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Abstract 

In this paper we introduce the concept of γ-sαg*-open sets and discuss some of their basic properties. 
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1. Introduction 

The study of semi open set and semi continuity in topological space was initiated by Levine[14]. 
Bhattacharya and Lahiri[3] introduced the concept of semi generalized closed sets in the topological 
spaces analogous to generalized closed gets introduced by Levine[15]. Further they introduced the 
semi generalized continuous functions and investigated their properties. Kasahara[11] defined the 
concept of an operation on topological spaces and introduced the concept of α-closed graphs of a 
function.  Jankovic[10] defined the concept of α-closed sets.  Ogata [21] introduced the notion of τγ 
which is the collection of all γ-open sets in topological space (X, τ) and investigated the relation 
between γ-closure and τγ-closure. 
We introduce the notion γ-sαg*-semi Ti (I = 0, ½, 1, 2) spaces.  In section 4, we introduce  (γ, 
β)-sαg*-semi continuous map which analogous to (γ, β)-continuous maps and investigate some 
important properties.  Finally we introduce (γ, β)-sαg*-semi homeomorphism in (X, τ)  and study 
some of their properties. 

2. Premilinaries 

Throughout this paper (X, ) represent non -empty topological space on which no separation axioms 
are assumed unless otherwise mentioned.  For a subset A of a space (X, ), cl(A), int(A) denote the 

closure and interior of A respectively. The intersection of all -closed sets containing a subset A of   
(X, ) is called the  -closure of A and is denoted by cl(A).  
 

2.1 Definition  [11] 

Let (X, τ) be a topological space.  An operation γ on the topology τ is a mapping from τ on to power 
set P(X) of X such that V ⊆ Vγ for each V ∈ τ, where Vγ denote the value of γ at V.  It is denoted by γ: 
τ → P(X). 
 
2.2 Definition [21] 
A subset A of a topological space (X, τ) is called γ-open set if for each x ∈ A there exists a open set U 
such that x ∈U and Uγ ⊆ A.  τγ denotes set of all γ-open sets in (X, τ). 
 
2.3 Definition [21] 
The point x ∈ X is in the γ-closure of a set A ⊆ X if U γ ∩ A ≠ φ for each open set U of x.  The 
γ-closure of set A is denoted by clγ(A). 
 
2.4 Definition [21] 
Let (X, τ) be a topological space and A be subset of X then τγ -l(A) =  ∩ {F : A ⊆ F, X – F ∈ τγ }  

 
2.5 Definition [21] 
Let (X, τ) be topological space. An operation γ is said to be regular if, for every open neighborhood U 
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and V of each x∈X, there exists an open neighborhood W of x such that Wγ ⊆ Uγ ∩ Vγ.
 

 
2.6 Definition [21] 
A topological space (X, τ) is said to be γ-regular, where γ is an operation of τ, if for each x ∈X and for 
each open neighborhood V of x, there exists an open neighborhood U of x such that Uγ contained in V. 
 
2.7 Remark  [21] 
Let (X, τ) be a topological space, then for any subset A of X, A ⊆ cl(A) ⊆ clγ (A) ⊂ τγ-cl(A). 
 
2.8 Definition [24] 
A subset A of (X, τ) is said to be a γ-semi open set if and only if there exists a γ-open set U such that U 
⊆ A ⊆ clγ(U). 
 
2.9 Definition [24]   
Let A be any subset of X. Then τγ-int (A) is defined as τγ-int (A) = ∪{U:U is a γ-open set and U ⊆ A} 
 
2.10 Definition[24] 
A subset A of X is said to be γ-semi closed if and only if X – A is  γ-semi open. 
 
2.11 Definition[24] 
Let A be a subset of X.  There τγ-scl (A) = ∩ {F: F is  γ-semi closed and A ⊆ F}. 
 
2.12 Definition[20] 
A subset A of (X, τ) is said to be a strongly αg*-closed set if αcl(A) ⊆ U whenever A ⊆ U and U is 
g*-open in (X,τ). 
 
2.13 Definition[20] 
If a subset A of (X, τ) is a strongly αg*-closed set then X – A is a strongly αg*-open set. 
 
2.14 Definition[20] 
A space (X, τ) is said to be a s*Tc-space if every strongly αg*-closed set of (X, τ ) is closed in it. 
 
2.15 Definition [20] 
A space (X, τ) is called  
(i) a  γ-semi To space if for each distinct points x, y  ∈ X, there exists a γ-semi open set U such that 
x ∈ U and y ∉ U or y ∈ U and  x ∉ U. 
(ii) a  γ-semi T1 space if for each distinct points x, y ∈  X, these exist γ-semi open sets U, V 
containing x and y respectively such that y ∉ U and x ∉ V. 
(iii) a γ - semi T2 space if for each x, y ∈ X there exists a γ-semi open sets U, V such that x ∈ U and y 
∈ V and U ∩ V = φ. 
 
2.16 Definition [24] 
A subset A of  (X, τ) is said is be γ-semi g-closed if τγ-scl(A) ⊆ U  whenever A ⊆ U and U is a 
γ-semi open set in (X, τ). 
 
2.17 Definition [24] 
A space (X, τ) is said to be γ-semi T1/2-space if every semi g-closed set in (X, τ) is γ-semi closed. 
 
2.18 Definition[24] 
A mapping f: (X, τ) → (y, σ) is said to be (γ, β) -semi continuous if for each x of X and each β-semi 
open set V containing f(x) there exists a γ-semi open set U such that x ∈ U and f(U) ⊆ V. 
 
2.19 Definition [24] 
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A mapping f : (X, τ)  →  (Y, σ)  is said to be (γ, β)-semi closed if for any  γ-semi closed 
set A of (X, τ), f(A) is a β-semi closed. 
 
2.20 Definition [24] 
A mapping f : (X, τ)  →  (Y, σ)   is said to be (γ, β)-semi homeomorphism, if f is bijective, (γ, 
β)-semi-continuous and f -1 is (β, γ )-semi continuous. 
 
2.21 Definition 
A subset A of  (X, τ) is said to be a   γ-sαg*-semi open set if and only if there exists a γ-sαg*-open 
set U such that U⊆ A⊆ cl γ(U). 
 
2.22 Theorem 
If A is a γ-semi open set in (X, τ), then A is a γ-sαg*-semi open set.  
 
2.23 Definition 
A subset A of X is said to be γ-sαg*-semi closed if and only if X − A is γ-sαg*-semi open. 
 
2.24 Definition   
Let A be a subset of X.  Then τγs*-scl(A) =  ∩ {F : F is γ-sαg*  semi closed and A ⊆ F} . 
 
2.25 Theorem  
For a point x ∈ X, x ∈ τγs*-scl(A) if and only if V ∩ A ≠ φ for any V ∈ τγs*-SO(X ) such that x ∈ V. 
 
2.26 Remark 
From the Theorem 3.12 and the Definition 3.25 we have A  ⊆ τγs*-scl(A) ⊆ τγs*-cl(A) for any subset 
A of  (X, τ). 
 
2.27 Remark  
Let γ: τ → P(X ) be a operation. Then a subset A of (X, τ) is γ-sαg*-semi closed if and only if 
τγs*-scl(A)=A 
 

3. γγγγ-sααααg*-Semi Ti Spaces 
In this section, we investigate a general operation approaches on Ti spaces where  

i = 0, ½, 1,2. Let  γ : τ → P(X ) be a operation on a topology τ. 
 
3.1 Definition  
A space (X, τ) is called γ-sαg*-semi T0 space if for each distinct points 
x, y ∈ X there exists a γ-sαg*-semi open set U such that x ∈ U and y ∉ U or y ∈U and x ∉ U. 
 
3.2 Definition 
A space (X, τ) is called γ-sαg* semi T1 space if for each distinct points x, y∈ X there exists γ-sαg* 
semi open sets U, V containing x and y respectively such that y ∉ U and x ∉ V. 
 
3.3 Definition   
A space (X, τ) is called a γ-sαg*-semi T2 space if for each x, y∈ X there exist γ-sαg*-semi open sets U, 
V such that x ∈ U and y ∈ V and U ∩ V = φ. 
 
3.4 Definition 
A subset A of (X, τ) is said to be γ-sαg*-semi g-closed if τγ-scl(A) ⊆ U whenever A ⊆ U and U is a 
γ-sαg*-semi open set in (X, τ). 
3.5 Remark 
From Theorem 3.16 and Remark 3.28 we have every γ-sαg*-semi g-closed set is γ-semi g-closed. 
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3.6 Definition  
A space (X, τ) is γ-sαg*-semi T1/2 space if every γ-sαg*-semi g-closed set in (X, τ) is γ-semi closed. 
 
3.7 Remark 
Let A be a subset of X.  Then τγs*-scl(A) ⊆ τγ-scl (A). 
Proof 
Let x ∉ τγ-scl(A) 
⇒ x ∉ ∩ {F:F is  γ - semi closed and A ⊆ F} 
⇒ x ∉ F where F is γ - semi closed and A⊆ F 
⇒ x ∉ F where F is γ - sαg* -semi closed and A⊆ F 
⇒ x ∉ ∩ {F : F is γ - sαg*-semi closed and A⊆ F} 
⇒ x ∉ τγs*-scl(A) 
Therefore, τγ-scl(A) ⊆ τγs*-scl(A). 
 
3.8 Theorem 
A subset A of (X, τ) is γ-sαg*-semi g-closed if and only if τγs*-scl({x}) ∩ A ≠ φ holds for every x ∈ τγ 
-scl(A). 
Proof   
Let U be γ-sαg*-semi open set such that A ⊆ U. Let  x ∈ τγ-scl(A).  By assumption there exists a z 
∈ τγs*-scl({x}) and  z ∈ A ⊆ U.  It follows from Theorem 3.27 that U ∩ {x} ≠ φ. Hence x ∈ U.  
This implies τγ-scl (A) ⊆ U. Therefore, A is γ-sαg*-semi g-closed set in (X, τ). 

Conversely, suppose x ∈ τγ-scl(A) such that τγs*-scl({x}) ∩ A = φ.  Since               
τγs*-scl ({x}) is  γ-sαg*-semi closed set in (X, τ), from the Definition 3.24, (τγs*-scl({x}) c is a 
γ-sαg*-semi open set.  Since A ⊆ τγs*-scl({x}) c and A is γ-sαg*-semi-g-closed set, we have τγ-scl(A) 
⊆ τγs*-scl ({x}) c.  Hence x ∉ τγ-scl(A) . This is a contradiction.  Hence    τγs*-scl({x}) ∩ A ≠ φ. 
 
3.9 Theorem 
If τγs*-scl({x}) ∩ A ≠ φ holds for every x ∈ τγs*-scl(A), then τγs*-scl(A) − A does not contain a non  
empty γ-sαg*-semi closed set. 
 
Proof 
Suppose there exists a non empty γ-sαg*-semi closed set F such that F ⊆ τγs*-scl(A) −−−− A. Let x ∈ F, x 
∈ τγs*-scl(A) holds.  It follows from Remark 3.28 and 3.29, φ ≠ F ∩ A = τγs*-scl(F) ∩ A ⊇ τγs*-scl 
({x}) ∩ A which is a contradiction.  Thus, τγs*-scl(A) – A does not contains a non empty γ-sαg*-semi 
closed set. 
 
3.10 Theorem 
Let γ : τ → P(X ) be an operation.  Then for each x ∈ X, {x} is γ-sαg*-semi closed or {x} c is 
γ-sαg*-semi g-closed set in (X, τ ). 
Proof 
Suppose that {x} is not γ- sαg*-semi closed then X–{x} is not γ-sαg*-semi open. Let U be any 
γ-sαg*-semi open set such that {x}c ⊆ U.  Since U = X, we have τγ -scl ({x})  c ⊆ U.  Therefore, {x} 
c is a γ-sαg*-semi g-closed set. 
 
3.11Theorem 
A space (X, τ) is γ-sαg*-semi-T½ space if and only if {x} is γ-sαg*-semi closed or  γ-sαg*- semi 
open in (X, τ). 
Proof 
Suppose {x} is not γ-sαg*-semi closed Then, it follows from assumption and Theorem 3.10, {x} is 
γ-sαg*-semi open. 

Conversely, Let F be  γ-sαg*-semi g-closed set in  (X, τ).  Let x be any point  in 
τγs*-scl(F), then {x} is γ-sαg*-semi open or γ-sαg*-semi closed. 
Case (i) : Suppose {x} is  γ-sαg*-semi open.  Then by Theorem 3.27, we have                        
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{x} ∩ F ≠ φ.  Hence x ∈ F. 
Case (ii): suppose {x} is γ-sαg*-semi closed. Assume x ∉ F, Then x ∈ τγs*-scl(F) – F.  This is not 
possible by Theorem 3.9.  Thus we have x ∈ F.  Therefore, τγs*-scl(F) = F and hence F is 
γ-sαg*-semi closed. 
 
3.13 Remark 
Let X = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}, {a, c}}, define γ : τ → P(X) be an operation such that for 
every  A ∈ τ, Aγ = A if b ∈ A, Aγ = cl(A) if b ∉ A. Then (X, τ) is γ- sαg*- semi T0 but it is neither 
γ-sαg*-semi T2 nor γ-sαg*-semi T½ nor γ-sαg*-semi T1. 
 

4. (γγγγ, ββββ)-sααααg*-SEMI CONTINUOUS MAPS 
 
Through out this chapter let (X, τ) and (Y, σ) the two topological spaces and let γ : τ  → P(X) and β: σ → 
P(Y) be operations on τ and σ respectively. 
 
4.1 Definition   
A mapping f : (X, τ) → (Y, σ) is said to be (γ, β)-sαg*-semi continuous if for each x of X and each 
β-sαg*-semi open set V containing f(x) there exists a γ-sαg*-semi open set U such that x∈U and f (U) ⊆ V. 
 
4.2 Remark 
If (X, τ) and (Y, σ) are both γ-sαg*-regular spaces then the concept of (γ, β)-sαg*-semi continuity and semi 
continuity are coincide. 
 
4.3 Theorem 
Let f: (X, τ) → (Y, σ) be  (γ, β)- sαg*-semi continuous mapping. Then,  
(i) f (τγs*-scl(A)) ⊆ τβs*-scl (f(A)) holds for every subset A of (X, τ). 
(ii) Let γ be an operation, then for every β-sαg*-semi closed set B of (Y, σ), f -1(B) is γ-sαg*-semi closed in 
(X, τ) 
Proof  
(i) Let y ∈ f (τγs*-scl(A))  and V be any β-sαg*-semi open set containing y.  Then there exists a point x ∈ 
X and γ-sαg*-semi open set U such that f(x) = y and x ∈ U and f(U)  ⊆ V. Since x ∈ τγs*-scl(A), We have 
U ∩ A ≠ φ and hence φ ≠ f (U ∩ A) ⊆ f(U) ∩ f(A) ⊆ V ∩ f(A).  This implies f(x) ∈ τβs*-scl(f(A)).  
Therefore, we have f (τγs*-scl(A)) ⊆ τβs*-scl(f(A)). 
(ii) Let B be a β-sαg*-semi closed set in (Y, σ). Therefore, τβs*-scl(B) = B.  By using (i) we have f(τγs*-scl 
(f -1(B))) ⊆ τβs*-scl (B) = B.  Therefore we have τγs*-scl(f -1(B)) ⊆ (f -1(B)).   Hence f -1(B) is γ-sαg*-semi 
closed. 
 
4.4 Definition  
A mapping f : (X, τ)→(Y, σ) is said to be (γ, β)-sαg*-semi closed if for any γ-sαg*-semi closed set A of  
(X, τ), f(A) is a β-sαg*-semi closed . 
 
4.5 Theorem 
Suppose that f is (γ, β)-sαg*-semi continuous mapping and f is (γ, β)- sαg*-semi closed.  Then for every 
γ-sαg*-semi g-closed set A of (X, τ) the image f(A) is β-sαg*-semi-g-closed. 
Proof  
Let V be any β-sαg*-semi open set in (Y, σ) such that f(A) ⊆ V.  By using Theorem 4.3 (ii), f -1(V) is 
γ-sαg*-semi open.  Since, A is γ-sαg*-semi g-closed and A ⊆ f -1(V), we have τγs*-scl(A) ⊆ f -1(V), and 
hence f(τγs*-scl(A)) ⊆ V. It follows from the assumption that f(τγs*-scl(A)) is a β-sαg*-semi closed set.  
Therefore, τβs*-scl(f(A))) ⊆ τβs*-scl(f(τγs*-scl(A)) = f(τγs*-scl(A)) ⊆ V. This implies f(A) is 
β-sαg*-semi-g-closed. 
 
4.6 Theorem 
Let f: (X, τ) → (Y, σ) be (γ, β)-sαg*-semi continuous and (γ, β)-sαg*-  semi closed.  If f is injective and 
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(Y, σ) is β-sαg*-semi T½, then  (X, τ) is γ-sαg*-semi T½ space. 
Proof 
Let A be γ-sαg*-semi-g-closed set in (X, τ).  Now, to show that A is γ-sαg*-semi closed.  By Theorem 
4.5, (i) and assumption it is obtained that f(A) is β-sαg*-semi-g-closed and hence f(A) is 
β-sαg*-semi-g-closed.  By Theorem 5.4(ii), f –1(f(A)) is γ-sαg*-semi closed in (X, τ).  Therefore, A is 
γ-sαg*-semi closed in (X, τ).  Hence (X, τ) is γ-sαg*-semi T½ space. 
 
4.7 Definition 
A mapping f : (X, τ) →  (Y, σ)  said to be (γ, β)-sαg*-semi  homeomorphism, if f is bijective,        
(γ, β)-sαg*-semi continuous and  f -1 is (β, γ)-sαg*-semi continuous. 
 
4.8 Theorem 
Let f:  (X, τ) →  (Y, σ) be  (γ, β)-sαg*-semi homeomorphism and (γ, β)-sαg*-semi closed.  If (Y, σ) is 
β-sαg*-semi T½ then (X, τ) is γ-sαg*-semi T½ space. 
Proof 
Follows from Theorem 4.5. 
 
4.9 Theorem  
Let f : (X, τ) →  (Y, σ) be (γ, β)-sαg*-semi continuous injection. If (Y, σ) is β-sαg*-semi T1 (resp. β- 
sαg*- semi T2) then (X, τ) is γ-sαg*-semi T1 (resp. γ-sαg*-semi T2). 
Proof  
Suppose (Y, σ) is β-sαg*-semi T2.  Let x and y be distinct points in X.  Then, there exists two 
γ-sαg*-semi open sets V and W of Y such that f(x ) ∈ V,  f(y) ∈ W and V ∩ W = φ.  Since f is (γ, 
β)-sαg*-semi continuous for V and W there exists two γ-sαg*-semi open set U and S such that  x ∈ U,  y 
∈ S, and f(U) ⊆ V and f(S) ⊆ W.  Therefore, U ∩ S = φ.  Hence (X, τ) is γ-semi-sαg*-T2 space.  
Similarly, we can prove the case β-sαg*-semi T1. 
 

5. Conclusion 

The γ-sαg*-open sets, γ-sαg*-semi Ti spaces, (γ, β)-sαg*-semi continuous maps may be used to find 
decomposition of γ-sαg*-semi Ti spaces.  We can also define separation axioms for the γ-sαg*-semi 
Ti spaces.  
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Note 1:  From the Definitions, Theorem 3.11 and 3.12 and Remarks 3.13, 4.12 [24]  we get 

γ-sαg*           γ-sαg*      γ-sαg*     γ-sαg* 

semi T2             semi T1        semi T ½       semi T0 

   

γ-semi T0            γ-semi T2               γ-semi T1       γ-semi T ½       

  

 γT2             γT1           γT ½          γT0 

        

   T2          T1        T ½                T0 

Where A → B represent A implies B but not conversely. 
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