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Abstract 

In this paper, we present efficient numerical algorithms for the approximate solution of linear 
and non-linear higher order boundary value problems. Algorithms are, based on Adomian 
decomposition. Also, the Laplace Transformation with Adomian decomposition technique is 
proposed to solve the problems when Adomian series diverges. Three examples are given to 
illustrate the performance of each technique. 
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1. Introduction 

The Adomian decomposition method, proposed initially with the aims to solve frontier physical 
problems, has been applied to a wide class of deterministic and stochastic problems, linear and 
nonlinear problems, in physics, biology and chemical reactions etc (Adomian 1992). Inspired 
and motivated by the ongoing research in this area, the method assumes a series solution for the 
unknown quantity. It has been shown ( Abbaooui & Cherruault 1999, Hosseini & Nasabzadeh 
2006, that the series converges fast, and with a few terms this series approximate the exact 
solution with a fairly reasonable error, normally very less. Each term of this series is a 
generalized polynomial called the Adomian polynomial. Besides, it also has certain advantages 
over standard numerical methods as it is free from rounding-off errors and computationally 
inexpensive since it does not involve discretization. In this paper, we adopt the algorithm to the 
solution of boundary value problems arising in the modelling of real life problems. The fourth 
order two point boundary value problems have received a lot of attention in the literature due to 
their many applications in elasticity, was investigated by Kosmatov (2004). The objective of this 
paper is to implement a symbolic code (discussed in Kumar at el. 2010 and Kumar at el. 2011) 
for fully reflecting a simple and reliable technique for third order singular boundary value 
problems and fourth order beam bending problem using Mathematica 6.0. 

The balance of this paper is as follows. In the next Section, we briefly introduce the Adomian 
decomposition method. In Section 3, we will explain Adomian decomposition method for higher 
order singular boundary value problems. In Section 4, Laplace transformation with Adomian 
decomposition method for oscillatory solutions for which Adomian method diverges is 
described. In Section 5, we present the numerical experiment which shows effectiveness of the 
proposed method. In the last Section, concluding remark with summary of the paper is given.  

2. Adomian decomposition method: 

In this section, we describe the Adomian decomposition method as it applies to a general 
nonlinear equation of the form 
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                                                   fNyy                                                         (2.1) 
where N  is a nonlinear operator from a Hilbert space H  into H , f  is a given function in H . By 
the decomposition method y   is a series solution given by 
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Nonlinear operator N is decomposed by 
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From (2.1), (2.2) and (2.3) we have  
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nA  are Adomian polynomials that can be constructed for various classes of nonlinearity 
according to specific algorithms set by Adomian 1992.  
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If the series (2.3) is convergent, then (2.4) hold as 

                                           fy 0  
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                                              
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Thus, we can recursively determines every term of the series


0n

ny . 

3. Adomian decomposition method for higher order singular boundary value problems 
 
For the higher order singular boundary value problems of type  

                    )()()(1 xgyFxqy
x

m
y nn 

,                                                  (3.1) 

                   cbyayayay n
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 )(,)0(,,)0(,)0( 1

1

10                                  (3.2)    
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where F is a nonlinear operator of order less than n . Therefore equation (3.1) and (3.2) can be 
rewritten in operator form as 
                         )()()( yFxqxgLy                                                                       (3.3) 

where n fold operator L is defined by Hasan et. al., 2009 as  

                         (.)11
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x
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xL                                                  (3.4) 
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Hasan et al., 2009 defined the inverse operator for (3.4) and (3.5) respectively as: 
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By applying 
1

1

L  and 
1

2

L to the equation (3.1) we have    
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where 





0n

nANy , specific formula for finding Adomian polynomial is explained in (2.5) for 

nonlinear term )(yF . )(1 xy and )(2 xy are approximate solution using inverse operator (3.6) and 

(3.7) respectively. The components ny  can be obtained by applying modified Adomian 

decomposition method from the recurrence relation: 
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The n term approximation can be obtained by, 

                          



n

i

in y
0

                                                                                  (3.11)  

The Adomian decomposition method (ADM) outlined above (detailed in Hassan 2009) is easy to 
implement and does not need discretization. However, it has some drawbacks. Its efficiency and 
accuracy rely on the convergence and the rate of convergence of the series solution. We found, 
that the ADM gives a series solution which may have a slow rate of convergence over wider 
regions. Furthermore, if the solution of the problem is oscillatory, then the ADM series solution 
may be divergent. To overcome these drawbacks, ADM needs to be modified in order to work 
for problems where the solutions are of oscillatory in nature. Due to this difficulty the idea of 
Laplace transform is introduced with Adomian decomposition method to solve such problems.  
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4. Laplace Transformation with Adomian decomposition method for higher order 
boundary value problems 
 
In this section, the Laplace Transform with Adomian decomposition Method discussed (Hajji et 
al., 2008) for solving nonlinear higher order boundary value problems in the interval ],0[ b of the 
form 

                      ( ) ( ) ( ) ( ), 0ny q x F y g x x b                                                    (4.1) 

subject to the condition 

                         cbyayayay n
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10                 (4.2) 

Appling Laplace Transform integral operator (denoted by L ) both side of equation (4.1) 

                      ( )[ ] [ ( ) ( )] [ ( )], 0nL y L q x F y L g x x b                                     (4.3) 

It gives   
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Substituting boundary conditions from (4.2) we have 
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where the constants which are unknown are determined by imposing the boundary conditions 
at bx  . 
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Applying the inverse Laplace transform to equation (4.7), gives the zero

th 
component of 

Adomian solution. After substituting the value of nAAAA ,,,, 210   in (4.8-4.10) respectively and 

applying the inverse Laplace transform, we obtain the solution 

components nyyyy ,,,, 210  successively. The n term approximation is given by 

                             ,),(),(
1

1







n

i

in cxycx                                              (4.11)        

To determine the constant c , we require that ),( cxn satisfies the boundary conditions at bx  . 
Solving the algebraic equation, we obtain the required constant, which complete the numerical 
solution of our nonlinear higher-order boundary value problems. 
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5.  Computer Simulation 
 
In this section, we apply the proposed algorithm on two third order non-linear singular boundary 
value problems and one fourth order oscillatory boundary value problem. 
 
Example 1 :( Third order singular problem) 

                      ,667
2 2622 xxxx exeexexyyy
x

y                        (5.1)                 

                      ,)1(,0)0()0( eyyy                                                         (5.2) 
 Operator form of the equation is  

                     ),,()( xyFxqLy                                                                     (5.3)  

where       
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So the inverse operators for the equation (5.1), (5.2) from (3.6), (3.7) are 
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Applying 1L on the both side of equation (5.2) we get  
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 Nonlinear term ,2y is calculated by the Adomian polynomial as, 
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After computing the values of series components ,1y ,2y ,3y we get the third order 

approximation of series solution  
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The exact solution of the (5.1), subject to the (5.2) is ,3 xexy  the comparison of exact 

solution and approximate solution is given in table 1. Figure 1 shows the graphical representation 

of the approximate solutions which is very close to the exact solution. 
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Table 1 

 

                         x                     y(ADM )                     y(Exact)                        Error 

                        0                            0                                  0                               0 

0.1                    0.00110664                 0.00110666                  1.88E-8 

0.2                    0.00986585                 0.00986616                  3.01E-7 

0.3                    0.03751990                 0.03752150                  1.52E-6 

0.4                    0.10147900                 0.10148400                  4.83E-6 

0.5                    0.22886500                 0.22887700                  1.19E-5 

0.6                    0.46120300                 0.46122900                  2.56E-5 

0.7                    0.86027700                 0.86032800                  5.07E-5 

0.8                    1.51512000                 1.51522000                  9.82E-5 

0.9                    2.55015000                 2.55035000                  1.92E-4 

1.0                    4.13454000                 4.13492000                  1.92E-4 

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0
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2.5

y
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approx

 
Figure 1: Exact and Approximate solution of example 1 

 
Example 2 :( Third order singular problem) 
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2 3 xgyy
x

y                                                          (5.9)                 

                      ,873.10)1(,0)0()0(  yyy                                                        (5.10) 
 Operator form of the equation is  

                            ),,()( xyFxgLy                                                (5.11) 

where      xxxxx exexexeexxg 3392 667)(   and  3),( yxyF   

So the inverse operator for the equation (5.10) and (5.9) is  

            
1 4 5

1 0 0

( ) ( )

x x x

L x x x dx dx dx                                                             (5.12)                                                     

Applying 1L on the both side of equation (5.11) we get  
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 Nonlinear term 
2y is calculated by the Adomian polynomial as, 
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                      

After computing the values of series components ,1y ,2y ,3y third approximation of series 

solution is                     ,
3

1

3 



i

iy                                                                                (5.14)                  

The exact solution of the (5.9) with (5.10) is ,3 xexy  the comparison of exact solution and 

approximate solution is given in table 2. Figure 2 shows the graphical representation of the 

approximate solutions which is very close to the exact solution. 

 

Table 2 

 

x                       y(ADM)                      y(Exact)                         Error 

0                            0                                  0                                 0 

0.1                    0.00110664                 0.00110666                  1.88E-8 

0.2                    0.00986585                 0.00986616                  3.01E-7 

0.3                    0.03751990                 0.03752150                  1.52E-6 

0.4                    0.10147900                 0.10148400                  4.83E-6 

0.5                    0.22886500                 0.22887700                  1.19E-5 

0.6                    0.46120300                 0.46122900                  2.56E-5 

0.7                    0.86027700                 0.86032800                  5.07E-5 

0.8                    1.51512000                 1.51522000                  9.82E-5 

0.9                    2.55015000                 2.55035000                  1.92E-4 

1.0                    4.13454000                 4.13492000                  1.92E-4 
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Figure 2: Exact and Approximate solution of example 2 

 
Example 3:  (Elastic beam equation rigidly fixed at both ends) 
 
Fourth-order nonlinear differential equations have many applications such as balancing condition 
of an elastic beam whose two ends are simply supported, may be described by nonlinear fourth-
order ordinary differential equations. Beams can be used in many different settings, as long as 
their capabilities are understood.  Many different types of beams are available; each with their 
own identity which depends on the types of material, length, width, depth, and external forces 
being placed on the beam.  One major concern that needs to be considered, when deciding what 
type of beam to use in a certain structure, is deflection. 
 
Deflection is the displacement of any point along the beam from its original position, measured 
in the y direction. It is generally shown in a graph of the deflection curve, representing the 
deflection versus incremental load values.  The specific values of deflection can be found 
through differential equations. The moment-curvature equation is a second-order, ordinary 
differential equation; whereas, the load-deflection equation is a fourth-order, ordinary differential 
equation. Both are very useful equations and can be easily programmed for solution by 
computer. Beams are used everywhere (stadiums, airports, bridges, etc.), but only when their 
capabilities are known can they be used safely. 
 
We consider the problem of bending of a long uniformly rectangular plate supported over the 
entire surface by an elastic foundation and rigidly supported along the edges. The vertical 
deflection y  at every point satisfies the system  

                       
(4) ( ) ( , ) , 0 ,D y x f x y g y x b                                (5.15)                  

                        0)1()1()0()0(  yyyy                                                        (5.16)                  

where ,D  is the flexural rigidity of the plate, f  is the intensity of the load acting on the plate, 

and g  is the reaction of the foundation. The more details we refer Agarwal et al., (1982).  

 
Another mathematical model:  
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Suppose ,y  represents an elastic beam of length b, which is clamped at its left side 0x , and 
resting on a kind of elastic bearing at its right side bx  , along its length, a load f is added to 
cause deformations. Then the differential equation that models this phenomenon is given by 

                                 
(4) ( ) ( , ), 0 ,y x f x y x b                                    (5.17)                          

                                ))(()(,0)(,0)0()0( bygbybyyy                              (5.18)  

 where )()]1,0([ RCgandRCf  .Owing to its importance in physics, the existence of 

solutions to this nonsingular problem has been studied by many authors (Pang et al., (2006), 

Wazwaz, (2002), Cabada, (1994)), However, in practice only its positive solutions are 

significant. Corresponding problems modeling vibrating beams on elastic bearings were 

considered in Ma, 2001. The detail of the mechanical interpretation of the above two models 

belongs to a general class of boundary value problems of the form       

                    
4( ) ( ) ( , ) ( ), 0 1,y x g x F x y f x x                 (5.19)  

                     0 1 0 1(0) , (0) , ( ) , ( )y y y b y b                                                          (5.20)              

We consider the problem of bending a rectangular clamped beam of length b.   resting on an 
elastic foundation. The vertical deflection )(xy  of the beam satisfies the system               

                              (4) 64 2 , 0y y Sin x x                              (5.21)                              

                             0)(,0)(,0)0(,0)0(   yyyy                                  (5.22) 
 
 
Adomian decomposition method: 
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The series solution (5.24) shows the divergent geometric series. Thus we can observe that the 
ADM approach diverges, therefore it is not applicable to that type of problem in which solution 
is oscillatory. To overcome this difficulty we will use Laplace Transformation (discussed in Hajji 
et al., (2008)) 
 
Laplace Adomian decomposition technique: 
 
Now applying Laplace transform integral operator to the both sides of the equation (5.19), we get 
               (4)[ ] [64 ] [ 2 ]L y L y L Sin x        
Using the formula of the Laplace transform of the derivatives, we obtain 
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Following the ADM procedure outlined in the previous section, we find that the general form of 
the series solution by Laplace transformation is given by  

                 )][(
)64(
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2
][ 142443 
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 n

n
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s s s s
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  
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                                  (5.27) 

For this example, it can be easily verified that the exact solution can be recovered by taking the 
inverse Laplace transform. By the above analysis, we see that the coupling of the Laplace 
transform with the Adomian decomposition made it possible to obtain a convergent series 
expansion in the Laplace domain. A n-term approximate solution is obtained by calculating n 
solution components, as described above ),,(  xn . The constants and  are determined by 
imposing the boundary conditions at x  . Using Mathematica 6.0,  and   were found to be 

 099672.0   and 3.0 . Then we obtain the approximate solution is given by  
  

 x).( . - x  .- 

 x .-  x.   x. - x . 

 x .   x  .- x .-  x. 

  x .- x  .  x .   x.- 

 x .-  x.   x. -  x.   x. 

  x.-  x.-  x.   x.-  x. x .x

-

----

----

.---

-

2sin1981910069711

10651881102177261013598110697611

10661371105751221051724910415153

1055832310610721000699300002048760

1099578200107876004205100001124540155561

8025200088557504672183109204981360381638)(

3122

3021292027172617

2515231322142111

199181017715

1471311109

76532

7













 
The above series is the convergent series in Laplace domain, shows that the Adomian 
decomposition method coupled with Laplace transformation gives convergent series solution for 
oscillatory problems. 
 
6. Conclusion 
 
In this paper, we explained the Adomian decomposition method for solving higher order singular 

boundary value problems and Laplace Adomian decomposition method for solving fourth-order 

boundary value problems for which the Adomian decomposition method diverges. It can be a 

potential tool to solve the oscillatory nonlinear higher order boundary value problems. Although 

there are some other methods which can be used to solve such systems or more complex ones, 

but Adomian decomposition method shows its advantages is that calculations are relatively easy 

to follow and understand, besides, it can be fulfilled by mathematical software like Mathematica 

6.0 though the solution is of the form of an infinite series in many cases, it can be written in a 

closed form in some cases, otherwise, it can also be satisfactorily represented by proper 

truncations for it shares a relatively rapid convergence. 
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