Application of Branch and Bound Technique for $\mathbf{n} \times 3$ Flow Shop Scheduling, In Which Processing Time Associated With Their Respective Probabilities

Deepak Gupta
Department of Mathematics, Maharishi Markandeshwar University Mullana, Ambala
*E-mail of the corresponding author: guptadeepak2003@yahoo.co.in

Abstract

: The paper deals branch and bound technique to solve a 3 stage flow-shop scheduling problem in which probabilities are associated with their processing time. Our objective is to obtain an optimal sequence of jobs to minimizing the total elapsed time. The working of the algorithm has been illustrated by numerical example.

Keywords: Flow-Shop, Branch and Bound, Scheduling, Make Span, Total Elapsed Time.

1. Introduction:

Many applied and experimental situations, which generally arise in manufacturing concern to get an optimal schedule of jobs in set of machines, diverted the attention of researchers and engineers. In flow-shop scheduling, the objective is to obtain a sequence of jobs which when processed in a fixed order of machines, will optimize some well defined criteria. Various researchers have done a lot of work in this direction. Johnson[1], first of all gave a method to minimise the makespan for n-job, two-machine scheduling problems. The work was further extended by Ignall and Scharge [3], Cambell[7], Maggu and Dass [17], Heydari [21], Yoshida and Hitomi [20], Lomnicki [4], Palmer [2], Bestwick and Hastings [6], Nawaz et al. [9], Sarin and Lefoka [13], Koulamas [16], Dannenbring [8], etc. by considering various parameters. Yoshida and Hitomi [20] considered two stage flow shop problem to minimize the makespan whenever set up times are separated from processing time. The basic concept of equivalent job for a job block has been introduced by Maggu and Dass [17]. Singh T.P. and Gupta Deepak [18] studied the optimal two stage production schedule in which processing time and set up time both were associated with probabilities including job block criteria. Heydari [21] dealt with a flow shop scheduling problem where n jobs are processed in two disjoint job blocks in a string consists of one job block in which order of jobs is fixed and other job block in which order of jobs is arbitrary.

Lomnicki [4] introduced the concept of flow shop scheduling with the help of branch and bound method. Further the work was developed by Ignall and Scharge[3], Chandrasekharan [22], Brown and Lomnicki [5], with the branch and bound technique to the machine scheduling problem by introducing different parameters. In practical situations processing times are not always deterministic so we have associated probabilities with their processing times of all the jobs on all the three machines. This paper combines the study made by Lomnicki[4], Singh T.P. and Gupta Deepak [18] and hence the problem discussed here is wider and has significant use of theoretical results in process industries.

2. Assumptions:

1. No passing is allowed.
2. Each operation once started must performed till completion.
3. A job is entity, i.e. no job may be processed by more than one machine at a time.

3. Notations:

We are given n jobs to be processed on three stage flowshop scheduling problem and we have used the following notations:
$\mathrm{A}_{\mathrm{i}} \quad: \quad$ Processing time for job i on machine A
$B_{i} \quad: \quad$ Processing time for job i on machine B
$\mathrm{C}_{\mathrm{i}} \quad: \quad$ Processing time for job i on machine C
$\mathrm{p}_{\mathrm{i} 1} \quad: \quad$ Expected processing time for job i on machine A
$\mathrm{p}_{\mathrm{i} 2} \quad: \quad$ Expected processing time for job i on machine B
$\mathrm{p}_{\mathrm{i} 3} \quad: \quad$ Expected processing time for job i on machine C
$\mathrm{C}_{\mathrm{ij}} \quad: \quad$ Completion time for job i on machines A, B and C.
$\mathrm{S}_{0} \quad: \quad$ Optimal sequence
$\mathrm{J}_{\mathrm{r}} \quad: \quad$ Partial schedule of r scheduled jobs.
$\mathrm{J}_{\mathrm{r}}{ }^{\prime} \quad: \quad$ The set of remaining (n-r) free jobs.

4. Mathematical Development:

Consider n jobs say $\mathrm{i}=1,2,3 \ldots \mathrm{n}$ are processed on three machines $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ in the order ABC. A job i ($\mathrm{i}=1,2,3 \ldots \mathrm{n}$) has processing time $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$ \& C_{i} on each machine respectively, assuming their respective probabilities $p_{i}, q_{i} \& r_{i}$ such that $0 \leq p_{i} \leq 1$, $\Sigma \mathrm{p}_{\mathrm{i}}=1,0 \leq \mathrm{q}_{\mathrm{i}} \leq 1, \Sigma \mathrm{q}_{\mathrm{i}}=1,0 \leq \mathrm{r}_{\mathrm{i}} \leq 1, \Sigma \mathrm{r}_{\mathrm{i}}=1$. The mathematical model of the problem in matrix form can be stated as :

Jobs	Machine A		Machine B		Machine C	
i	A_{i}	p_{i}	B_{i}	q_{i}	C_{i}	r_{i}
1	$\mathrm{~A}_{1}$	p_{1}	$\mathrm{~B}_{1}$	q_{1}	C_{1}	r_{1}
2	$\mathrm{~A}_{2}$	p_{2}	$\mathrm{~B}_{2}$	q_{2}	C_{2}	r_{2}
3	$\mathrm{~A}_{3}$	p_{3}	$\mathrm{~B}_{3}$	q_{3}	C_{3}	r_{3}
4	$\mathrm{~A}_{4}$	p_{4}	$\mathrm{~B}_{4}$	q_{4}	C_{4}	r_{4}
		---	--	--	---	--
---	---	---	--	--	--	---
n	--	---	--	A_{n}	p_{n}	B_{n}
q_{n}	C_{n}	r_{n}				

Tableau - 1
Our objective is to obtain the optimal schedule of all jobs which minimize the total elapsed time, using branch and bound technique.

1. Algorithm:

Step 1: Calculate expected processing time $\mathrm{p}_{\mathrm{i} 1}, \mathrm{p}_{\mathrm{i} 2} \& \mathrm{p}_{\mathrm{i} 3}$ on machines A, B \& C respectively as follows:

$$
\mathrm{p}_{\mathrm{i} 1}=\mathrm{A}_{\mathrm{i}} * \mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i} 2}=\mathrm{B}_{\mathrm{i}} * \mathrm{q}_{\mathrm{i}} \text { and } \mathrm{p}_{\mathrm{i} 3}=\mathrm{C}_{\mathrm{i}} * \mathrm{r}_{\mathrm{i}}
$$

Step2: Calculate
(i) $\mathrm{g}_{1}=t\left(J_{r}, 1\right)+\sum_{i \in J_{r}} p_{i 1}+\min _{i \in J_{r}^{r}}\left(p_{i 2}+p_{i 3}\right)$
(ii) $\mathrm{g}_{2}=t\left(J_{r}, 2\right)+\sum_{i \in j_{r}^{\prime}} p_{i 2}+\min _{i \in J_{r}^{\prime}}\left(p_{i 3}\right)$
(iii) $\mathrm{g}_{3=} t\left(J_{r}, 3\right)+\sum_{i \in j_{r}^{\prime}} p_{i 3}$

Step 3: Calculate

$$
\mathrm{g}=\max \left[\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}\right]
$$

We evaluate g first for the n classes of permutations, i.e. for these starting with 1,2 , $3 \ldots \ldots . . n$ respectively, having labelled the appropriate vertices of the scheduling tree by these values.

Step 4: Now explore the vertex with lowest label. Evaluate g for the $(\mathrm{n}-1)$ subclasses starting with this vertex and again concentrate on the lowest label vertex. Continuing this way, until we reach at the end of the tree represented by two single permutations, for which we evaluate the total work duration. Thus we get the optimal schedule of the jobs..

6. Numerical example:

Consider 6 jobs 3 machine flow shop problem. processing time of the jobs on each machine is given. Our objective is to find optimal sequence of jobs to find the minimum elapsed time.

Job i	Machine A			Machine B		Machine C	
	A_{i}	p_{i}	B_{i}	q_{i}	C_{i}	r_{i}	
1	5	0.2	8	0.2	20	0.2	
2	6	0.2	30	0.2	6	0.2	
3	30	0.3	4	0.2	5	0.1	
4	2	0.1	5	0.1	3	0.1	
5	3	0.1	10	0.2	4	0.2	
6	4	0.1	1	0.1	4	0.2	

Tableau - 2

Solution:

Step1: Define expected processing time $\mathrm{p}_{\mathrm{i} 1}, \mathrm{p}_{\mathrm{i} 2} \& \mathrm{p}_{\mathrm{i} 3}$ on machine A, B \& C respectively as shown in the tableau - 3

Step 2 \& Step 3: Calculate
(i) $\mathrm{g}_{1}=t\left(J_{r}, 1\right)+\sum_{i \in J_{r}^{\prime}} p_{i 1}+\min _{i \in J_{r}^{\prime}}\left(p_{i 2}+p_{i 3}\right)$
(ii) $\mathrm{g}_{2}=t\left(J_{r}, 2\right)+\sum_{i \in J_{r}^{\prime}} p_{i 2}+\min _{i \in J_{r}^{\prime}}\left(p_{i 3}\right)$
(iii) $\mathrm{g}_{3=} t\left(J_{r}, 3\right)+\sum_{i \in j_{r}^{\prime}} p_{i 3}$

For $\mathrm{J}_{1}=(1)$.Then $\mathrm{J}^{\prime}(1)=\{2,3,4,5,6\}$, we get
$\mathrm{g}_{1}=55, \mathrm{~g}_{2}=66 \& \mathrm{~g}_{3}=55$
$\mathrm{g}=\max \left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}\right)=\max (55,66,55)=66$
similarly, we have
$\mathrm{LB}(2)=\max (55,67,78)=78$
$\mathrm{LB}(3)=\max (55,91,76)=91$
$\mathrm{LB}(4)=\max (55,64,49)=64$
$\mathrm{LB}(5)=\max (55,64,55)=64$
$\mathrm{LB}(6)=\max (58,65,47)=65$
Step4: Now branch from $\mathrm{J}_{1}=(4)$. Take $\mathrm{J}_{2}=(41)$
Then $\mathrm{J}^{\prime}{ }_{2}=\{2,3,5,6\}$ and $\mathrm{LB}(41)=\max (55,64,54)=64$
Proceeding in this way, we obtain lower bound values on the completion time on machine C as shown in the tableau- 4

Therefore, the minimum completion time on machine C is 67 . Hence optimal sequence is $S_{0}: 4-5-1-6-2-3$ and total elapsed time:67

In-Out table for the given problem is in tableau-5

7. Remarks:

The study may further be extended by considering various parameters such as transportation time, break down interval, mean weightage time etc.

References :

[1] Johnson S. M. (1954), "Optimal two and three stage production schedule with set up times included". Nay Res Log Quart Vol. 1, pp 61-68
[2] Palmer, D.S.(1965), "Sequencing jobs through a multi-stage process in the minimum total time - a quick method of obtaining a near-optimum', Operational Research Quarterly, Vol. 16,No. 1, pp.101-107.
[3] Ignall, E. and Schrage, L. (1965), "Application of the branch-and-bound technique to some flowshop scheduling problems", Operations Research, Vol. 13, pp.400-412.
[4] Lomnicki, Z.A. (1965), "A branch-and-bound algorithm for the exact solution of the three-machine scheduling problem", Operational Research Quarterly, Vol. 16, pp.89-100.
[5] Brown, A.P.G. and Lomnicki, Z.A. (1966), "Some applications of the branch and bound algorithm to the machine scheduling problem", Operational Research Quarterly, Vol. 17, pp.173-182.
[6] Bestwick, P.F. and Hastings, N.A.J. (1976), "A new bound for machine scheduling", Operational Research Quarterly, Vol. 27, pp.479-490.
[7] Campbell, H.G., Dudek, R.A. and Smith, M.L. (1970), "A heuristic algorithm for the n-job, m-machine sequencing problem", Management Science, Vol. 16, pp.630-637.
[8] Dannenbring, D.G. (1977), "An evaluation of flowshop sequencing heuristics", Management Science, Vol. 23, No. 11, pp.1174-1182.
[9] Nawaz M., Enscore Jr., E.E. and Ham, I. (1983), "A heuristic algorithm for the mmachine n -job flowshop sequencing problem", OMEGA International Journal of Management Science, Vol. 11, pp.91-95.
[10] Turner S. and Booth D. (1987),"Comparison of heuristics for flowshop sequencing", OMEGA,Vol.15, pp.75-78.
[11] Kreyszig, E. (1972), "Advanced Engineering Mathematics", NewYork: John Wiley.
[12] Gupta, J.N.D. (1971),"A functional heuristic algorithm for the flow-shop scheduling problem", Operational Research Quaterly, Vol. 22, No. 1.
[13] Sarin, S. and Lefoka, M. (1993), "Scheduling heuristics for the n-job, m-machine flowshop", OMEGA, Vol. 21, pp.229-234.
[14] Cormen, T.H., Leiserson, C.E. and Rivest, R.L.(1990),"Introduction to Algorithms", Cambridge, MA: MIT Press.
[15] Park, Y.B. (1981), "A simulation study and an analysis for evaluation of performance-effectiveness of flowshop sequencing heuristics: a static and dynamic flowshop model", Master's Thesis, Pennsylvania State University.
[16] Koulamas, C. (1998), "A new constructive heuristic for the flowshop scheduling problem", European Journal of Operations Research, Vol. 105, pp.66-71.
[17] P. L. Maggu \& Das (1981), "On n x 2 sequencing problem with transportation time of jobs", Pure and Applied Mathematika Sciences, pp.12-16.
[18] Singh, T.P., K, Rajindra \& Gupta Deepak (2005), "Optimal three stage production schedule the processing time and set up times associated with probabilities including job block criteria", Proceeding of National Conference FACM- (2005), pp. 463-470.
[19] Chandramouli, A.B.(2005),"Heuristic approach for N job 3 machine flow shop scheduling problem involving transportation time, break-down time and weights of jobs", Mathematical and Computational Application, Vol. 10 (No.2), pp. 301-305.
[20] Yoshida and Hitomi (1979), "Optimal two stage production scheduling with set up times separated",AIIETransactions. Vol. II. pp.261-263.
[21] Ahmad Pour Darvish Heydari (2003), "On flow shop scheduling problem with processing of jobs in a string of disjoint job blocks: fixed order jobs and arbitrary order jobs", JISSOR, Vol. XXIV, pp. 1-4.
[22] Chander Shekharn, K, Rajendra, Deepak Chanderi (1992),"An efficient heuristic approach to the scheduling of jobs in a flow shop", European Journal of Operation Research 61, pp.318-325.

Tables and Figures:
Table 3: The expected processing times for machine A, B and C are as follows:

Job i	Machine A	Machine B	Machine C
	$\mathrm{p}_{\mathrm{i} 1}$	$\mathrm{p}_{\mathrm{i} 2}$	$\mathrm{p}_{\mathrm{i} 3}$
1	5	8	20
2	6	30	6
3	30	4	5
4	2	5	3
5	3	10	4
6	4	1	4

4: lower bounds for respective jobs are as follows:

Tableau 5: In-Out table for the given problem is as follows:

Job i	Machine A In-out	Machine B In-out	Machine C In-out
4	$0-2$	$2-7$	$7-10$
5	$2-5$	$7-17$	$17-21$
1	$5-10$	$17-25$	$25-45$
6	$10-14$	$25-26$	$45-49$
2	$14-20$	$26-56$	$56-62$
3	$20-50$	$56-60$	$62-67=\mathrm{T}$

Node Jr	LB (Jr)
(1)	66
(2)	78
(3)	91
(4)	64
(5)	64
(6)	65
(41)	64
(42)	77
(43)	89
(45)	62
(46)	63
(451)	59
(452)	76
(453)	83
(456)	59
(4512)	61
(4513)	79
(4516)	59
(45162)	61
(45163)	86

Figure-1 Branches for the optimal sequence

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

JournalTOCs

PKP | public knowlidgef project

GEORGETOWNUNIVERSITY
LIBRARY

