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Abstract

In this paper, we apply the notion of Sg-open set in topological spaces to introduce and investigate the concept
of contra Sg-continuous which is a subclass of the class of contra semi continuous functions.
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1. Introduction

In 1966, Dontchev [3], introduced the notion of contra continuity and established some results about
S-closedness and strongly S-closedness. Subsequently, Dontchev and Noiri [4], introduced and studied contra
semi continuity and gave several properties about these functions. Later Jafari and Noiri [5], investigated contra
a- continuous and contra pre-continuous. Recently authors introduced Sg-open set for topological spaces where
Ss-continuity had been investigated. For a subset A of X, Cl(A) and Int(A) represent the closure and interior
respectively. A subset A of X is called semi-open[9](a-open[11], pre-open [10], regular open [17]) set if
A € Clint(A), A € IntClint(A),A € IntCl(A), A = IntCl(A),The complement of semi-open(a-open, pre-open,
regular open) set is called semi-closed (a- closed, pre- closed, regular closed)set. A subset A of topological
space (X,7) is called 0-open set [16] if for each x € A, there is an open set U such that x € U < Cl(U) < A.
Asubset A is called semi regular [2] if it is both semi-open and semi-closed. The main purpose of this paper is
to introduce the notion of contra Sg-continuous functions and obtained some its properties. Also, we defined and
studied the concept of contra Sg-closed and strongly Ss-closed.

2. Preliminaries
The following definitions and results are needed .
Definition 2.1 . Atopological space X is called:

1) locally indiscrete [3], if every open setin X is closed.

2) extremally disconnected [6], if the closure of every open subset of X is open or the interior of every closed
subset of X is closed.

3) semi-T; [1], If for every two distinct points X, y in X, there exist two semi open sets, one containing x but

not y and the another containing y but not x.

Lemma 2.2[1]. A space X is semi-Ty, if and only if, the singleton {x} is semi-closed for any point x € X.
Definition 2.3.Afunction f:X — Y is called:

1) Contra continuous [3], if the inverse image of every open set in Y is closed set in X.

2) Semi-continuous [9] (resp., contra semi continuous [4]) if the inverse image of every open setin Y is

semi-open (resp., semi-closed) set in X.
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3) Perfectly continuous [15] (SR-continuous [12], RC-continuous [12]) if the pre image of every open set
in Y is clopen (semi regular, regular closed) set in X.

4) pre-closed [5], if the image of every closed set in X is pre-closed setin Y.

Theorem 2.4[1]. For any spaces Xand Y. if A € X andB €Y, then
1) siIntyyy (A X B) = sintx(A) X sint,(B)
2) sClyyy (A X B) = sClx(A) x sCly(B)

The following definitions and results are from [7].

Definition 2.5 A semi-open subset A of a space X is called Sg-open if for eachx € A, there exist semi-closed F
suchthat x € F c A.

The complement of Sg-open set in X is called Sg-closed set in X.

Proposition 2.6. Let {A,: a € A4} be collection of Sg-closed sets in topological space X, then N{A,:a € 4} is
Ss-closed.

Proposition 2.7. Let X be topological space and A,B € X. If A€ S;0(X) and B is both a —open and
semi-closed, then AN B € S;0(X)

Proposition 2.8. Let (Y,7,) be an subspace of (X,7)and A € Y, then the following properties are true:

1) If AeSs0(Y,ty) and Y is semi-regular, then A € S;0(X, 7).
2) If AeS;0(X,t) and Yis a-open, then A € S;0(Y,1y).

Proposition 2.9. If (X,7) isasemi-T; space, then S;0(X,7) = SO(X, 7).

Definition 2.10. A function f:X — Y is called Sg-continuous at a point x € X, if for each an open set V of Y
containing f(x), there exist an Sg-open set U of X containing x such that f(U) € V.

Proposition 2.11. For a function f:X — Y, the following statements are equivalent:

1) f is Sg-continuous,
2) The inverse image of every open set in Y isan Sg-open set in X,

3) The inverse image of every closed set in Y isan Sg-closed set in X.

Definition 2.12 [8]. A function f:X — Y is called weakly Ss-continuous. If for each x € X and each open set
H in'Y containing f(x), there is an Ss-open set G containing x such that f(G) < CI(H).

3. Contra Sg-continuous function

Definition 3.1. A function f:X — Y is called contra Sg-continuous if f~1(U) is Ss-closed in X for each open
setUiny.
Theorem 3.2 for a function f: X — Y the following conditions are equivalent.

1) f iscontra Sg-continuous.
2) The inverse image of every closed set in Y is Sg-open set in X.
3) Foreachx € X, and each closed subset F of Y containing f(x), there is Sg-open U containing x such

thatf (U) S F.

Proof.(1)=(2). Let F be closed subset of Y, then Y — F is an open set in Y. sincef is contra Sg-continuous,
then f~1(Y — F) =X — f~1(F) is Sg-closed setin X. Hence f~1(F) is Ss-open setin X.
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(2)=(3). Let F be closed subset of Y containing f(x), then by (2)f~1(F) is Sg-open set in X containing x.
sincef (f"1(F)) € F. Take U=f~1(F). Hencef(U) S F.

(3)=(1). Let x € X and let H be an open set in Y, therefore Y — H is closed subset of Y containingf (x). Then
by (3) there exist Sg-open set U containing x such that f(U) €Y — H implies that U € f~Y(Y —H) = X —
f~Y(H). Hence f~1(H) is Sg-closed setin X.

Remark 3.3. Every contra Sg-continuous is contra semi continuous.

But the converse is not true as showing in the following example,

Example 3.4.Let X = {a, b, c}with the topologiest={¢,X,{c}} and o={¢.X,{a},{b},{a,b}}. If f:(X,7) —
(X,0) defined by f(a) =f(b) =b and f(c) =c. Then f is contra semi continuous but it is not contra
Ss-continuous because f~1({b}) = {a, b} whichis not Sg-closed set in(X, 7).

Proposition 3.5. Let f: X — Y be a semi continuous function, thenf is contra semi continuous if and only if it
is contra Sg-continuous.

Proof: sufficiently, obvious.

Necessity, let F be a closed subset of Y. Sincef is both contra semi continuous and semi continuous, then
f1(H) is semi clopen subset of X, so it is Sg-open. Therefore f is contra Sg-continuous.

Proposition 3.6. If f:X — Y is contra semi continuous and X is semi T, -space, then f is contra
Ss-continuous.

Proof. Let F be an open subset of Y. Sincef is contra semi continuous, then f~1(F) is a semi-closed subset of
X. Thus X — f~1(F) is semi-open in X and since X is semi T;-space, then by Proposition 2.9, X — f~1(F)
is Sg-open. Therefore,f ~1(F)is Ss-closed and hencef is contra Sg-continuous.

Corollary 3.7. Afunction f:X — Y iscontra Sg-continuous if it is one of the following:

1) f isstrongly continuous
2) f is perfectly continuous
3) f is RC-continuous

4) f is SR-continuous

Proof. Straightforward.

Proposition 3.8. If a function f:X — Y is contra Sg-continuous, then f is weakly Sg-continuous.

Proof: let V be an open subset of Y, then CI(V) is closed set in Y. Since f is contra Sg-continuous, then by
Theorem 3.2,f~1(CL(V)) is Sg-open in X and sincef (f~1(CL(V))) € CL(V). Take U= f~1(CL(V)), therefore
f(U) € Cl(V).Hence f isweakly Sg-continuous.

The converse of the above proposition is not true as it is shown in the next example.

Example 3.9. LetX = {a,b,c}and let= {¢, X, {a}, {b},{a, b}, {a, c}},0 = {¢,X,{a}} be two topologies on X.
Then the function f:(X,7) - (X,0) defined by f(a) = a, f(b) = f(c) = c is weakly Sg-continuousbut it is
not contra Sg-continuous because f~1({a}) is not Sg-closed.

Proposition 3.10. Letf:X — Y be any function and Y be extremally disconnected, then f is contra
Ss-continuous if and only if the inverse image of each clopen subset of Y is Ss-open subset of X.

Proof: sufficiently, straightforward.

Necessity, suppose the inverse image of clopen subset in Y is Ss-open. Let F be a closed subset of Y
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containingf (x). Since X is extremally disconnected then Int(F) is clopen setin Y. So by hypothesis,
f~Y(Int(H) is Ss-open set in X. Since
F(f{Unt(F))) € Int(F). Take U = f*(Int(F)) then f(U) < Int(F) € F .Therefore by Theorem 3.2.,fis
contra Ss-continuous.

Clearly that contra Ss-continuity and Ss-continuity are independent

Proposition 3.11. If a function f:X — Y is contra Ss-continuous and Y is regular space then f is
Ss-continuous.

Proof: let V be an open set in Y containing f(x) fore X. Since Y is regular, then there is an open set W in Y such
thatf (x) e W < CI(W) € V. Since f is contra Ss-continuous then by Theorem 3.2, there is an Ss-open set U in
X containing x such thatf (U) € Cl(W) € V. Hence f is Ss-continuous.

Corollary 3.12. If a function f:(X,t) = (R,ty) Iiscontra Ss-continuous, then f is Ss-continuous.

Proposition 3.13. If a function f:X —= Y is Ss-continuous and Y is locally indiscrete, then f is contra
Ss-continuous.

Proof. Straightforward.

Definition 3.14. Atopological space (X,7) is called SCC-space if every Ss-closed subset of X is closed.
Example 3.15. Let X = {a, b,c} with © = {¢,{a}, {b,c}} thenclearly (X,7) is SCC-space.

Proposition 3.16. Let f:X — Ybe surjective, pre-closed and contra Ss-continuous. If X is SCC-space, then Y is
extremally disconnected.

Proof. let V be an open setin Y, then U= f~1(V) is Ss-closed subset of X. But X is SCC-space, then U is closed
in X. f is pre-closed, then f(U) =V is pre-closed in Y which implies that CI(V) = Cl(Int(V)) € V. And so
cl(V) isanopensetin. Hence Y is extremally disconnected .

Proposition 3.17. If a function f:X — Y is contra Ss-continuous, then for any subset A of X,f(Sg — int(4)) €

Clf(A)
Proof. let A € X, then CI(f(A))is closed subset of Y. sincef is contra Sg-continuous, then f~1(CI(f(4)))is
Ss-open set in X. Therefore, Ss — Intf~Y(CL(f(A))) = fL(CL(f(A)) . Since

ASfTHfA) € fHCUS(A)) implies  that Sg— int(A) € Ss — Intf ~ (CL(f(A))) = f~H(CL(f(A))) -
Hence f(Ss — Int(A4)) < CI(f(4)).

Definition 3.18.Atopological space (X, 1) is called Ss-locally indiscrete if every Ss-open subset of X is closed.
Example 3.19. let X={a,b,c} with topology 7={¢,X,{a},{b,c}}, then (X,7) is Ss-locally indiscrete.

Proposition 3.20. If a function f:X — Y is contra Ss-continuous and X is Ss-locally indiscrete space, then fis
continuous.

Proof. let F be any closed subset of Y. Sincef is contra Ss-continuous, then f~1(F) is an Ss-open subset of X.
But X is Sg-locally indiscrete, then f~1(F) is closed. Hence f is continuous.

Proposition 3.21. If f:X — Y is contra Ss-continuous, then Sg — CL(f~*(V)) € f~*(Clg(V)).

Proof. if x ¢ f_l(Clg(V)) implies that f(x) & Clg(V), then there is an open set G containing f(x) such that
Cl(G) NV = ¢. Since f is contra Ss-continuous, then there is an Ss-open set U such that f(U) < CI(G) and
hence U N f~1(V) = ¢. This shows that x & Sg — CL(f~*(V)).

Proposition 3.22.If a function f:X — Y is contra Ss-continuous and U is a-open and semi closed subset of X
then f|U:U — Y is contra Ss-continuous.

Proof. let H be a closed set in Y. Since f is contra Sg-continuous, then by Theorem 3.2. f~1(H) is Ss-open set
in X and since U is a-open and semi-closed subset of X, then by Proposition2.7,(f|U)"*(H) = f~*(H)NU is
Sg-open in X. by Proposition2.8(2), (f|U)"t(H) is Ss-open set in U. This shows that f|U is contra
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Ss-continuous.
Proposition 3.23. A function f:X — Y is contra Ss-continuous if for eachx € X, there exist semi regular set A
of X containing x such that f|]A: A — Y is contra Ss-continuous
Proof. let x € X, then there exist semi regular set A of X containing x. let F be closed subset of Y containing
f(x), then by Theorem 3.2, there exist Ss-open set U in X containing x such that (f|A)(U) € F. Since A is semi
regular set in X, by Proposition2.8(1),U is an Ss-open set in X and hencef(U) € F. Thus f is contra
Ss-continuous.
Proposition 3.24. letf: X - Y and g:Y — Z be any two functions then

1) gof:X — Z iscontraSs-continuous if f is Ss-continuous and g is contra continuous.

2) gof:X — Z iscontra Sg-continuous if f is contra Ss-continuous and g is continuous

Proof.(1)Let H be an open set in Z. since g is contra continuous, then g=1(H) is closed subset of Y and since
f is Ss-continuous, then by Proposition 2.11, f~1(g *(H)) = (g f)"1(H) is Ss-closed. Hence go f is
contra Sg-continuous.

(2) Similar to (1).

Definition 3.25. A function f:X — Y is called Sg-irresolute if f~1(U) is Sg-open in X for each Sg-open set
uiny.

Example 3.26. Let X={a,b,c} with topology 7={¢,X,{c}} and o={¢,X,{a}} then clearly f:(X,7) — (X,0)
defined by f(a) =a,f(b) =c and f(c) = bis Sg-irresolute function.

Proposition 3.27. Iff: X — Yis Se-irresolute and g:Y — Zis contra Ss-continuous, then g o f: X — Z is contra
Ss-continuous.

Proof. Let F be closed subset of Z. since g is contra Sg-continuous, then g~1(F) is an Ss-open set in Y and
since fis Sg-irresolute, thusf~1(g~1(F)) = (g o f)"1(F) is an Sg-open subset of X. Hence g o f is contra
Ss-continuous.

Proposition 3.28. If a function f:X — [l,eaY, is contra Ss-continuous then P, o f:X — Y, is contra
Ss-continuous for each o inthe index set A where P, :[IeaY, — Y, 1S projection map from [[,ea Y, ontoY,.
Proof. let H, be an closed setin Y,for each a € A since P, is continuous function then P;1(H,) isan
closed setin [I,eaY, foreach o but f is contra Ss-continuous, then we have( P, o f)~*(H,) = f(P;(H,))
is Ss-open for each a € A . therefore by Theorem 3.2, we have P, o f iscontra Ss-continuous function.
Proposition 3.29. If f;: X; — Y; is contra Ss —continuous for i=1,2. Let f:X; X X, — Y¥; XY, be a function
defined as follows f(xq,x5) = (f1(x1), f2(x3))then f is contra Ss—continuous.

Proof. let U; x U, €Y; x Y,where U; isan opensetinY fori=1,2. Then f~1(U;)is Ss—closed subset of X;,
since f; is contra Ss —continuous for i=1,2. Therefore f~1(U; x U,) = f~1(U;) X f~1(U,) is Ss —closed
subset of X; X X,. Hence f contra Ss—continuous.

Proposition 3.30.Let h: X - X; X X, be a contra Ss —continuous function defined as follows: h(x) =
(hy(x), hy(x)) then h;: X — X; is contra Sg—continuous for i=1,2.

Proof. let U; be an open set in X;. Then U; X X, is an open set in X; X X, and then h7*(U;) = h™1(U; x
X,) is Ss—closed set in X. hence h;:X — X is contra Sg —continuous. Similarly for h; for i=2.

Proposition 3.31. Let f:X — Ybe any function. If g:X — X x Y defined by g(x) = (x, f(x)) is a contra Ss
—continuous, then f is contra Sg —continuous.

Proof. Let F be closed subset of Y, then X X F is closed subset ofX X Y. Since g is a contra Sg —continuous,
then g~1(X x F) = f~1(F) isan Ss—open subset of X. Hence f is contra Sg—continuous.
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4. Functions with contra Ss —closed and strongly contra Ss —closed graphs

Definition 4.1. The graph G(f)of the function f:X — Y is said to be contra Sg —closed if for each(x,y) €
(X xY)—G(f), there exist an Sg —open set U containing x and a closed set V in Y containing y such that(U x
NG =¢.

Proposition 4.2. The graph G(f)of the function f:X — Y is contra Ss—closed if for each(x,y) € (X xY) —
G(f), there exist an Ss —open set U containing x and a closed set V in Y containing y such thatf (U) NV = ¢.
Proof. Follows from the definition.

Theorem 4.3. If a function f:X — Y is contra Sg—continuous and Y is Urysohn then G(f) is contra Sg —closed.
Proof. Let(x,y) € (X X Y) — G(f). Theny # f(x) and since Y is Urysohn, there exist two open sets A and B in
Y such that CI(A) n Cl(B) = ¢. Since f is contra Sg —continuous, then there exist an Ss —open set U
containing x such that f(U) € CI(A) implies that f(U) n Cl(B) = ¢. Therefore by Proposition 4.2,G(f) is
contra Sg —closed.

Theorem 4.4. If a function f: X — Y is Sg—continuous and Y is T;-space, then G(f) is contra Ss—closed.
Proof. Let (x,y) € (X XY) —G(f). Then y # f(x) and since Y is T,-space, there exists an open set H in Y
such that f(x) € H, y € H. Since f is Sg—continuous, then there exists an Ss —open set U containing x such
that f(U) € H which implies that f(U) n (Y — H) = ¢ where Y — H isaclosed setin Y containing y. Hence
by Proposition 4.2, we obtain that G(f) is contra Ss—closed.

Definition 4.5. The graph G(f)of the function f:X — Y is strongly contra Ss—continuous if for each(x,y) €
(X xY)—G(f), there exist an Ss —open set U containing x and a regular closed set V in Y containing y such
that(U X V) n G(f) = ¢.

Proposition 4.6.The graph G(f)of the function f:X — Y is strongly contra Ss —continuous if for each(x, y) €
(X xY)—G(f), there exist an Sg —open set U containing x and a regular closed set V in Y containing y such
thatf (U) NV = ¢.

Proof. Follows from the definition.

Theorem 4.7. If a function f:X — Y is contra Sg —continuous and Y is Urysohn, then G(f) is strongly Ss
—closed in X xY.

Proof. Let(x,y) € (X X Y) — G(f). Theny # f(x) and since Y is Urysohn, there exist two open sets A and B in
Y such that CI(A) n Cl(B) = ¢. Since f is contra Sg —continuous, then there exist an Ss —open set U
containing x such that f(U) € CI(A) implies that f(U)n Cl(int(B)) = f(U) N CL(B) = ¢ where
Cl(int(B))is regular closed in Y. Hence by Proposition 4.6, G(f) strongly Ss—closed in X x Y.
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