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ABSTRACT 

Analysis of variance (ANOVA) is a standard method for describing and estimating heterogeneity among the 

means of a response variable across the levels of multiple categorical factors. In most experimental settings, 

ANOVA is used to test the presence of treatment effects. Frequentist approaches to making inferences about the 

variances of random cluster effects in hierarchical generalized linear models (HGLMs) have several limitations. 

These include reliance on asymptotic theory, questionable properties of classical likelihood ratio tests when 

pseudo-likelihood methods are used for estimation, and a failure to account for uncertainty in the estimation of 

features of prior distributions for model parameters. This paper compares and contrasts alternative approaches to 

making a specific type of inference about the variance components in an HGLM, focusing on the difference in 

the variance components. A Bayesian approach to making inferences about these types of differences is 

proposed that circumvents many of the problems associated with alternative frequentist approaches.Bayesian 

hypothesis testing literature on ANOVA is scant; the dominant treatment is still classical or frequentist. One 

impediment to adoption of Bayesian approach is lack of practical development, particularly a lack of ready-to-

use formulas and algorithms. Markov Chain Monte Carlo (MCMC) and Gibbs sampling are used to obtain 

posterior point estimates from these posterior distributions. The 95% credible intervals (CI) were also obtained. 

Posterior F-values were obtained for the different priors and finally compared with that obtained using classical 

approach. The Bayesian test for ANOVA designs is useful to both researchers and students; both groups will get 

to appreciate the importance of Bayesian approach when applied to practical statistical problems. 

Key Words: Bayesian Analysis of Variance, Variance Components, Hierarchical Generalized Linear Models, 

Posterior F-value, ANOVA. 

1. Introduction 

      In many social science settings, the data available for analysis span multiple groups. In these settings it is 

often plausible that any statistical model that might fit to the data need to be flexible, so as to capture variation 

across the groups, typically accomplished by letting some or all of the parameters vary across the groups. 

Examples include survey data gathered over a set of locations (e.g., states, districts, countries); experimental 

studies deployed in multiple locations; studies of educational outcomes where the subjects are students, who are 

grouped in classes or schools, which are in school districts, which in turn are in states etc. 

    This paper considers alternative approach to making inferences about the parameters in a specific class of 

HGLMs.Frequentist approaches to estimation of HGLMs rely on various numerical or theoretical approaches to 

approximating complicated likelihood functions, especially for models involving complex random effects 

structures (e.g., Faraway, 2006; Molenberghs and Verbeke, 2005). In general, inferences based on these 

approximate likelihood-based approaches, such as residual pseudo-likelihood, penalized quasi-likelihood, and 

maximum likelihood based on a Laplace approximation, have the same drawback for normal outcomes in that 

they fail to account for the uncertainty in estimating features of prior distributions for the model parameters 

(Carlin and Louis, 2009). In addition, frequentist approaches to testing hypotheses about fixed effects or 

covariance parameters in HGLMs and making inferences about the parameters rely on asymptotic theory and 

asymptotic results (Zhang and Li, 2010). Molenberghs and Verbeke (2005) argue that likelihood ratio tests 

should not even be used to test hypotheses when models are fitted using pseudo-likelihood methods. 

Furthermore, the number of clusters under study may be fairly small in practice, making inferences or tests of 

hypotheses concerning between-cluster covariance parameters based on asymptotic theory invalid. Approximate 

maximum likelihood estimation methods can also lead to invalid (i.e., negative) estimates of variance 

components in these models. Bayesian methods for making inferences about the parameters in HGLMs can 

provide an attractive solution to these various problems, and this paper considers such methods. 
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  In analysis of data of this type, the researcher is interested with the parameters that vary at each group level. 

These group level parameters go by different names, in different contexts, in different disciplines, and depending 

on the estimation method being used. Examples include “contextual effects”, “fixed effects”, “random effects”, 

and “varying” or “stochastic coefficients”. This between-group parameter variation is potentially of great 

substantive interest, since it speaks to a fundamental issue in empirical social science. Moreover, group by-group 

analysis is often an important preliminary step in data analysis: a useful and easily-implemented method for 

assessing parameter heterogeneity, but one that is often overlooked (Berger, 2006). 

A Bayesian approach to making inferences about differences in variance components in this context has several 

attractive features relative to the frequentist approach. The Bayesian approach would not require asymptotic 

theory or assumed asymptotic distributions for the test statistics computed in the frequentist approach, would 

account for the uncertainty in estimating features of prior distributions for model parameters, and would allow 

analysts to construct credible intervals for the difference between the two variance components based on draws 

from a posterior distribution for the two variance components (treating the fixed effects and any additional error 

variances allowing for possible over dispersion in the non-normal responses as nuisance parameters). This paper 

compares and contrasts these alternative approaches using real data. 

  2. Methods 

Bayesian models deal with the possibility of parameter variation across groups by positioning a model for the 

parameters above the model for the data. The “hierarchy” then arises because the model for the parameters sits 

“above” the model for the data. Indeed, in this sense all Bayesian models are hierarchical, in that a prior for θ sits 

above the model for y, the latter indexed by the parameter θ. This notion of a statistical model as a nested 

hierarchy of stochastic relations permeates all hierarchical modeling, highlighting why hierarchical models are 

very amenable to Bayesian analysis. Generically, Bayesian hierarchical statistical models have the form: 

yj|θ f(yj|θ) (model for the data in group j = 1, . . . , J ) 

θ|υ f(θ| ) (between-group model or “prior” for the parameters θ) 

υ P(υ) (prior for the hyper parameters, υ),  

Writing the hierarchy from “bottom” to “top” i.e, the model for the parameters is above that of the data. The 

inferential challenge is to compute the posterior density of all the parameters, θ = (θ1, . . . ,θJ, υ)’ and any 

marginal posterior densities for specific elements of θ that are of interest. Markov chain Monte Carlo and Gibbs 

sampling are extremely well-suited to this task. 

 

2.1 Multiple Regression Framework 

In linear multiple regression analysis, the goal is to predict, knowing the measurements collected on N subjects, 

a dependent variable Y from a set of J independent variables denoted {X1,...,Xj,...,XJ} . 

We denote by X the N × (J + 1) augmented matrix collecting the data for the independent variables (this matrix 

is called augmented because the first column is composed only of ones), and by y the N × 1 vector of 

observations for the dependent variable. 

The predicted values of the dependent variables  are collected in a vector  and are obtained as: 

        y = Xb with b =(X
T
X)

−1
X

T
y . ……………………………………………………..…(1) 

The vector b has J components. Its first component is traditionally denoted b0, it is called the intercept of the 

regression and it represents the regression component associated with the first column of the matrix X. The 

additional J components are called slopes and each of them provides the amount of change in Y consecutive to 

an increase in one unit of its corresponding column. 

The regression sum of squares is obtained as 

SSregression = b
T
X

T
y − (1

T
y)

2
……………………………………………………………(2) 

(with 1
T
 being a row vector of 1’s conformable with y). 

The total sum of squares is obtained as 
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SStotal = y
T
y − (1

T
y)

2
……………………………………………………………………..(3) 

The residual (or error) sum of squares is obtained as 

SSerror = y
T
y − b

T
X

T
y……………………………………………………………………. (4) 

The quality of the prediction is evaluated by computing the multiple coefficient of correlation denoted R
2
Y.1,...,J. 

This coefficient is equal to the squared coefficient of correlation between the dependent variable (Y ) and the 

predicted dependent variable (b, Y ). 

An alternative way of computing the multiple coefficient of correlation is to divide the regression sum of squares 

by the total sum of squares. This shows that R
2
Y.1,...,J  can also be interpreted as the proportion of variance of the 

dependent variable explained by the independent variables. With this interpretation, the multiple coefficient of 

correlation is computed as 

R
2
Y.1,...,J =  =  

2.2 Significance test 

In order to assess the significance of a given R
2

Y.1,...,J, we can compute an F ratio as 

F = …………………………………………………………..……….(5) 

Under the usual assumptions of normality of the error and of independence of the error and the scores, this F 

ratio is distributed under the null hypothesis as a Fisher distribution with ν1 = J and ν2 = N − J − 1 degrees of 

freedom 

3 Analysis of variance framework 

For an ANOVA, the goal is to compare the means of several groups and to assess if these means are statistically 

different. For the sake of simplicity, we assume that each experimental group comprises the same number of 

observations denoted I (i.e., we are analyzing a “balanced design”). So, if we have J experimental groups with a 

total of K observations per group, we have a total of J × K = N observations denoted Yi,j. The first step is to 

compute the J experimental means denoted αj and the grand mean denoted µ. The ANOVA evaluates the 

difference between the means by comparing the dispersion of the experimental means to the grand mean (i.e., the 

dispersion between means) with the dispersion of the experimental scores to the means (i.e., the dispersion 

within the groups). Specifically, the dispersion between the means is evaluated by computing the sum of squares 

between means, denoted SSBetween and computed as: 

SSBetween= k  

The dispersion within the groups is evaluated by computing the sum of squares within groups, denoted SSWithin 

and computed as: 

SSWithin =  

If the dispersion of the means around the grand mean is due only to random fluctuations, then the SSBetween and 

the SSWithin should be commensurable. Specifically, the null hypothesis of no effect can be evaluated with an F-

ratio computed as 

F =  

3.1 Bayesian model 

The Bayesian approach to fitting the HGLM  uses a Gibbs sampler based on the adaptive rejection sampling 

methodology (Gilks and Wild, 1992), as implemented in the BUGS (Bayesian Inference using Gibbs Sampling) 

software, to simulate draws from the posterior distribution for the parameters in the general model defined in (7). 

Diffuse noninformative priors for the fixed effects and the variance parameters were specified for the 

simulations, to let the data provide the most information about the posterior distributions of the parameters. This 

approach enables inferences based on simulated draws from the marginal posterior distributions of the two fixed 

effect parameters, the three variance parameters. This paper focuses on the marginal posterior distribution of the 

difference in the random effect variances. Specifically, the following prior distributions for these parameters 

were used. The following hierarchical model therefore operationalizes the above possibility and is  fitted to the 

data to demonstrate Bayesian variance components comparison. 

                                              i=1,2,…,nj 

                                                                       j=1,2,….,J 

V( )= σ
2
 

yij |αj,σ
2

Normal(αj,  σ
2
)……...…………………………..…….....………………….….(6) 
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αj  ,
2 

Normal( )
…………………………..………………………….……..(7) 

Equation (6) is a normal model for the data, with parameters αj and σ
2
, while equation (7) is a model for how αj 

(means), vary across the groups.The parameter μ0 is the mean of the distribution of the group means, and this 

group-level distribution has variance, , also known as the between variance;,σ
2
 is known as the within 

variance for groups J. The parameters in the group-level model, μ0 and  are known as hyperparameters. 

Prior densities for these Parameters, along with a prior for the σ
2
 “within variance”, are necessary to complete 

the specification of this model (A.Gelman, 2005). We used inverse Gamma priors for variance parameters and 

normal priors for means. 

Here, we presented a one-way ANOVA. In random-effects models, a set of effects (group means) are 

constrained to come from some distribution, which is most often a normal.   

A full specification of the normal, one-way Bayesian hierarchical ANOVA model is given below: 

               yij|αj, σ
2

Normal(αj,σ
2
)……………………….…….………………………..... (8) 

                   αj│µo, o
2

Normal(µo, o
2
)………………….…..……….…….………..…. (9) 

                                       0 Normal(b0, B0) 
……………….…………......………………... ….(10) 

                σ
2

inverse-Gamma(v0/2,σ
2
 v0/2)…....…………………….…....……….  ....(11) 

                         2
inverse-Gamma(k0/2, k0 /2)….……………….……...….............(12) 

A model with unit-wise heteroskedasticity results when we let the “within-unit” variance parameter σ
2
 vary over 

units (i.e.instead of σ
2
 we would have the parameters (σ1

2
,σ2

2
,……..σJ

2
).The hyperparameters of the normal prior 

for  (the mean b0 and the variance B0) and the hyperparameters of the priors for the model parameters are in 

the vector,  = (α1, . . αJ,μ0,σ
2
, ). 

 The hierarchical structure of the model implies that the prior density for  can be factored as follows: 

          f( )= f(α1, . . . , αJ,μo, σ
2
, ) 

            = f((α1, . . . , αJ│μ0, ) f(μ0)f( σ
2
)f( ) 

            =  

3.2 Data 

This followed Box and Tiao (1973) and data from an experiment that was set up to investigate to what extent 

yield of dyestuff differs between batches was used. The experiment featured six batches with five observations 

each. 

Table1: Data from a balanced experiment with five samples each with six randomly chosen bathes of raw 

material 

              Batch  Yield (in grams) 

____________________________________________________________________________________  

 1 1545 1440 1440 1520 1580 

 2 1540 1555 1490 1560 1495  

 3 1595 1550 1605 1510 1560 

 4 1445 1440 1595 1465 1545 

 5 1595 1630 1515 1635 1625 

 6 1520 1455 1450 1480 1445  

______________________________________________________________________________ 

The data in table 1, above arose from a balanced experiment in which the total product yield was determined for 

5 samples from each of 6 randomly chosen batches of raw material. In order toillustrate the behavior of the 

various parameters when the null hypothesis is true, the difference between the batch mean and the overall mean 

was subtracted from the batch data.The objective was to determine the relative importance of between batch 

variation versus variation due to sampling and analytic errors.  We assume that the batches and samples vary 

independently, and contribute additively to the total error variance. 

First, a classical one-way ANOVA is carried out to compute the F statistic and the corresponding p value for the 

data set. We used the following model for the yield 
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3.3 Frequentist (Classical) approach 

The parameters in the model will be estimated using the maximum-likelihood (ML) estimation, and implemented 

in the procedure in the R software (R, 2010).  

4. Results 

4.1 Descriptive Statistics  

Table 2: Coefficient values obtained using the classical approach 

_________________________________________________________________________ 

 Coefficients       Estimate             Std. Error                      t value                   Pr(>|t|) 

_________________________________________________________________________ 

(Intercept)         1527.50                  9.04                           168.985                < 2e-16 *** 

  Batch1            -22.50                    20.21                        -1.113                      0.27666     

  Batch2             0.50                       20.21                        0.025                       0.98047     

  Batch3             36.50                     20.21                        1.806                       0.08351 

  Batch4             -29.50                    20.21                       -1.459                       0.15739     

  Batch5             72.50                     20.21                        3.587                       0.00149  

 s-within             42.00 

 s-between          49.5 

__________________________________________________________________________ 

 Residual standard error: 49.51 on 24 degrees of freedom. Multiple R-Squared: 0.4893,     Adjusted R-squared: 

0.3829 .F-statistic: 4.598 on 5 and 24 DF,  p-value: 0.004398 

Most of the coefficients are non-significant, suggesting that the batch means do not differ significantly from the 

grand mean. The coefficients for batch6 is –sum(the rest) = -57.5. 

Table 1 presents descriptive statistics for the interviewers in each of the groups defined by the three binary 

interviewer-level factors. These descriptive statistics include the number of interviewers in each group (out of 38 

total), the mean, standard deviation (SD) and range for the number of cases (sample sizes) assigned to each 

interviewer, and the range of observed means on the parity variable. 
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Table 4: ANOVA Table for classical approach 

ANOVA 

________________________________________________________________________ 

  Source        DF       Sum of squares         Mean square                      F 

________________________________________________________________________ 

  Between     5               56,357.5              11,271.5 

   Within       24              58,830                2,451.25                    F =  = 4.598 

   Total         29               115,187.5          4,215.98 

_________________________________________________________________________ 

At a level of α= 0.05, the classical approach gave an F value (calculated) of 4.598 which was then compared 

with table values. 

Table 5: Table of posterior point estimates 

___________________________________________________________________________ 

  Mean sd          MC_error   val2.5pc median   val97.5pc   start sample 

__________________________________________________________________________________________

_ 

 mu[1] 1514.0 20.47 0.1963 1471.0 1515.0 1552.0 5000 100002 

 mu[2] 1528.0 19.31 0.1142 1489.0 1528.0 1566.0 5000 100002 

 mu[3] 1550.0 22.19 0.2991 1510.0 1550.0 1595.0 5000 100002 

 mu[4] 1509.0 21.28 0.241 1466.0 1510.0 1549.0 5000 100002 

 mu[5] 1572.0 29.16 0.5545 1516.0 1575.0 1625.0 5000 100002 

 mu[6] 1492.0 25.92 0.4349 1443.0 1491.0 1541.0 5000 100002 

 s-with  49.74 9.24 0.1301 39.35 52.47 75.03 5000 100002 

                       s-btw          41.65 27.15 0.4727 0.3101 37.34 102.4 5000 100002 

                 sigma2.with 2474.54 4151.0 33.04 0.09619 1394.0 10490.0 5000 100002 

                 sigma2.btw 1734.72    1069.0 15.35 1548.0 1753.0 5630.0 5000 100002 

 theta 1528.0 21.98 0.116 1483.0 1528.0 1572.0 5000 100002 

                          F 4.56 8.355 0.06948 1.122E-4 2.589 21.19 5000 100002 

 

The results in table 5,above  gives posterior numerical summaries from the model after 100,002 iterations and 

additional discarded 5,000 burn-in iterations using Normal prior for the mean and Inverse-Gamma prior  for  the 

variance parameters. It gives the posterior means for the batches, posterior between and within variances. It also 

gives 95% credible set analog to confidence interval in frequentist approach. This gives a grand posterior mean 

of 1528.0, posterior within variance of 2474.54 and posterior between variance of 1734.72. These results closely 

agree with those obtained using frequentist approach. Posterior F-value was 4.56 which is similar to that 

obtained using Classical approach.  
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4.2 Posterior densities 
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Figure 1: MCMC Posterior densities for the parameters 

5.0 Discussion of results 
This paper has demonstrated Bayesian approach to finding the posterior F-value and fitting HGLMs with 

heterogeneous random effect variance parameters and making inferences about differences in those variance 

parameters. Analysis of real experimental data  have shown how the Bayesian approach do a better job than 

frequentist approach by accommodating uncertainty in the estimation of parameters in these models, and lead to 

more appropriate inferences when the number of clusters under study is fairly small. Specifically, inferences 

when following the Bayesian approach to analyzing this problem can be based on 95% credible sets for the 

difference in the two variance components, defined by the differences in simulated draws of the two variance 

components from the joint posterior distribution for a given model. This approach provides a more natural form 

of inference for this problem than the more problematic likelihood ratio testing in the frequentist setting, which 

relies on asymptotic theory and should not be applied when using pseudo-likelihood estimation approaches. 

After a burn-in of 5,000 draws (the first 5,000 draws from each Markov chain are discarded as not representative 

of the stationary distribution of the chain i.e the posterior distribution of the parameters in the model) and a 
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further 100,002 iterations for each chain, the MCMC produced the summary statistics for the samples as shown 

in Table 5. As a Bayesian point estimate, typically the posterior means or the posterior medians (or sometimes 

also the mode), were reported in these table, while the posterior standard deviation was used as a standard error 

of the parameter estimate. The range between the 2.5
th

 and 97.5
th

 percentiles represents a 95% Bayesian 

confidence interval and is called a credible interval. 

Numerical summaries of the model using the priors appear in Table 5, for the posterior grand mean μ, the 

“between” variance (ω
2
) and the “within”, variance (σ

2
). The left column summarizes the results of the WinBugs 

run, showing the mean of the MCMC output for each of the parameters, the standard deviation, and an estimate 

of the 95% HDR of the marginal posterior density of each parameter. 

   Assessing the trace plots indicates that the parameter traces look like straight hairy colorful caterpillars, with 

the two chains fluctuating rapidly around their equilibrium, and that there are no obvious upward or downward 

trends. Besides, the autocorrelation plots show little correlations, and kernel density plots show bell-like 

posterior distributions, and the Gelman-Rubin statistic show that the ratio of between to within variability is 

close to 1. All plots assume us that the model is converged. 

 These posterior point estimates give results similar to those obtained when using the classical or frequentist 

approach.  
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