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Abstract 

The unsteady mixed convective fluid flow through an annulus filled with a fluid-saturated porous medium is 

numerically investigated in this study in the presence of Cross-Diffusion effect and constant Heat Source. The 

flow configuration and coordinate system for an annulus which is horizontal position have been considered  

Details of the effect of several parameters controlling the velocity, temperature and concentration profiles are 

shown graphically and the observations are discussed. These parameters include the Non-Darcy parameter, 

Pressure gradient, Soret effect, Schmidt Number, Dufour effect, Eckert number and Prandtl Number. The effect 

of these dimensionless parameters mentioned above is observed either to enhance, to decrease or have no effect 

on the velocity, temperature and the concentration profiles.  

Keywords: Unsteady Flow, Cross-Diffusion effect, Constant heat source Effect.  

Nomenclature 

 

Symbol      Quantity 

Roman Symbols 

  Dimensionless Concentration 

  Specific heat at constant pressure,  

  Concentration susceptibility 

 Concentration of the fluid at the inner and outer pipes respectively 

  Characteristic concentration difference  

       Space marching step 

       Time marching step 

  Non-Darcy parameter  

  Mass diffusivity 

  Dufour number        

        Kinetic energy 

        Total energy 

  Body force  

  Electromagnetic force  

g  Acceleration due to gravity 

h  Convective heat transfer coefficient 

     Unit vectors in the and  directions respectively 

       Electric current density  

K  Porous medium permeability 

  Coefficient of thermal conductivity 

   Thermal diffusion ratio 

P   Pressure of the fluid. 

    Prandtl number 

  Velocity vector of the fluid 

  Radius of the Cylinder 

  Reynolds number  

  Dimensionless suction velocity  

  Schmidt number  

  Soret number  

http://www.iiste.org/
mailto:mcndambuki@gmail.com


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.5, 2014 

 

32 

  Representative time  

  Temperature 

  Characteristic temperature difference  

   Uniform velocity 

 Velocity components 

  Polar coordinates of the annulus 

 

Greek Symbols 

λ   Thermal diffusivity  

  Thermal coefficient 

  Coefficient of expansion due to concentration gradients 

  Fluid electrically conductivity,  

   Strain tensor 

          Turbulence time scale 

   Rate of strain tensor 

  Fluid Density 

    Excess electrical charge 

       Free stream fluid density 

  Kinematic viscosity  

  Dimensionless fluid temperature 

  The coefficient of viscosity 

  The magnetic permeability 

    Viscous dissipation function 

   Heat source parameter  

Abbreviations  

FDM Finite difference method 

PDE     Partial differential equation 

 

1. Introduction 

Fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid flow - the natural science of fluids 

(liquids and gases) in motion. It has several sub disciplines itself, including aerodynamics (the study of air and 

other gases in motion) and hydrodynamics (the study of liquids in motion).  

In many industrial applications of transient free convection flow problems, there occurs a heat source or a sink 

which is either a constant or temperature gradient or temperature dependent heat source. This heat source occurs 

in the form of a coil or a battery. 

Therefore, in this section, contributions of earlier researchers in the flow field of Natural and mixed convective 

Heat and Mass transfer is discussed. A comprehensive survey of relevant papers may be found in the recent 

monograph by Nield and Bejan (2006). Most of the studies included there refer to bodies of relatively simple 

geometry such as flat plates, cylinders, and spheres.  It gives a clear description of the work already done in this 

field and brings out the knowledge gap existing and where the geometry under consideration fits. Sparrow and 

Cess (1962) initially studied solutions of the steady flow and heat transfer of the stagnation point flow taking 

into account the constant volumetric heat generation. Foraboschi and Federico (1964) have assumed volumetric 

rate of heat generation of the type Q = Qo (T - To) when T >= To and Q = 0 when  T < To  in their study of 

steady state temperature profiles for laminar parabolic and piston flow in circular tubes. Neeraja (1993) has made 

a study of the fluid flow and heat transfer in a viscous incompressible fluid confined in an annulus bounded by 

two rigid cylinders. The flow is generated by periodic traveling waves imposed on the outer cylinder and the 

inner cylinder is maintained at constant temperature.  The limiting case of fully developed natural convection in 

porous annuli is solved analytically for steady and transient case by Shaarawi, et al. (1990). Philip (1982) has 

obtained analytical solutions for the annular porous media valid for low modified Reynolds number. Taking G/R 

much less than 1, the coupled equations governing the flow, heat and mass transfer have been solved by regular 

perturbation method. Anghel et al. (2000) have examined the composite Soret and Dufour effects on free 

convective heat and mass transfer in a Darcian porous medium with Soret and Dufour effects.  Gokhale and 

Behnaz-Farman (2007) analyzed transient free convection flow of an incompressible fluid past an isothermal 

plate with temperature gradient dependent heat sources. Implicit finite difference scheme which is 

unconditionally stable has been used to solve the governing partial differential equations of the flow. Transient 

temperature and velocity profiles are plotted to show the effect of heat source. Muthukumara, et al. (2007) has 
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analyzed the radiation effect on moving vertical plate with variable temperature and mass diffusion. Sreevani 

(2003)   has analyzed the Soret effect on convective heat and mass transfer flow of a viscous fluid in a 

cylindrical annulus with heat generating sources. Sivaiah (2004) has discussed the convective heat and mass 

transfer flow in a circular duct with Soret effect. Srenivas Reddy (2006) has discussed the Soret effect on mixed 

convective heat and mass transfer through a porous cylindrical annulus. Again, Sallam (2009) has analyzed 

thermal-diffusion and diffusion-thermo effects on mixed convection heat and mass transfer in a porous medium. 

Heat and mass transfer have been solved by regular perturbation method.  

Recently, Prasad (2006) analyzed the convective heat and mass transfer through a porous cylindrical annulus in 

the presence of heat generating source under radial magnetic field. Assuming the Eckert number  much less 

than 1 the governing equations have been solved by regular perturbation method. The flow through a porous 

medium in a porous cylindrical annulus does not provide the physical interpretation of mixed convective heat 

and mass flow and the study did not take care of cross-diffusion effect. Therefore in this research we investigate 

the problem of the combined influence of cross-diffusion effect using the finite difference method expressions 

taking the constant heat source effect into account. 

 

2.0 Formulation of the problem 

Consider unsteady, incompressible, viscous, electrically conducting fluid flow through a porous medium in a 

circular cylindrical annulus with cross-diffusion effects. Let the inner and outer radius be denoted by   

and   respectively.  The flow temperature and concentration in the fluid are assumed to be fully 

developed. Both the fluid and porous region have constant physical properties and the flow is a mixed 

convection flow taking place under thermal and molecular buoyancies and uniform axial pressure gradient. The 

annulus is stationary and the induced magnetic field is neglected by assuming a very small magnetic Reynold’s 

number. For this reason, the uniform radial magnetic field  is considered as the total magnetic field acting on 

the whole system in the positive  direction as shown in the Figure 1. The Flow configuration and coordinate 

system is shown below 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow configuration and coordinate system through horizontal porous annulus. 
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From the geometry of the problem, all the quantities are independent of the axial coordinate z except the pressure 

gradient  which is assumed constant.  

Since the flow is fully developed, continuity equation  takes the form 

         (2.1) 

Considering a uniform injection of a second material from below and uniform suction to the top with velocity  

then from  , we have 

               (2.2) 

The velocity vector of the fluid is 

          (2.3) 

We consider a slow speed fluid flow such that the buoyancy force resulting from temperature and concentration 

differences in the flow field are comparable with the inertia and viscous forces. In the presence of heat transfer, let 

the density vary with temperature and also vary with concentration difference in the presence of mass transfer. The 

Boussinesque approximation is invoked so that the density variation is confined to the thermal and molecular 

buoyancy forces.   

Since  the viscous term  takes the form   , and the momentum equation takes the 

dimensional form 

      (2.4) 

By taking into account the effect of viscous dissipation and constant heat source, the energy equation takes the 

form 

  (2.5) 

The equation of concentration can be written as  

   (2.6) 

2.1 Definition of Mesh 

We want to use uniform mesh to represent a function of two variables  where  and  is the radial and 

distance along the annulus. Consider a -plane which is divided into uniform rectangular cells of width  

and height  as shown in Fig. 2. Consider a reference point     where  and  represent  and  

respectively. Using the notation  for  and  for  we can define the adjacent points to  

and , the points that are  and  units from the reference point will have coordinates . The mesh can 

be defined as below 
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Figure 2: Mesh representing the fluid flow. 

2.2 The Finite Difference Technique 

The finite-difference equations are arrived at by the setting up of the finite-difference expressions for the 

numerical solution of Equation (2.5), (2.6) and (2.7) in section 2.0 for horizontal annulus. To implement a 

finite-difference solution, we divide the x-axis along the radius into discrete grid points, as shown in the Fig.3. 

The first grid point labeled point 1 is assumed to be at the surface of the inner cylinder . The points are 

evenly distributed along the  axis, with  denoting the spacing between the grid points. The last point 

namely, that at the surface of the outer cylinder , is denoted by . Therefore we have a total number of  

grid points distributed along the axis. Point  is simply an arbitrary grid point, with points  and as 

the adjacent points. Since in the time marching approach, we know the flow-field at point  and we use the 

difference equations to solve explicitly for the variables at point . 

 

 

 

 

 

 

 

 

 

 

Figure 3: Grid point distribution across the annulus. 

We are interested in replacing a partial derivative with a suitable algebraic difference quotient, i.e., a finite 

difference. Most common finite difference representations of derivatives are based on Taylor’s series expansions. 

For example, referring to Fig.2. if denotes the  component of velocity at point , then the velocity 

 at point  can be expressed in terms of a Taylor series expanded about point ,  as follows 
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          (2.7) 

Equation (2.8) is mathematically an exact expression for if  

i. The number of terms is infinite and the series converges and /or  

ii. . 

From there we pursue the finite – difference representations of derivatives. Solving Eq. (2.7) for , we 

obtain 

          (2.8) 

 

 

 

 

 

 

In Eq. (2.8) the actual partial derivative evaluated at point is given on the left side. The first term on the right 

side, namely , is a finite difference representation of the partial derivative. The remaining 

terms on the right side constitute the truncation error. That is, if we wish to approximate the partial derivative with 

the above algebraic finite-difference quotient, 

                 (2.9) 

Then the truncation error in Eq. (2.8) tells us what is being neglected in this approximation. In Eq. (2.9), the 

lowest-order term in the truncation error involves  to the first power; hence, the finite-difference expression in 

Eq. (2.8) is called first-order-accurate. We can more formally write Eq. (2.9) as 

         (2.10) 

In Eq. (2.10) the symbol    is a formal mathematical notation which represents “terms of order .” 

Equation (2.10) is a more precise notation than Eq. (2.9) which involves the “approximately equal” notation. Also 

referring to Fig.2.3, note that the finite-difference expression in Eq. (2.10) uses information to the right of the grid 

point ; that is, it uses   as well as . No information to the left of  is used. As a result, the finite 

difference in Eq. (2.10) is called a forward difference. For this reason, we now identify the first-order-accurate 

difference representation for the derivative  expressed by Eq. (2.10) as a first-order-forward difference, 

repeated below 

       (2.11) 

Let us now write a Taylor series expansion for , expanded about . 

 

or              (2.12) 

Solving for  we obtain 

Finite- 

difference 

representation 

Truncation error 
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               (2.13) 

The information used in forming the finite-difference quotient in Eq. (2.13) comes from the left of the grid 

point ; that is, it uses   as well as . No information to the right of  is used. As a result, the finite 

difference in Eq. (2.13) is called a rearward (or backward) difference. 

2.3 Initial and boundary conditions 

In the present problem, we know that the temperature  and the concentration  increases gradually from 

the inner wall to outer wall while the velocity vector   increases as the flow expand towards the center of 

the annulus. Hence, we choose initial conditions that qualitatively behave in the same fashion. 

The initial conditions and boundary conditions relevant to the fluid flow configuration are respectively  

0       (2.14) 

and  

         (2.15) 

where  is the axial velocity in the porous region,   are the temperature and concentrations of the fluid,  

Dynamic viscosity,    is the permeability of porous medium,  is the molecular diffusivity,  is the 

coefficient of mass diffusivity,  is the mean fluid temperature,  is the thermal diffusion,  is the 

concentration susceptibility,  is the specific heat. 

2.4 Non-dimensionalization process 

Using the general scaling variables in equation, the boundary conditions can be non-dimensionalized.  That is, we 

use the general scaling variables and non-dimensional parameters quoted above to normalize the boundary layer 

equations governing the fluid flow under consideration and make the solution bounded, for example 

non-dimensional velocity such that it varies from 0 to 1.  

 

 

 

The relevant corresponding boundary conditions in non-dimensional form are 

 

                  (2.16) 

 

The terms in the momentum equation (2.4) can be non-dimensionalized as follows 

Dividing both side of equation by  , we have 

   

Non-dimensionalising term by term as follows 
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Substituting back the above non-dimensionalised terms we have  

     (2.17) 

Dividing each of the terms given above by   , the momentum equation (2.17) becomes  

      (2.18) 

Combining, rearranging the terms and on introducing the non-dimensional parameters  equation (2.18) 

takes the form  
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     (2.19) 

Considering each of the terms in the equation of energy (2.5), can be non-dimensionalized as follows 

Dividing both side of equation by  , we have 

  (2.20) 

Therefore we have the transformations 
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Substituting back the above non-dimensionalised terms we have  

 (2.21) 

If each of the terms given above is multiplied by  we will have the energy equation in the form 

 (2.22) 

Combining, rearranging the terms and on introducing non-dimensional parameters , ,  and  equation 

(2.22) reduces to 

     (2.23) 

The equation (2.6) of concentration can be transformed as follows 
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Substituting back the above non-dimensionalised terms we have  

 (2.24) 

If each of the terms given above is multiplied by  we will have the energy equation in the form 

   (2.25) 

Using the non-dimensional parameters and  equation (2.25) becomes 

   (2.26) 

Equations (2.19), (2.23) and (2.26) respectively give the final set of conservation of momentum, energy and 

concentration equations in non-dimensional form for horizontal annulus with constant heat source effect. 

 

3.0 Methodology 

3.1 Numerical Solution of the problem by Finite Difference expressions 

We seek a solution of the system of equations (2.19), (2.23) and (2.26) together with the non-dimensional form 

of initial and boundary conditions (2.16). The system of equations is nonlinear and we apply the numerical 

approximation method of finite differences in the solution as described in section 2.2. We use the forward 

differences as approximations to the derivatives. The finite difference form of the momentum equations (2.19) 

the energy conservation equation (2.23) and concentration equation (2.26) which governs the fluid flow is given 

as  
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      (3.1) 

 

(3.2) 

and finally 

 

             

(3.3) 

The finite difference form of the initial conditions  and the boundary conditions (2.17) is given below 

0       (3.4) 

and  

       (3.5) 

In this case unit vectors  and  represent  and  respectively. Rearranging each of these equations enables us 

to compute consecutive terms of the velocity , the temperature  , and concentration  using the initial values 

and boundary conditions given in the equations (3.4) and (3.5) respectively. Rearrangement of the equations (3.1), 

(3.2) and (3.3) will reduce to  

 (3.6) 

 

 (3.7) 

and  
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 (3.8) 

3.2 Results and discussions 

In this section, discussion of the numerical results of the study and their interpretation are presented for  the 

effects of constant heat source on unsteady mixed convective, viscous conducting fluid flow through an 

horizontal porous annulus. Since the present study involve a large number of non-dimensional parameters 

 and , Computations for the radial velocity  , temperature  and concentration  

were made for corresponding to air, Suction  and pressure gradient to be . The 

parameters that were varied included the Non-Darcy parameter, Eckert number, Dufour number, Schmidt 

Number, and Soret number. In concert with previous related studies, the Dufour and Soret numbers are chosen in 

such a way that their product is constant. 

Also, the size ( ) of the annulus segment is fixed at 0.125; however, its location (L) is varied from 1.125 

to 1.875.  

These values of the parameters were varied one at a time and input into R computer program. Computations were 

done using the simultaneous model equations (3.6) to (3.8), the initial conditions (3.4) and the boundary conditions 

(3.5) and the curves plotted for each case. The results for the velocity profiles are represented in the figures 

labeled Fig. 3.1.Temperature and concentration profiles are represented in the figures labeled Fig. 3.2 to Fig. 3.5. 

The vertical axis for the Fig. 3.1 to Fig. 3.5 represents the distance from the inner pipe with  to outer pipe 

with . The numerical results of velocity, temperature and concentration distributions  are presented  as 

follows 

 

3.2.1 Velocity profiles 

We discuss how each of the parameters affects the velocity profiles  of the fluid flow as represented by the 

graphs in Figure 3.1. 

The velocity variation with Non-Darcy parameter when the parameters ,  and    are held 

constant . 
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Figure 3.1 Velocity variations with Non-Darcy parameter 

 

It is observed from Fig.3.1 that the velocity of the fluid decreases with increase in the value of the non-Darcy 

parameter. This is because the lesser the non-Darcy parameter, the larger the size of the pores inside the medium 

due to which drag force decreases and hence the velocity increases.   

A decrease in a stream-wise velocity component, u, can result in a decrease in the amount of heat transferred 

from the walls to the fluid. Similarly, a decrease in the transverse velocity component means that the amount of 

fresh fluid which is extended from the low temperature region outside the boundary layer and directed towards 

the annuli walls is reduced thus decreasing the amount of heat transfer. The two effects are in the same direction 

reinforcing each other. Thus, increase in the non-Darcy parameter implies that the porous medium is offering 

more resistance to the fluid flow and this result in reduction in the velocity profiles. 

 

3.2.2 Temperature profiles 

The effects of various parameters on the temperature profile of the fluid flow were considered as discussed below 

with reference to Fig. 3.2 and Fig. 3.3  

 

The variation of temperature profile with Dufour parameter when the parameters , , 

 and are held constant.  
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Figure.3.2 Temperature variations with Dufour parameter 

  

Figure 3.2 depicts that the diffusion thermal effects greatly affects the fluid temperature. As the values of the 

Dufour parameter increase, the fluid temperature also increases.  That is not surprising realizing the fact that the 

thermal boundary becomes thicker for larger Dufour number. Therefore, with an increase in the Dufour number 

the rate of thermal diffusion rises. This scenario is valid for horizontal case where the dimensionless wall 

temperature is unity for all parameter values.  

From the figure it can be seen that the heat transfer rates are higher for aiding flows than for the corresponding 

buoyancy in the opposing flows. 

The variation of temperature profile with Eckert parameter when the parameters , , 

 and  are held constant. 
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Figure3.3 Temperature variations with Eckert parameter  
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Figure 3.3 shows the effect of Eckert number on the flow field. We find that an increase in the Eckert number has 

the decreasing effect on the Temperature profile. 

From these figures it is noteworthy that the thermal boundary layer thickness decreases with decreasing values of 

Eckert parameter. A reduction in the value of the Eckert number  leads to a decrease in the 

temperature near the inner wall of the annulus. This is because an increase in the Eckert number leads to a decrease 

in the thermal energy and cosequently a decrease in the temperature profiles. 

Hence the Dufour parameter enhanced thermal diffusion while an increase in the Eckert parameter slowed down 

the rate of internal diffusion within the boundary. 

 

3.2.3 Concentration profiles 

The variation of concentration profile with Soret parameter when the parameters  , and  are held 

is constant 
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Figure.3.4 Concentration variations with Soret parameter  

Figure 3.4 shows the influence of the Soret parameter on the concentration profiles. It can be seen that the 

concentration increases with increasing values of Soret Number. From this figure we observe that the 

concentration profiles increase significantly with increase of the Soret number values.  

 On the other hand an increase in the Soret effect reduces the temperature within the thermal boundary layer 

leading to an increase in the temperature gradient at the wall and an increase in heat transfer rate at the wall. 

The variation of concentration profiles with the Temperature gradient shows that the actual concentration 

enhances with increase in the temperature gradient this is because the thermal boundary layer becomes thicker for 

larger the Temperature gradient.  

 

The variation of concentration profile with Schmidt parameter when the parameters , and  are 

held constant.  
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Figure.3.5 Concentration variations with Schmidt number  

Fig.3.5 illustrates the effect of Schmidt number on the concentration field. It is noticed that an increase in the 

value of the Schmidt number causes a decrease in the concentration. The mass diffusion parameter is inversely 

proportional to the concentration and therefore its increase results in a decrease in the concentration profiles. 

Furthermore, it is interesting to note that the concentration profile falls rapidly for water vapor . 

Physically this is true because of the fact that the water vapors can be used for maintaining normal concentration 

field. The more the molecular diffusivity is, the smaller the concentration in the flow field.  

 

4.0 Conclusions and Recommendations 

In this section, a conclusion is given with reference to the results obtained in the previous sections. 

Recommendations to further areas of research are also given. 

4.1 Conclusions 

The approximate analytical solutions corresponding to the present study analyses the unsteady mixed convection 

of an electrically conducting incompressible viscous fluid flow through a cylindrical annulus are obtained using 

finite difference technique. The cross-diffusion effects are also considered in the presence of constant heat source 

and required expressions of momentum; energy and concentration profiles are evaluated. The accuracy of the 

obtained solutions is checked through imposed conditions and graphs. The research has gradually come up with 

the fluid flow model by beginning with a simple model of the fluid flow and the building on it. Using the finite 

difference technique and the general scaling variables, the governing equations are transformed into a set of 

partial differential equations, where numerical solution has been presented for a wide range of parameters.  

Furthermore, some well-known established results from the literature are obtained as limiting cases from the 

present approximate solutions. Numerical results for the velocity field, temperature and concentration field are 

graphically displayed.  

Finally, discussion on the effect of each of these parameters on the velocity, temperature and concentration profiles 

is explained in details.  

Non-Darcy parameter: With respect to variation of velocity with Non-Darcy parameter we found that the lesser 

the permeability of porous medium, the larger the magnitude of velocity; and for further lowering of the 

permeability, the larger the magnitude of velocity in the entire flow region. 

Soret number: It is observed that decreasing values of Soret number leads to reduction in the concentration 

distribution in the flow field. In other words, it can be seen that the concentration increases with increasing values 

of Soret parameter. 

Dufour number: It is observed that the variation of temperature profile with Dufour parameter shows that the 

actual temperature enhances gradually with increase with Dufour parameter. 

Eckert number: An increase in the Eckert number causes an increase in the temperature of the fluid next to the 
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walls. Thus, it may be used to reduce the rate of cooling. For the horizontal case, fluid temperature near the wall 

is predicted to exceed wall temperature inferring that the direction of heat transfer is reversed from the fluid to 

the wall. 

The results have shown that the fluid velocity, temperature, and concentration profiles are appreciably influenced 

by the Soret and Dufour effects; they also play a significant role and should not be neglected. We therefore 

conclude that cross-diffusion effects have to be considered in the fluid, heat, and mass transfer. We also showed 

that the magnetic field and  viscous dissipation parameters have greater effects on the fluid velocity, 

temperature, and concentration boundary layer thickness. It is also noted that the finite difference method is valid 

even for systems of highly nonlinear differential equations. Furthermore, it has great potential for being used in 

many other related studies involving complicated nonlinear problems in science and engineering, especially in 

the field of fluid mechanics, which is rich in nonlinear phenomena.  

The following main results are concluded from this study. 

1. It was found that the effect of increasing the Non-Darcy parameter decelerates/suppress the fluid 

velocity/motion while enhancing the temperature and concentration profiles. It was also observed that 

the velocity decreases if Dufour parameter & Eckert parameter increases.  

2. Temperature increases with increasing Dufour parameter and decreases with increase in Eckert 

parameter. 

3. The effect of Soret number is that it reduces the temperature and enhances the velocity and the 

concentration profiles.  Dufour number had an opposite effects on the temperature and concentration 

distributions. An increase in viscous dissipation parameter enhances temperature and reduces the 

concentration distributions. 

4.2 Recommendations 

Clearly, since the present study provides approximate solutions and can be used as bench mark by numerical 

analysts; the research work provides a basis for further investigation while including the following 

considerations. 

 Study more complex phenomenon and geometrical configurations. For example rectangular and 

spherical coordinate systems.  

 Strong magnetic field whereby the system is not stationary and inclined at an angle 

 Varying heat sources and fluid viscosity. 
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