the solution agent has come from as well as best tour cost.    

In Level 2, the place ant performs local pheromone decay on the relevant links.   This help to avoid random visit 

to irrelevant edges.   The activities carried out in Level 3  allows the place ant to respond with:  (i) a list of  other 

place ant identity (acquired from the Place  ant registrations), (ii) the calculated cost to each of the other Place 

ants and (iii) the latest pheromone level on the links to each of the other place ants.   In Level 4, the Solution 

agent uses available information to decide  which node to visit next and informs the place ant of  its decision to 

move to a given destination and update better tour  previously sampled while information about where to go next 

was obtained in Level 5.    In Level 6, the place ant updates its pheromone value for that link using the 

equivalent of the algorithm for local pheromone update.   The life cycle then returns to Level 1, with the solution 

agent arriving at the destination.   

 

4.1 Searching Ants and Update Ants 

Searching ants are the ants that move through the network of the paths to satisfy users’ request. This includes 

Random Ant, Learning Ant, Hash Ant and Broadcasting Ant classes.  Random Ant is the ant that moves between 

paths randomly. It does not store any data except the description of links that it has to find (inherited from 

Searching Ant). The Learning Ant routes through the network using knowledge gathered from previous searches. 

It requires Learning Service that stores results of earlier searches and allows fast search for matching resource 

description. Hash ant uses hash routing service to get the same searches or a set of the closest similar searches. 

  

4.2 Learning, Hash Routing and Broadcasting Services  

The routing storage maintained by Learning service is a dictionary containing the search description and a list of 

paths that have specified in the search description.  Hash Routing Service is similar to Learning Service but 

additionally it allows searches with the closest hashed key value.  Broadcasting Service stores information about 

ants that visited current path and registered them.  This information service stops an ant from broadcasting to all 

neighbours for the second time. 
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4.3 Mathematical Model of the Proposed System  

The problem can be solved using the combination of (i) Combinatorial analysis and (ii)   Integer Linear 

programming.  

 

4.3.1 Combinatorial Analysis  

The estimation of the number of links to be visited is done using combinatorial analysis.  Each link in graph G 

has n-1 outgoing edges, where n is the number of links.  Therefore, the total number of traversable edges by ant 

is given by: 
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But in this case there is always a starting point where n is the number of links that  have to be visited for value 

computation and r = 2 is the distinct paths between them.   In equation 1 above the number of nodes can be 

separated into significant and insignificant edges.   
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and Insignificant Edges = n  

The shortest path computation  can then be obtained as 

 

)3(
)!(

!





rn

n
Pr

n
 

Therefore the arrangement will be given by  
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This gives the equation for ordering the route in the order in which the nodes are to be visited.  After all the node 

orders are arranged, the one with the least cost in terms of response time is then chosen by ant to traverse its 

movement round the network.  For a symmetrical network there are 1/2 (n-1)! possible tours (because the degree 

of freedom is (n-1) and tours describing the same sequence but opposite directions are not considered as different 

tours) and for asymmetric networks where 

                          

 

c ci j ji
 the number of possible tours is (n-1)!. 

 

4.3.2 Integer Linear Programming 
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This refers to formulating the problem of finding the shortest route for ant journey as an integer programming 

problem, where the goal is to minimize an objective function for path cost computation subject to a set of 

constraints.  This is also modeled as follows: 

Let xij = {0,1} be the decision variable (i= 1,2,…,n and j=1,2,…,n), and xij = 1, means that the arc connecting 

node i to node j is an element of the tour.  

Let xii = 0 ( i= 1,2,…,n)  ……………………. (6) 

 meaning that no tour element is allowed from a node to itself.  Furthermore 

1 1

n n
xij

i j 

   ----------------------------- (7) 

that is,  the number of decision variables where xij = 1 is equal to n, and 
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meaning that each column and row of the decision matrix has a single element with a value 1 (i.e., each city is 

visited once).  For assuring the close circuit, an additional constraint must be set.  A permutation of nodes 

(p1,p2,….pn) has to be constructed so that the total cost C(p) is minimal: 
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This can be further reduced to 
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Integer variables Xij indicates whether or not the node i is to be visited after a node j, respectively with (Xij=1) or 

(Xij=0). The costs of going from node i to node j are given by Cij where n is the number of nodes in the problem, 

S is a nonempty, proper subset of the set {1,2,3,4,5,…, n}.  Equation 11 is the problem general representation, 

indicating that the minimization of the summation of the path costs among all connections between the different 

nodes is being sought.  Equations 12,13 and 14 represent the restrictions that have to be respected.  Moreso, 

equations 12 and 13 guarantee that every node must  have a connection coming from one node  and another 

going to another node while the inequality 14  guarantees that no subpath can be created.  This equation can then 

be solved to obtain the path with minimum cost (shortest path).  
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5. Performance Evaluation and Results  

With real world, order of connection set up in shortest path algorithm matters.  This is demonstrated in Figure 4.  

By using analytical solution and considering all possible paths between nodes NE1 and NE6 with NE1 as the 

source and NE6 as the destination, the following are the possible links.   

146571

;56371

;126821

;14634821

;36341











NENENENE

NENENENE

NENENENE

NENENENENENE

NENENENE

 

The shortest route is 36341  NENENENE ; though this route contains four nodes like other 

three routes with values 12, 5, and 14 but these routes returns higher values. This indicates that none of them is 

the best solution i.e. not  the route to be considered.  Also, two routes return the same value, 14, but one is with 

five nodes while the other is with four nodes.  From this, it has been observed that less number of nodes to be 

transversed is not necessarily means the shortest and best route.   The same analysis can be done for other paths; 

NE2 to NE6;  NE3 to NE6; NE4 to NE6;  NE5 to NE6;  NE7 to NE6 and NE8 to NE6 where NE2, NE3, NE4, 

NE5, N7 and N8  can be considered as the sources and NE6 is the destination.  The formulated model was 

implemented using C# programming language.  All possible routes that link all nodes in figure 4 above with 

N1,N2,N3,N4,N5,N7 and N8  as sources and N6 as the destination are generated as shown in Table 1 below.  All  

possible routes  with shortest route in each case were generated  as indicated in Tables 2 to 8 and  the  response 

graph  for each result are shown in Figures 5 to 11.  

6. Contribution to Knowledge 

The proposed model introduced a new variant of shortest route solution in which the input of a link towards the route 

length depends not only on the weight of the link itself but also on the weight of the links transverses before and after 

transeversing the link under consideration. The main advantage of this decomposition approach is that it permits the 

use of mixed integer programming and combinatorial optimization technique to compute proven optimal routing 

path, solving the problem in practice by identifying and generating all possible solution space (routes) with their 

distance values and identify the actual shortest route among the possible solution space (routes).  

7. Conclusion 

In this paper, mathematical modeling solution is proposed using Ant Colony Search Algorithm (ACSA) 

approach for the determination of global optimum solution for TSP and tested on ASS platform architecture.  

The performance evaluation of the model demonstrated that it is capable of undertaking global search and 

identify all possible solutions (routes) and identify the best solution (shortest route).  From the simulation using 

Mathlab 7.0 and implementation using C# programming language, it has been observed that our model’s solution 

is better than the analytical solution because the analytical solution and models in Applegate et al. (2006), Shi et 

al.(2007), Bontoux and Feillet (2008),  Yu-Wan et al (2007) and Dorigo et al (1996) are just best effort solutions 

and not intelligent to identify and point out the best solution (shortest route) to the users.  However, our model 

can further be improved upon to achieve better solution for resource location and discovery on peer-to-peer 

network system as well as other similar problems such as Minimum Spanning Tree Problem (MST ),Vehicle 

Routing, Sequential Ordering, Connection-oriented Network Routing, Connectionless Network Routing, Optical 

Network Routing, Shortest Common Super sequence, Constraint Satisfaction, 2D-HP Protein folding and other 

related problems.  

8. Recommendation 

Complex systems like Traveling Salesman Problem (TSP) have interesting properties like; total decentralization, 

tolerance to changes and self-organization to achieve global stability, Alberto et al.(2001). Generally these 

systems have a set of properties.  Such properties as highlighted in Francesco (2002) are: (i) Positive feedback, 

(ii) Negative feedback and (iii) Fluctuations.  Ant Colony Search (ACS) systems should therefore have all of the 

properties highlighted above to achieve self organization, adaptability and seeking for the best solution.  The 

above properties can be used to further improve on this model to accomplish better result. 
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Figure 2: The architecture of the proposed model 
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Figure 3:  The interaction diagram of the proposed model 

 

Ant Search System  

    Platform A 

Ant Search System  

  Platform B 

 

 

       

 

 

 

 

 

 
Ant Search System 

Platform C 

 

Solution Ant 

Current Tour 

 

Better Tour 

Encountered 

Own behaviour 

Place Ant 

Other Place Ant IDs 

Pheromone 

 

Deposited Tours 

 

 

Level 2               
Pheromone 

decomposition 

Level 3                          

 

Collection of 

information 

about Place 

agent IDs 

 

Level 4 

 

Decision about next 

node to visit  

 

Update 

Better Tour  

sampled 

 

Level 6 
 

Pheromone 

Updating 

 

 

 

Level 5 

 

Information 

about where to 

go next 

 

 

 

 

 
Level 1                  
 

Gathering 

information 

about best tour  

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.5, 2014 

 

20 

NE

1

NE

3

NE

5

NE

 2

NE

4

NE

6

8

4

2

1 1 1

NE

7

2

2

8

NE

8

2

2

 
Figure 4:  All possible links between N1 (source) and N6 (destination) 

 

 

Table 1:  Input data for possible routes 

N1  N2  N3   N4  N5  N6  N7  N8 

N1     0     8     0      1      0     0    2     0 

N2        8     0     0      0      0     0    0     2 

N3        0     0     0      1      0     1    2      0 

N4        1     0     1      0      0     0    0      2 

N5        0     0     0      0      0     4    8      0 

N6        0     0     1      0      4     0    0      2 

N7        2     0     2      0      8     0    0      0 

N8        0     2     0      2      0     2    0      0 

 
Table 2:   Simulation output for possible routes between (N1 to N6) 

 

        Route                     Path               Distance 

                                                           Route1, (R1)     1,4,3,6               3 

Route2, (R2)     1,2,8,4,3,6        14 

Route3, (R3)     1,2,8,6              12 

Route4, (R4)     1,4,8,6                5 

Route5, (R5)     1,7,5,6               14 

 

 

                                           Figure 5:   Result for N1 (source) to N6 (destination) 
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Table 3:   Simulation output for possible routes between (N2 to N6) 

 

Route                         Path                      Distance 

Route1, (R1)              2,8,6                           4 

Route2, (R2)              2,8,4,3,6                     6 

Route3, (R3)              2,1,7,5,6                   22 

Route4, (R4)              2,1,4,3,6                    11 

Route5, (R5)              2,1,7,3,6                    13 
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                                                          Figure 6: Result for N2 ( source) to N6 (destination) 

 

Table 4:   Simulation output for possible routes between (N3 to N6) 

 

Route                         Path                      Distance 

 

                                           Route1, (R1)             3,6                              1 

                                           Route2, (R2)             3,4,8,6                        5 

Route3, (R3)             3,7,5,6                        14 

Route4, (R4)             3,7,1,2,8,6                  16 

                                           Route5, (R5)             3,4,1,2,8,6                  14 
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                                           Figure 7:  Result for N3 (source) to N6 (destination) 

 

Table 5:   Simulation output for possible routes between (N4 to N6) 

 

Route                         Path                      Distance 

 

Route1, (R1)             4,3,6                            2 

 Route2, (R2)             4,1,2,8,6                     13 

Route3, (R3)             4,8,6                            4 

Route4, (R4)             4,1,7,3,6                      6 

  Route5, (R5)             4,1,7,5,6                      15 
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                Figure 8:  Result for N4 ( source) to N6 (destination)  

          

 Table 6:   Simulation output for possible routes between (N5 to N6) 

 

Route                         Path                      Distance 

 

                                           Route1, (R1)             5,6                               4 

Route2, (R2)             5,7,3,6                         11 

Route3, (R3)             5,7,1,2,8,6                   22 

Route4, (R4)             5,7,1,4,3,6                   13 

Route5, (R5)             5,7,1,2,8,4,3,6             24 

Route6, (R6)             5,7,1,4,8,6                   15 
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                                                      Figure 9:  Result for N5 (source) to N6 (destination) 

 

 
Table 7:   Simulation output for possible routes between (N7 to N6) 

 

Route                         Path                      Distance 

 

Route1, (R1)             7,5,6                            12 

Route2, (R2)             7,3,6                             3 

Route3, (R3)             7,1,4,3,6                       5 

Route4, (R4)             7,1,2,8,6                      14 

Route5, (R5)             7,1,2,8,4,3,6                16 
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                                   Figure 10:  Result for N7 ( source) to N6 (destination) 

 

          Table 8:   Simulation output for all possible routes between (N8 to N6) 

 

Route                         Path                      Distance 

 

Route1, (R1)             8,6                             2 

Route2, (R2)             8,4,3,6                       4 

  Route3, (R3)             8,4,3,7,5,6                 17 

  Route4, (R4)             8,2,1,4,3,6                 13 

 Route5, (R5)             8,2,1,7,5,6                 24 

               Route6, (R6)             8,2,1,7,3,6                 15 
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                                      Figure 11:  Result for N8 (source) to N6 (destination) 
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