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Abstract 

In this paper, a five-step predictor-corrector method of algebraic order seven is presented for solving second 

order initial value problems of ordinary differential equations directly without reduction to first order 

systems. Analysis of the basic properties of the method is considered and found to be consistent, zero-stable 

and symmetric. Some sample linear and nonlinear problems are solved to demonstrate the applicability of 

the method. It is observed that the present method approximates the exact solution well when compared 

with the two existing schemes that solved the same set of problems. 
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1. Introduction 

Much research has been done in the last decade to show interest in the approximate solution of ordinary 

differential equation of the form  
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the differential equations for which the function f is independent from the derivatives of y. It is assumed 

that the solution of (1) exist and unique.  

The symmetric multistep methods were first proposed in the joint effort of Lambert & Watson (1976) to 

solve problem of equation (1) by reduction to the form 

   ),,(' ytfy  ],,[,)( 00 batty                                        (2)            
 

it was discovered in their letter that the interval of periodicity of the symmetric multistep methods is 

non-vanishing to ascertain the existence of periodic solutions. Based on the approach of Lambert, Quinlan 

& Tremaine (1990) developed high order symmetric methods whose solution exhibits a pronounced 

oscillatory character, this type of ordinary differential equation problems often arise in different fields of 

applied sciences such as astrophysics, electronics, celestial mechanics, molecular dynamics, radio-active 

and transverse motion to mention a few. One way to obtain a more efficient integration process is to 

construct numerical methods with an increased algebraic order, although the implementation of high 

algebraic order method meets several challenges but its accuracy is quite enormous. 

The empirical problems leading to second order differential equations is obtained by letting m=2 in 

equation (1) to have 

          ),,( yytfy   ,)( 00 ty  ,)(' 10 ty ].,[ bat                         (3) 
Numerical methods adopted for such higher order differential equations in literature are only capable of 

handling first order equations of the type (2), see for example (Abhulimen & Otunta 2006, Chan & Tsai 

2004, Juan 2001, Fatunla 1988). The approach of reducing such equation to a system of first order 

equations leads to serious computational burden and computer time wastage (Awoyemi 2001, 2005). 

Many attempts have been made to formulate numerical algorithms capable of solving special type of 

equation (1) without reduction to first order systems (Bun & Vasil’Yel 1992, Jacques & Judd 1987), to 

avoid these shortcomings, researchers (Badmus & Yahaya 2009, Awoyemi & Kayode 2005 and the 

references therein) were provoked to solve second order equation (1) directly, in their approach, sufficient 
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attentions were not paid to the property of zero stability (Kayode & Awoyemi 2005, Aruchunan & Sulaiman 

2010, Parand & Hojjati 2008) an essential ingredient to guarantee convergence. In this paper, we shall 

develop a five-step implicit formula of order-seven, numerical results are given from the application of the 

new method to some linear and nonlinear problems. 

 

2. Derivation of the Method 

We consider second derivative implicit methods of the form 
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operationally defines as 

                 nn fEhyE )()( 2                                                (5) 

by Fatunla (1988), where )(),( EE  ,
 are the first and second characteristic polynomial of equation (4), 

j and j  are real constants with constraints 

                 
0,0 00  k                                            (6) 

The values of the coefficients are determined by the local truncation error (lte). 

Definition 1: The truncation error is the quantity T which must be added to the true value representation of 

the computed quantity in order that the result be exactly equal to the quantity we are seeking to generate. 

              Y(true representation) + T = Y(exact) 

Our local truncation error in (4) is defined as 
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Taylors series expansions of jnkn yy  ,  and jnf   about the point ),( nn yt  with the terms collected in 

powers of h gives  
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compactly written as 
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With k=5, equation (4) yields 

          22110
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Imposing accuracy of order-seven on 5nT ,  note 15 k  we have   
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By adopting the technique used in Owolabi (2011a & 2011b), equation (11) is written in the form AX=B 

and solved with MATLAB package to have 
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Substituting (12) into (4), we have a symmetric five-step scheme 
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In order to use formula (13) for the integration of initial value problem (3), four important factors are 

considered 

(a) the need to generate the starting values 5)1(0,  jy jn  and their corresponding derivatives 

5)1(0,''  jy jn , this is achieved by the adoption of predictor-corrector mode denoted by PEC 

meaning Predict, Evaluate and Correct. The mode is described follows 
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The error estimate is obtained from 

                
)1(

5

)(

5

)(

5

)1(

5
















s

n

s

n

s

n

s

n

yy

yy
Error

 
                                            (14) 

the iteration terminated whenever  Error  < tolerance 

(b) the choice of appropriate step-size h   

(c) the need to solve implicit equation (13), now 
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(d) the accuracy of the approximation 5ny  requires the solution of implicit equation (15) rewritten as 

                 0)( 5 nyF                                                   (16) 

This can be achieved by the adoption of quasi Newton iteration scheme 
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The convergence condition is that  
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2. Basic properties of the method 

In order to ascertain the accuracy and suitability of the method (13), analysis of its basic properties such as 

consistency, order of accuracy and error-constant, symmetry, convergence and zeo-stability are undertaken 

in this section. 
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3.1 Order of Accuracy and Error-constant 

The local truncation error (9) when k=5 can be written as 

     )(... 10)9(9

9

)8(8

8

)3(3

3

)2(2

2

)1(

105 hOyhCyhCyhCyhChyCyCT nnnnnnn   

Using the values of j and j  as contained in equation (12) in above (11), we have 
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Thus, 09 C , which by Lambert (1973) implies that   

      0,0,..., 29843210  pCCbutCCCCCC  

Hence, method (13) is of order P = 7 with principal error-constant 
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3.2 Symmetry 

A linear multistep method (13) is said to be symmetric (Lambert & Watson 1976, Fatunla 1988, 

Owolabi 2011) if the parameters j  and j  satisfy the following conditions  

                   kjjkjjkj )1(0,,     

                   kjjkjjkj )1(0,,     

for even and odd step-numbers respectively. 

Now, for k=5 

                   11 5050    

                   75 4141    

                   2610 3232    

Hence, method (13) is symmetric. 

 

3.3 Consistency 
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Method (13) is consistent, since 

 It has order 1P  
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3.4 Zero Stability 

Definition 2 

(i) A linear multistep method for a given initial value problem is said to be zero-stable, if no root of its first 

characteristic polynomial has modulus greater than one and if every root with modulus one is simple. 

That is 
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from (13), 

                   01510105)( 2345  rrrrrr . 

Implies that the method (13) is zero-stable since the roots of )(r lie in the unit disk, and those that 

lie on the unit circle have multiplicity of one 

(ii) A numerical solution to the class of system (1) is stable if the difference between the numerical and the 

theoretical solution can be made as small as possible, that is, if there exist two positive numbers n  and 

C  such that 

                  nnn Ctyy  )( . 

 

3.5 Convergence 

Definition 3 A linear multistep method that is consistent and zero-stable is convergent, (Ademiluyi 1987, 

Fatunla 1988, Lambert 1991).   

 

 

3. Numerical Experiments  

Efficiency and applicability of our new method is demonstrated on some initial value problems. The first is 

an inhomogeneous problem in Simos(1998), the second and third examples are respectively the nonlinear 

and linear problems taken from Badmus & Yahaya (2009) and Kayode (2010). 

 

4.1 Inhomogeneous equation 

We consider the following equation: 

                     ,11)0(',1)0(),sin(99100''  yyxyy                  (19)  

whose theoretical solution is 

                   )sin()10sin()10cos()( xxxxy   

In Table 1, equation (19) has been solved numerically for 10000  x  for various step-sizes, using the 

new method denoted as [D] and compared the end-point global errors with Runge-Kutta method of Simos 

which is indicated as [A]. 

 

4.2 A problem by Badmus and Yahaya 
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We consider the second order initial value problem: 
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In Table 2, we present the comparison of the global errors in approximations of the new method 

(indicated as [D]) for the solution of equation (20) at some selected step-sizes given in the first column 

with both block method (denoted as [B]) and zero-stable method (denoted as [C]).  

 

4.3 Nonlinear problem 

Consider the following nonlinear problem: 

                 ,003125.0,5.0)0(',1)0(,)'('' 2  hyyyxy                  (21) 

whose analytical solution is given by  
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
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In Table 3, comparison of the global errors arising from our new method [D] was made with the two 

methods [B] and [C] at some selected points for solution of equation (21). 

 

5. Conclusion 

A technique for the construction of an implicit symmetric method for direct integration of second 

order initial value problem of ordinary differential equations has been developed. Analysis of its basic 

properties has shown that the new method is consistent, convergent and zero-stable. In order to 

evaluate the effectiveness of our method, some examples on both linear and nonlinear problems are 

given. The results shown in Tables 1-3 have depicted that the new method is much more efficient than 

the three other existing methods on comparison.   
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Table 1: Solution to problem (19) 

H Exact [D] Computed Error [A] Error [B] 

1 -0.541621655157926 -0.424800002157926 1.4e-01 1.1e-01 

0.5 -0.195836550595709 -0.175498405376949 3.5e-02 2.3e-02 

0.25 o.044732487811546 0.044721485379385 1.1e-03 1.1e-05 

0.125 1.388981715136082 1.388981253407068 8.4e-05 4.6e-07 

0.0625 1.458519710288061 1.458551881193934 5.5e-06 8.9e-08 

0.03125 1.290251376613879 1.290251373261517 3.5e-07 3.4e-09 

 

Table 2: Solution to Problem (20) 

x Exact [D] Computed Error [B] Error [C] Error [D] 

1/40 0.04166640620000 0.041665543091291 2.2105e-04 7.7370e-04 8.6315e-07 

1/64 0.026041626930237 0.026041035788072 1.5557e-04 5.9320e-06 5.9104e-07 

1/80 0.020833317057292 0.020832836894301 1.3548-04 3.6750e-06 4.8017e-07 

1/160 0.010416665649414 0.010416603239263 7.5000e-04 1.8600e-07 6.2410e-08 

1/320 0.005208333269755 0.0052208200708751 3.8354e-05 1.1040e-07 1.3256e-08 

 

 

Table 3: Solution to problem (21) 

x Exact [D] Computed Error [B] Error [C] Error [D] 

0.1 1.050041729278491 1.050041728545390 5.8910e-06 6.1254e-08 7.3310e-10 

0.2 1.100335347731076 1.100335337249948 8.2400e-05 1.2113e-07 1.0481e-08 

0.3 1.151140435936467 1.151140403698324 3.4642e-04 1.8749e-07 3.2238e-08 

0.4 1.202732554054082 1.202732503027955 7.5210e-04 2.6159e-07 5.1026e-08 

0.5 1.255412811882995 1.255411274317176 1.3803e-03 3.5346e-07 6.8711e-08 
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