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Abstract 

In this paper, an effective methodology for finding solution to a general class of singular second order 

linear as well as nonlinear boundary value problems is proposed. These types of problems commonly occur 

in physical problems. The solution is developed by constructing a sequence of correctional functional via 

variation Iteration theory. The analytical convergence of such occurring sequences befitting to the context 

of the class of such existing problems is also discussed. The efficacy of the proposed method is tested on 

various problems.  It is also observed that execution of only few successive iterations of correction 

functionals may lead to a solution that is either exact solution or very close to the exact solution.  

Keywords: Variation iteration method, sequence, linearization, discretization, transformation Convergence, 
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1. Introduction 

A wide spectrum of well defined properties and behavior systematically associated to a class of 

events/situations occurring on varied fronts in celestial bodies or multidisciplinary sciences either internally 

or externally or both ways simultaneously are realized or discerned in real or abstract sense. When these 

problems are modeled mathematically in order to envisage or acknowledge the endowed and all inherent 

characteristics in and around thereof, a class of second order singular differential equations along with two 

boundary conditions comes into coherent consideration. Therefore, for such class a suitable and sustainable 

solution either numerically appropriate or analytically in the exact form, is must and equally important in 

whatsoever manner it is made possible by applying so any feasible proposed variant.  

Consider a general class of boundary value problems as follows 

    x−α (xα y/ )/ = f (x, y)    0< 𝑥 ≤ 1         (1.1) 

                y(0) =A   ,   y(1) =B         

A, B are constants andα ∈ ℝ − set of real numbers. The function f(x, y) is a real valued continuous 

function of two variables x and y such that (x, y) ∈ ℝ × ℝ and that 
∂f

∂y
 is a nonnegative and continuous 

function in a domain R = {(x, y) :(x, y)∈[0 1]× ℝ}. Solution to such class of problems exists [7-8].  Out of 

such class it plausible to consider a sub-class formed when α ∈(0 1)⊆ ℝ for elaborated analysis and 

discussion of facts. The class of problems (1.1) from a specific area of the field of differential equation has 

been a matter of immense research and keen interest to researchers in recent past. Several methods like 

B-Spline, homotopy method, Lie group analysis, power series method, projection method, Adomian 

method, multi- integral method, finite difference method [9- 15] have been applied on to justify an 

immaculate importance of such class of problems. Variation iteration method, a modified Lagrange method 

[16] originally proposed by He [17-21], stands recognized as promising and profusely used method of 

research in almost all disciplines of science and technology as an alternative method which is different from 

other methods of linearization, transformation and discretization used to solve such type of   problems in 

some way or other way round. It is pertinent to note that the proposed method has fared well, over a large 

class of mathematically modeled problems whenever or wheresoever’s such a suitable situation has have 

aroused and it is demanded to be applied so. Eventually, credit accrue to variation iteration method for 

solving a class of distinguished and challenging problems like, nonlinear coagulation problem with mass 
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loss ,nonlinear fluid flow in pipe-like domain, nonlinear heat transfer, an approximate solution for one 

dimensional weakly nonlinear oscillations, nonlinear relaxation phenomenon in polycrystalline solids, 

nonlinear thermo elasticity, cubic nonlinear Schrodinger equation, semi-linear inverse parabolic equation, 

ion acoustic plasma wave, nonlinear oscillators with discontinuities ,non-Newtonian flows, Burger’s and 

coupled Burger’s equation, multispecies Lotaka –Volterra equations, rational solution of Toda lattice 

equation, Helmholtz equation, generalized KdV equation[17-34]. 

2.  Variation Iteration Method (VIM) 

The basic virtue and fundamental principle associated to variation iteration method may be expressed in 

brief by considering a general differential equation involving a differential operator D as follows.  

            Let       Dy(x) = g(x)                         x ∈ Ι ⊆ ℝ                (2.1)  

y(x) is sufficiently smooth function on some domain Ω and g(x) an inhomogeneous real valued function. 

(2.1) can be rewritten as, 

            L (y(x)) + N (y(x)) = g(x)      x ∈ Ι ⊆ ℝ                             (2.2) 

where L and N are linear and nonlinear differential operators, respectively.  

Ostensibly, the privileged variation iteration method has natural aptness and  basic tendency to generate a 

recursive sequence of correction functionals that  commands and allows to conserve a real power and 

absolute potential for finding a just and acceptable solution to the  given class of problems (1.1) and the  

sequence of correctional functional over(2.2) is   

             yn+1(x) = yn(x) + ∫ μ
x

0
(s) ((L (yn(s)) +N (yn(s)̃) – g (s)) ds    , n≥0       (2.3)  

where μ stands for Lagrange multiplier determined optimally satisfying all stationary conditions after the 

variation method is applied to (2.3). The importance and therefore utility of method all over lies with the 

assumption and choice of considering the concerned inconvenient highly nonlinear and complicated 

dependent variables as restricted variables thereby minimizing its magnitude, the accruing error that might 

have crept into the error prone process while finding a solution to (1.1). As aforementioned, yñ  is the 

restricted variation, which means δyñ=0. Eventually, after desired μ is determined, a proper and suitable 

selective function (linear or nonlinear) with respect to (2.2) is assumed as an initial approximation for 

finding next successive iterative function by recursive sequence of correction functional. Thereafter 

boundary conditions are imposed on the final or preferably on limiting value (as n → ∞) of sequential 

approximations incurred after due process of iteration. 

3.  Variational Method and Lagrange Multiplier 

The variational method and Lagrange multiplier are convoluted corresponding to (1.1) by the iterative and 

successive correction functional relation as  

         yn+1  (x)   =  yn(x) + ∫ μ(s)
x

0
  (sαyn

/
(s))/ -xα f̃(s, yn(s))) ds    n≥0    (3.1) 

where yn(x) is nth approximated iterative solution of (1.1). Suppose optimal value of μ(s) is identified 

naturally by taking variation with respect to yn(x) and subject to restricted variation δyñ(x) =0. Then from 

(3.1) we have 

         δyn+1(x) =δyn(x) +δ ∫ μ
x

0
(s)((sαyn

/
)/ -sαf̃(s, yn(s)) ds          n≥0      (3.2) 

Integrating by parts and considering the restricted variation of yn (i.e. δyn=0) as well relation (3.2) gives 

         δyn(x) = (1- μ/(s)) δyn(x) + δ(μ(s) sαyn
/
(s)) |s=x   + ∫ (μ/x

0
(s) sα)/δyn(s)ds,  n ≥ 0  

Therefore, the stationary conditions are 

 μ/(s) sα = 0,   μ(x) = 0 , (μ/(s)sα )/= 0  

It gives 

             µ(s)=
S1−α−X1−α

1−α
 

From (3.1), the sequence of correction functionals is given by 

        yn+1(x) =yn(x) + 
1

1−α
∫ (sαx

0
-xα) ((sαyn(s))/ -sαf(s, yn

̃ (s))ds       n≥ 0       (3.4) 
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It may be deduced from (3.4) that the limit of the convergent iterative sequence
            
 {yn}

n=1

∞
 , if it converges 

on satisfying given boundary conditions, is the exact solution to (1.1). 

4.  Convergence of Iterative Sequence 

In order to carry out convergence analysis of the sequence of correctional functionals generated by 

execution of VIM with respect to given class (1.1) in view of (3.1), we consider  

                 yn+1(x) = yn(x) +∑ (yk+1
n−1
k=0 (x) − yk(x)) is the nth partial sum of the infinite series 

             y0 (x) +∑ (yk+1
∞
k=0 (x)−yk(x))                         (4.1) 

And that convergence of auxiliary series (4.1) necessarily implies the convergence of iterative sequence 

  {yn(x)}n=1
∞  of partial   sums   of the series (4.1). 

Let y0(x) be the assumed initial selective function. The first successive variation iterate is given by 

               y1(x)=∫ μ
x

0
(s)((sαy0

/
(s))/_sα f(s, y0(s)))ds                                   (4.2) 

Integrating by parts and in sequel applying the existing stationary conditions, we have 

       |y1(x)− y0(x)|=|∫ (y0
/x

0
(s)+μ(s)sαf(s, y0(s))ds|                          (4.3) 

 Or       |y1(x)-y0(x)|≤ ∫ ( | y0 
1x

0
(s)|+|sα||µ(s)||f(s,y0(s)|)ds                          

 Or              | y1(x)-y0(x) | ≤ ∫ ( | y0 
1x

0
(s) | + |µ(s) || f(s,y0(s)|) ds                   (4.4) 

Again pursuing similar steps as in (4.2) and adopting usual stationary conditions likewise, relation (3.4) 

gives 

             |y2(x) − y1(x)|=|∫ μ
x

0
(s) sα(f(s),y1(s))−f(s,y0(s))ds|                        (4.5) 

 Or,      |y2(x) − y1(x)|≤ ∫ |μ
x

0
(s)||sα|(f(s),y1(s))−f(s,y0(s))|ds  

 Or,        |y2(x) − y1 (x)|≤ ∫ |μ
x

0
(s)| (f(s), y1(s))− f(s, y0(s)) |ds                   (4.6) 

In general, we have 

             |yn+1(x)−yn(x)|=|∫ μ
x

0
(s)sα(f(s,yn(s))−f(s,yn−1(s)))ds|              (4.7)   

   Or,        |yn+1(x) – yn(x)|≤ ∫ |μ
x

0
(s) ||sα|| (f(s,yn(s)) −f(s,yn−1(s))) |ds      ∀    n   ≥  2   

Or,       |yn+1(x) −yn(x)|≤ ∫ |μ
x

0
(s) || (f(s,yn(s)) −f(s,yn−1(s))) |ds     ∀    n   ≥2     (4.8) 

Since f(x, y) and 
∂f(x,y)

∂y
  are continuous on R, therefore for fix sϵ [0 1] and by virtue of 

mean value theorem  ∃ (s,θn
0  (s))∈ R satisfying (say, yn−1(s) < θn

0(s) < yn (s)), 

∀n ∈ IN  ,   s≤ x ≤ 1 , such that 

             |f(s, yn(s)) −f(s, yn−1(s))| = |
∂f(s,θn+1

0 (s))

∂y
||yn(s) −yn−1(s)|     ∀ n   ≥  2 (4.9) 

Now, suppose    

  M∞
1  =sup (|y0

/
(s) |+|μ(s)|| f(s, y0(s))|  , s ≤ x ≤ 1           (4.10) 

and           M2
∞=sup (|μ(s)||

∂f(s,θn
0 (s))

∂y
|) ,                       s ≤ x ≤ 1 , n∈ IN  (4.11) 

Again to begin with assume 

 M=sup(M∞
1 ,M∞

2 )                                      (4.12)        

We observe and proceed to establish the truthfulness of the inequality 

             |yn+1(s) −yn(s)| ≤  
Mn+1xn+1

n+1!
      ∀n ∈ IN                         (4.13) 

Relations (4.4), (4.10), (4.9) and (4.12) give 

              | y1(x)-y0(x) | ≤ ∫ M1
x

o
 ds   ≤ ∫ M

x

0
ds ds     = Mx                  (4.14) 

As well as,  |y2(x) − y1 (x)|≤ sup|μ(s)||  
∂f(s,θ1

0(s))

∂y
|∫ |(y1(  s)) − y0(s) )|

x

0
ds                      

 or   |y2(x) − y1(x)|≤ sup(|μ(s)||
∂f(s,θ1

0(s))

∂y
|  ∫ |(y1( s)) − y0(s))|

x

0
ds=M∫ M

x

0
 ds=

M2x2

2
 

                   s ≤ x ≤ 1 ,n∈ IN  
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Thus, the statement (4.13) is true for natural number n=1 

Suppose that      |yn(s) −yn−1(s)| ≤  
Mnxn

n!
      holds    for    some,     n ∈ IN 

Then, relations (4.8), (4.9) and (4.12) imply     

              |yn+1(x)−yn(x)|≤ ∫ |μ
x

0
(s)||

∂f(s,θn
0 (s))

∂y
||yn(s)−yn−1(s)|ds       

 i.e.        |yn+1(x) -  yn (x )  |     ≤  ∫ |sup (μ
x

0
(s))| (sup|

∂f(s,θn
0 (s))

∂y
|)|yn(s) −yn−1(s) |ds 

                                     s≤x≤1             n ∈ IN  

                       

or ,       |yn+1(x) −yn(x)| ≤  sup(|μ(s)| |
∂f(s,θn+1

0 (s))

∂y
| ∫ |yn

x

0
(s) − yn−1(s)|ds 

 

                         ≤ M∫  
Mnsn

n!

x

0
ds=

Mn+1xn+1

n+1!
 

Therefore, by Principle of Induction 

|yn+1(x) − yn(x) |≤   
Mn+1xn+1

n+1!
  holds    ∀xϵ [0 1] and ∀n ∈ IN. 

So the series (4.1) converges both absolutely and uniformly for all  x ∈ [0 1] 

Since, |y0(x)|+∑ |yn+1
∞
n=0 (x) −yn(x)|≤ |y0(x)|+∑

Mn+1xn+1

n+1!

∞
n=0 =| y0(x)|+ (eMx −1),  ∀x ∈[01] 

Asserting that the series y0(x) +∑ (yk+1
∞
k=0 (x)−yk(x)) converges uniformly ∀x ∈ [01] and hence the 

sequence of its partial sums  {yn(x)}n=0
∞  converges to a limit function as the solution.  

5.  Numerical Problem 

To begin with implementation and analyze scope of VIM, we apply this very method to find the solution of 

linear and nonlinear problems that have been solved by different methods in literature. Specifically to 

mention is the method to solve it numerically and via numerical finite difference technique of solution.  

Example 1: Consider the following boundary value problem [12] 

            y(2)(x)+   
α

x
y(1)(x) = −x1−α cos x −(2−α)x1−α sin x                  (5.1) 

               y(0) = 0 ,    y(1) = cos 1     

Solution: To solve this we construct correction functional as follows   

            yn+1(x) = yn(x) + ∫ μ(s)
x

0
 ((−sαyn

/
(s))/ − s cos s – (2−α) sin s) ds ,     n≥0 

where  μ(s) Is optimally identified Lagrange multiplier similar to (3.3).  The first iterative solution is 

given by 

            y1(x) = yo(x)   +   ∫ μ(s)
x

0
 ((−sαy0

/
(s))/ − s cos s – (2−α) sin s) ds              

 Since the selective function  y0(x) is arbitrary for simplicity and easiness we may choose 

            y0 (x) =   a0   x1−α ,   so that (−sα y0
/
)/ ) = 0 

 Thus,   y1 (x) =   a0   x1−α     +      ∫ μ(s)
x

0
   (−s cos s – (2−α) sin s) ds                                                                 

 Now performing usual simplifications and applying term by term series integration, we get 

           y1 (x) =   a0  x1−α −[ ∑ (−1)n∞
0   

x2n+3

(2n+3−α)(2n+1)!
 + (1−α) ∑ (−1)n+1∞

n=1  
x2n+1−α

(2n+1−α)(2n)!
] 

  or        y1 (x) =   a0  x1−α + x1−α  ∑ (−1)n∞
n=1

x2n

(2n)!
 

  or        y1 (x) =   a0  x1−α +x1−α  ∑ (−1)n∞
n=0

x2n

(2n)!
  −  x1−α  

i.e.      y1 (x) ==   (a0 − 1)  x1−α  +  x1−α   cos x             (5.2) 

In order to match the boundary condition y(1) = cos(1) taking limit as (x → 1) we find   a0 = 1  , 

only the first iterate giving the exact solution as y(x)= y1 (x) = x1−α cos x 

Example-2:  Consider the boundary value problem [12]        

              (xαy/)/ = βxα+β−2 ((α + β − 1) + βxβ) y 
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              y (0) =1   ,    y(1) =exp (1)                                   (5.3) 

Solution: The correction functional for the problem (5.3) is  

          yn+1(x) =yn(x) + ∫ μ
x

0
(s) ((sαyn

/
)/ − β (α + β − 1)sα+β−2 − β2sα+β−2) yn(s)    (5.4) 

μ(s) Is optimally identified Lagrange multiplier similar as (3.2) 

Inserting, y (0)=y0(x)=1 to (5.4) when n=1, as selective initial approximation function we process out 

following induced successive iterative approximate solutions as  

 

              y1(x) = 1+xβ+β
x2β

2(α+β−1)
 

 

              y2(x) = 1+xβ+  
x2β

2.1
 + β

x3β

3(α+3β−1)
 

 

              y3(x) = 1+xβ+
x2β

2.1
+ 

x3β

3.2.1
+ β

x4β

4.2(α+4β−1)
 

 

         y4(x) = 1+xβ+
x2β

2.1
+ 

x3β

3.2.1
+ 

x4β

4.3.2.1
 + β

x5β

5.3.2(α+5β−1)
 

 

              y5(x) = 1+xβ+
x2β

2.1
+ 

x3β

3.2.1
+ 

x4β

4.3.2.1
 +

x5β

5.4.3.2.1
 + β

x6β

6.4.3.2(α+6β−1)
 

 

Similarly, continuing in like manner inductively we find the general term of the sequence 

             yn(x) = 1+xβ+
x2β

2.1
+ 

x3β

3.2.1
+ 

x4β

4.3.2.1
 +

x5β

5.4.3.2.1
 + 

x6β

6.5.4.3.2.1
  +………… + 

xnβ

n!
 + 

nβx(n+1)β

n+1!(α+(n+1)β−1)
 

 

i.e.       yn(x)   =   ∑
xkβ

k!

n 
k=0    +   

nβx(n+1)β

n+1!(α+(n+1)β−1)
                     (5.5) 

 

Now, we observe that Tn =  
nβx(n+1)β

n+1!(α+(n+1)β−1)
   (say), is the general term of a convergent 

 

Series ∑
nβx(n+1)β

n+1!(α+(n+1)β−1)

∞
n=0    .  

Therefore,   lim (n→ ∞)   
nβx(n+1)β

n+1!(α+(n+1)β−1)
 = 0 and (5.5) facilitates the exact solution to (5.3) as      

y(x) =lim (n→ ∞)( ∑
xkβ

k!

n 
k=0  ) =exp (xβ ). 

Example-3:  Consider the boundary value problem [9] 

           

             (xαy/)/ =
βxα

4+xβ(βxβey − (α + β − 1)) 

             y (0) =ln 
1

4
   ,  y(1) = ln 

1

5
                                       (5.6) 

Solution: Let, y0= y(0) = ln  
1

4
  , be the selective initial approximation function .Then by VIM 

First iterative approximate solution to (5.6) simplifies to 

             y1(x) = ln 
1

4
 + ∫

μ(s)

4+xβ

x

0
(

β2sα+2β−2

4
− (α+β − 1) βαsα+β−2) ds          (5.7) 

where as μ(s) is optimally identified Lagrange multiplier as existing in (3.3) and after simplifying (5.4) 

the required first approximate solution to (5.6) satisfying the given boundary condition y(0) = ln  
1

4
   is 

as follows 

            y1(x) =ln
 1

4
−

xβ

4
+

1

2
(

xβ

4
)2+∑ (

α+2β−1

α+nβ−1

∞
n=3 ) (

(−1)n

n
) (

xβ

4
)n                        (5.8) 

Now, we observe in (5.8) that the first three terms of the first approximate iterative solution of (5.6) match 

the first three terms of the expanded Taylor’s series solution even though only first boundary condition is 
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being used so for. However, if we allow β to tend to zero in (5.8) as β is arbitrary,  y1(x) violates the 

condition y(0) = ln  
1

4
 . But if the terms ( 

α+2β−1

α+nβ−1
)  and  (

(−1)n

n
) (

xβ

4
)n are treated independent to each 

other and arbitrarily parameter β  is allowed to approach to zero only in the coefficient (
α+2β−1

α+nβ−1
) of  

(
(−1)n

n
) (

xβ

4
)n  independently, the boundary condition y(1) = ln

1

5
  expressed in expanded series form 

matches the prescribed value if it is imposed on y1(x). Thus improvisation on y1(x)in this way not only  

shoots to satisfy  the other boundary condition but also exculpate to procures the exact solution. Therefore, 

allowing the process to do so and let the first iterate mend its way to produce exact solution y(x) =  y1(x) 

to the problem (5.3). Therefore the exact solution to (5.6) is given by   

            y(x) = y1(x) = ln 
1

4
  −

xβ

4
+

1

2
(

xβ

4
)2 )n +∑ (

(−1)n

n
)(

xβ

4
)n∞

n=3  =ln
1

4+xβ 

6.  Conclusion 

In this paper, we have applied the He’s variation iteration method successfully to a linear as well as to a 

nonlinear class of boundary value problems. The convergence analysis of the proposed method with 

reference to considered class has also been presented in exhaustive manner. A proper selection of selective 

function and careful imposition of boundary condition  on iterative function may lead to an exact solution 

or any  other solution of high accuracy even to a non-linear problem in just  only some maneuvered 

simplifications. 
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