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Abstract 

In this paper, modification of Adomian decomposition method is introduced for solving heat equation with 

derivative boundary conditions. Some examples and the obtained results demonstrate efficiency of the 

proposed method. 
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1. Introduction 

Many classes of linear and nonlinear differential equations can solve using Adomian decomposition method 

and in computation and faster in convergence it is much simpler than any other method available in the 

open literature. 

    Many Authors have proposed numerical methods for solving problems [1-10]. Later A. Cheniguel [11], 

present Adomian decomposition for solving non-homogeneous heat equation with derivative boundary 

conditions. In this work we propose a new technique based on the modification of Adomian decomposition 

method.  

 

2. Solution Heat Equation by Modified Adomian’s Decomposition Method  

In this section, we present modified decomposition method for solving the heat equation with derivative 

boundary conditions: 

            

               ),(),(),( txqtxuDtxuD xxt            (1)    

10),()0,(  xxfxu                                             (2) 

                 Tttgtu  0),(),0( 1                                             (3)                                                                          

                           Tttgtu  0),(),1( 2                                                                               (4) 

Where 21,, ggf  and q are known functions, T is given constant.  

We start with Adomian decomposition method  

                             





0

),(),(
n

n txutxu  

 Now, Equation (1) can be rewritten as 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                         www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.5, 2014 

 

171 

 

                         ),(),(),( txqtxuLtxuL xxt                      (5)                  

Where the differential operators )()( 





t
Lt  and 2

2

x
Lxx




  , the inverse 

1L  is assumed an 

integral operator given by 

                            

t

dtL
0

1 )(                                        (6) 

The operating with the operator 
1L   on both sides of Equation (5) we have 

 

                       )),(())),((())),((( 111 txqLtxuLLtxuLL xxt

   

 

Therefore, we can write,  

                           ),()0,(),( 1
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n
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By Wazwaz [12], the modified decomposition method is based on the assumption that the function )(xK  

can be divided into two parts, namely )(1 xK  and )(2 xK . Under this assumption we set   

                                )()()( 21 xKxKxK    

we suggest the following modification            

        10 Ku    
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3. Numerical Illustration: 

Example 1: Consider the problem (1) with the following conditions, as taken in [11]   

                

                         ),(),( 2 txuDtxuD xt  txe  2                                                  

                        10,)0,(  xexu x
                                                                                   

                         Ttetu t

x   0,),0(                                                
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                                      Ttetu t   0,),1( 1
 

Now after modified decomposition method, we obtain:  

0),(

0),(

0),(

),(

3
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1

0
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txu

txu

txu

etxu tx

 

Then the series form is given by: 

),(),(),(),(),( 3210 txutxutxutxutxu   

            txe 
 

This is the exact solution  ),( txu
txe 
.  

  The plot of the exact solution surface is shown in Figure 1 and the numerical solution surface is shown in 

Figure 2 for heat equation  
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Figure 1: Exact solution   Figure 2: Numerical solution 

 

Example 2:  Consider the problem (1) with the following derivative boundary and initial conditions, as 

taken in [11] 

                   
22 ),(),( xttxuDtxuD xt                                                            
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                  10),sin()0,(  xxxu                                                                                    

                            Tttux  0,1),0(   

                           Ttttux  0),sin(),1(  

We apply the above modified decomposition method; we obtain: 

0),(

0),(

0),(

3

1
)sin(),(

3
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1
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0
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Then the series form is given by: 

),(),(),(),(),( 3210 txutxutxutxutxu   

            xtxe t 3

3

1
)sin( 

 

Which gives the exact solution ),( txu xtxe t 3

3

1
)sin( 

.  

Figure 3 and Figure 4 show the plot of the exact solution surface and the numerical solution surface for 

heat equation respectively. 
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Figure 3: Exact solution Figure 4: Numerical solution 
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Example 3: Consider heat equation with derivative boundary conditions for the equation (1), as taken in 

[11]   

                    ),(),( 2 txuDtxuD xt                                                            

                   10),sin()0,(  xxxu                      

                    
t

x etu
2

),0(                                                  

                              
tetu

2

),1(    

Now we apply the above modified decomposition method, we obtain:  

0),(
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Then the series form is given by: 

),(),(),(),(),( 3210 txutxutxutxutxu   

            )sin(
2

xe t 
 

This is the exact solution  ),( txu )sin(
2

xe t 
.  
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  Figure 5 and Figure 6   show the plot of the exact and the numerical solution surface for heat equation 

respectively. 

0

5

10

15

0

5

10
0

1

2

3

4

5

6

x 10
-5

 
0

5

10

15

0

5

10
0

1

2

3

4

5

6

x 10
-5

 

Figure 5: Exact solution Figure 6: Numerical solution 

4. Conclusion 

In this paper, we have applied the modified decomposition method for the solution of the heat equation with 

derivative boundary conditions. This algorithm is simple and easy to implement. The obtained results confirmed 

a good accuracy of the method. On the other hand, the calculations are simpler and faster than in traditional 

techniques. 
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