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Abstract
In this paper we introduce the concepy-abg*-open sets and discuss some of their basic piieper
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1. Introduction

The study of semi open set and semi continuityopplogical space was initiated by Levine[14].
Bhattacharya and Lahiri[3] introduced the concdpsami generalized closed sets in the topological
spaces analogous to generalized closed gets ineddoy Levine[15]. Further they introduced the
semi generalized continuous functions and invetstdydheir properties. Kasahara[1l] defined the
concept of an operation on topological spaces atrdduced the concept of-closed graphs of a
function. Jankovic[10] defined the conceptetlosed sets. Ogata [21] introduced the notion, of
which is the collection of alf-open sets in topological space (¥, and investigated the relation
betweery-closure and,-closure.

We introduce the notiog-sag*-semi T (I = 0, %2, 1, 2) spaces. In section 4, we intoadu §,
B)-sag*-semi continuous map which analogous o [§)-continuous maps and investigate some
important properties. Finally we introducg )-sag*-semi homeomorphism in () and study
some of their properties.

2. Premilinaries

Throughout this paper (X, ) represent rampty topological space on which no separatioorasi
are assumed unless otherwise mentioned. For atsfilig a space (X, ), cl(A), int(A) denote the
closure and interior of A respectively. The intetian of all -closed sets containing a subset A of
(X, )is called the -closure of Aand is denoted by cl(A).

2.1 Définition [11]

Let (X, 1) be a topological space. An operatipon the topology is a mapping front on to power
set P(X) of X such that 2 VY for each VI 1, where V denote the value gfat V. It is denoted by
T - P(X).

2.2 Definition [21]
A subset A of a topological space (¥,is calledy-open set if for each X A there exists a open set U
such that XxJU and U O A. 1, denotes set of affopen sets in (Xr).

2.3 Definition [21]
The point xO X is in they-closure of a set Al X if UYn A # ¢ for each open set U of x. The
y-closure of set A is denoted by/(&).

2.4 Definition [21]
Let (X, 1) be a topological space and A be subset of X thd(A) = n {F:AOF X-FOt,}

2.5 Definition [21]
Let (X, T) be topological space. An operatipis said to be regular if, for every open neighlooad U
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and V of each XX, there exists an open neighborhood W of x suah (1 U¥ n V¥

2.6 Definition [ 21]
A topological space (Xi) is said to bg-regular, wherg is an operation of, if for each xOX and for
each open neighborhood V of x, there exists an opéghborhood U of x such that dontained in V.

2.7 Remark [21]
Let (X, 1) be a topological space, then for any subset2d, & [1 cl(A) O cl, (A) O t,-cl(A).

2.8 Definition [24]
A subset A of (XJ) is said to be gsemi open set if and only if there existg@pen set U such that U
OA O clu).

2.9 Definition [ 24]
Let A be any subset of X. Thapint (A) is defined as,-int (A) = O{U:U is ay-open set and Ul A}

2.10 Definition[ 24]
A subset A of X is said to besemi closed if and only if X — A isy-semi open.

2.11 Definition[ 24]
Let Abe a subset of X. Thetgscl (A) =n {F: Fis y-semi closed and Al F}.

2.12 Definition[ 20]
A subset A of (X1) is said to be a stronglyg*-closed set ifucl(A) O U whenever AD U and U is
g*-open in (X1).

2.13 Definition[ 20]
If a subset A of (X7) is a stronglyag*-closed set then X — Ais a stronglg*-open set.

2.14 Definition[ 20]
A space (Xj) is said to be aT.-space if every stronglgg*-closed set of (X1 ) is closed in it.

2.15 Definition [ 20]

A space (X;) is called

() a y-semi T, space if for each distinct points x, y1 X, there exists gsemi open set U such that
xOUandydUoryOUand xdU.

(i) a y-semi T, space if for each distinct points x,[y¥ X, these exist-semi open sets U, V
containing x and y respectively such thafl yJ and x V.

(ii) a 'y - semi T, space if for each x, i X there exists g-semi open sets U, V such thafldJ and y
OVand Un V=q

2.16 Definition [ 24]
A subset A of (X1) is said is be-semi g-closed ift,-scl(A) O U  whenever A0 U and U is a
y-semi open set in (%).

2.17 Définition [ 24]
A space (Xj) is said to bg-semi Ty-space if every semi g-closed set in tXis y-semi closed.

2.18 Definition[ 24]
A mapping f: (X,1) - (y, 0) is said to bey B) -semi continuous if for each x of X and ed&zbemi
open set V containing f(x) there existg-semi open set U such thafixU and f(U)O V.

2.19 Definition [ 24]
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A mapping f: (X,T) - (Y, 0) is said to bey )-semi closed if for any y-semi closed

set A of (X,1), f(A) is a3-semi closed.

2.20 Definition [ 24]
A mapping f: (X,T) - (Y, 0) is said to bey B)-semi homeomorphism, if f is bijectivey, (
B)-semi-continuous and fis (8, y )-semi continuous.

2.21 Definition
A subset Aof (Xy)is said to be a y-sag*-semi open set if and only if there existg-sag*-open
set U such that UAD cl (V).

2.22 Theorem
If Alis ay-semi open set in (), then A is ay-sag*-semi open set.

2.23 Definition
A subset A of X is said to besag*-semi closed if and only if X Ais y-sag*-semi open.

2.24 Definition
Let A be a subset of X. Theap.scl(A)= n {F:Fisy-sag* semiclosed and A F}.

2.25 Theorem
For a point xd X, x O tys~-scl(A) if and only if Vn A # @for any VO 1,5-SO(X ) such that XJ V.

2.26 Remark
From the Theorem 3.12 and the Definition 3.25 weeh&a [0 1y+-scl(A) O tys+-Cl(A) for any subset
Aof (X, 1).

2.27 Remark
Lety. T - P(X ) be a operation. Then a subset A of {Xjs y-sag*-semi closed if and only if
Tys+-SCI(A)=A

3. y-sag*-Semi T; Spaces
In this section, we investigate a general operaijgproaches on, paces where
i=0,%,1,2. Let y:1 - P(X) be a operation on a topology

3.1 Definition
A space (X7) is calledy-sag*-semi Ty space if for each distinct points
X, y O X there exists gsog*-semi open set U such thatkU and y(1 U or y(OU and xO U.

3.2 Definition
A space (X1) is calledy-sag* semi T; space if for each distinct points X,y there exists-sag*
semi open sets U, V containing x and y respectisath that y1 U and xd V.

3.3 Definition
A space (X) is called a-sag*-semi T, space if for each x,[y X there exisy-saug*-semi open sets U,
VsuchthatXxJUand ydOVand Un V=q.

3.4 Definition

A subset A of (X;1) is said to bg~sag*-semi g-closed ift,-scl(A) O U whenever AU and U is a
y-sag*-semi open set in (%).

3.5 Remark

From Theorem 3.16 and Remark 3.28 we have eremg*-semi g-closed set {ssemi g-closed.
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3.6 Definition

A space (Xj1) isy-sag*-semi Ty, space if every-sag*-semi g-closed set in (X) is y-semi closed.

3.7 Remark

Let A be a subset of X. Then-scl(A) O 1,-scl (A).
Proof

Let x O ty-scl(A)

= x0On {F:Fis vy-semiclosed and A F}

= x [0 F where F iy - semi closed andAF

= x 0 F where F iy - 3ng* -semi closed and B F
= x0n {F: Fisy- sng*-semi closed and & F}

= x O 1ys-scl(A)

Thereforeg,-scl(A) O tys+-Scl(A).

3.8 Theorem
A subset A of (X1) is y-sog*-semi g-closed if and only #f-scl({x}) n A # ¢@holds for every XJ T,
-scl(A).
Proof
Let U bey-sag*-semi open set such thatlAU. Let xO t,-scl(A). By assumption there exists a z
O te-scl({x}) and zO A DO U. It follows from Theorem 3.27 that U {x} # ¢. Hence xO U.
This impliest,-scl (A) O U. Therefore, A ig-sag*-semi g-closed set in (X).

Conversely, suppose xJ Tt,/scl(A) such thatte-scl({x}) n A = @ Since
Ts-scl ({x}) is y-sug*-semi closed set in (X7), from the Definition 3.24, Hs-scl({X})© is a
y-sag*-semi open set.  Since B 1s-scl({X}) © and A isy-sag*-semi-g-closed set, we havgscl(A)
O1e-scl (x}) % Hence xd 1-scl(A) . This is a contradiction. Hence Tty-scl{x}) n Az @

3.9 Theorem
If Ts~-scl({x}) n A #z @ holds for every X0 Ty+-scl(A), thent-scl(A) — A does not contain a non
emptyy-sag*-semi closed set.

Proof

Suppose there exists a non empag*-semi closed set F such thatFys-scl(A) — A. Let xO F, x
0 tys-scl(A) holds. It follows from Remark 3.28 and 8, # F n A = t+-scl(F) n A O tys--scl
({xh) n Awhich is a contradiction. Thusg-scl(A) — A does not contains a non empisog*-semi
closed set.

3.10 Theorem

Lety: 1 — P(X) be an operation. Then for eacilxX, {x} is y-sag*-semi closed or {x}is
y-sag*-semi g-closed set in (X,).

Proof

Suppose that {x} is not- sag*-semi closed then X—{x} is noy-sag*-semi open. Let U be any
y-sag*-semi open set such that {xf} U.  Since U = X, we havg,-scl ({x}) “0 U. Therefore, {x}
¢is ay-sug*-semi g-closed set.

3.11Theorem
A space (X,1) is y-sag*-semi-T,, space if and only if {x} isy-sag*-semi closed or y-sog*- semi
open in (X,1).
Proof
Suppose {x} is noty-sag*-semi closed Then, it follows from assumption arfteorem 3.10, {x} is
y-sag*-semi open.

Conversely, Let F be y-sag*-semi g-closed set in (X1). Let x be any point in
T,s+-SCl(F), then {x} isy-sag*-semi open oy-sag*-semi closed.
Case (i) : Suppose {x} is y-sog*-semi open. Then by Theorem 3.27, we have
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{X} n F£@ HencexdF.

Case (ii): suppose {x} isy-sag*-semi closed. Assume X F, Then xO ty-scl(F) — F.  This is not
possible by Theorem 3.9. Thus we havedxF. Therefore,t-scl(F) = F and hence F is
y-sag*-semi closed.

3.13 Remark

Let X ={a, b, c},1={q@ X, {a}, {b}, {a, b}, {a, c}}, define y: 1 - P(X) be an operation such that for
every AOT, A'=AifbOA, AY=cl(A) if b O A. Then (X,1) isy- sug*- semi T but it is neither
y-sag*-semi T, nory-sag*-semi T, nory-sag*-semi Ty.

4. (y, B)-s0g*-SEM|1 CONTINUOUS MAPS

Through out this chapter let (X) and (Y,0) the two topological spaces andyett - P(X) andB: o -
P(Y) be operations onando respectively.

4.1 Definition
A mapping f: (X,1) - (Y, 0) is said to bey B)-sag*-semi continuous if for each x of X and each
B-sag*-semi open set V containing f(x) there existssag*-semi open set U such thdild and f (U)O V.

4.2 Remark
If (X, 1) and (Y,0) are bothy-sag*-regular spaces then the conceptyf3}-sag*-semi continuity and semi
continuity are coincide.

4.3 Theorem

Letf: (X, 1) > (Y, 0) be §, B)- sag*-semi continuous mapping. Then,

(i) f (tys-scl(A)) O 1gs+-scl (f(A)) holds for every subset A of (X).

(ii) Let y be an operation, then for evelysag*-semi closed set B of (), f (B) is y-sag*-semi closed in
X, 1)

Proof

(i) Let yO f (1+-sClI(A)) and V be anf-sag*-semi open set containing y. Then there exigisiat x [

X andy-sug*-semi open set U such that f(x) = y an@J and f(U) O V. Since xO 1,s-scl(A), We have
Un Az @and hencepzf (Un A) Of(U) n f(A) OV n f(A). This implies f(x) O Tgs+-Scl(f(A)).

Therefore, we have f-scl(A)) O Tgs-SCl(f(A)).

(i) Let B be ap-sug*-semi closed set in (\g). Thereforefgs-scl(B) = B. By using (i) we haveTig.-scl

(f '(B))) O tgs-scl (B) = B.  Therefore we hawg.-scl(f *(B)) O (f *(B)).  Hence f'(B) is y-sag*-semi

closed.

4.4 Definition
A mapping f: (X,1) - (Y, 0) is said to bey B)-sag*-semi closed if for any-sog*-semi closed set A of
(X, 1), f(A) is ap-sog*-semi closed .

4.5 Theorem

Suppose that f isy(B)-sog*-semi continuous mapping and f ig B)- sug*-semi closed. Then for every
y-sag*-semi g-closed set A of (%) the image f(A) if3-sag*-semi-g-closed.

Proof

Let V be anyp-sag*-semi open set in (Yo) such that f(A)J V. By using Theorem 4.3 (ii), #(V) is
y-sag*-semi open.  Since, A igsag*-semi g-closed and Al f }(V), we havets-scl(A) O f (v), and
hence f{,s-scl(A)) O V. It follows from the assumption thattf{-scl(A)) is ap-sag*-semi closed set.
Therefore, Tge-scl(f(A))) O Tpe-scl(f(te-scl(A)) = f(tye-scl(A)) O V. This implies f(A) is
B-sag*-semi-g-closed.

4.6 Theorem
Let f: (X, 1) - (Y, 0) be §, B)-sag*-semi continuous andy,(B)-sag*- semi closed. If fis injective and
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(Y, 0) isB-sog*-semi T, then (X,1) is y-sog*-semi T, space.

Proof

Let A bey-sag*-semi-g-closed set in (X). Now, to show that A ig-sag*-semi closed. By Theorem
4,5, (i) and assumption it is obtained that f(A) Bssag*-semi-g-closed and hence f(A) is
B-sag*-semi-g-closed. By Theorem 5.4(ii), ¥(f(A)) is y-sag*-semi closed in (X1). Therefore, A is
y-sag*-semi closed in (X1). Hence (XJ) is y-sag*-semi T,, space.

4.7 Definition
A mapping f: (X,T) - (Y, o) said to be\ B)-sag*semi homeomorphism, if f is bijective,
(v, B)-sag*-semi continuous and “fis (B, y)-sag*-semi continuous.

4.8 Theorem

Letf: (X,1) - (Y,0) be §, B)-sag*-semi homeomorphism ang, 8)-sag*-semi closed. If (Yp) is
B-sag*-semi Ty, then (X,1) is y-sog*-semi T, space.

Proof

Follows from Theorem 4.5.

4.9 Theorem

Letf: (X, 1) - (Y, 0) be § B)-sag*-semi continuous injection. If (Y9) is B-sag*-semi T, (resp.p-

sag*- semi Tp) then (X,1) is y-sag*-semi T, (resp.y-sag*-semi Tp).

Proof

Suppose (Y,0) is B-sog*-semi T,. Let x and y be distinct points in X. Then, theexists two
y-sog*-semi open sets V and W of Y such that f(x1)v, f(y) O W and Vn W =¢@. Since fisY,

B)-sag*-semi continuous for V and W there exists twsng*-semi open set U and S such thatO ¥, vy
O S, and f(U)O V and f(S)O W. Therefore, Un S =@ Hence (X,1) is y-semi-sig*-T, space.
Similarly, we can prove the caBesug*-semi T.

5. Conclusion

The y-sag*-open setsy-sag*-semi T, spaces, B)-sag*-semi continuous maps may be used to find
decomposition of~sag*-semi T, spaces. We can also define separation axiombdégrsag*-semi
T; spaces.
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Note 1. From the Definitions, Theorem 3.11 an®3fd Remarks 3.13, 4.12 [24] we get
y-sog* y-sog* y-sog* y-sog*
semi T, ’ semi T ’ semi T % sempT
ysemily, ——5 ysemiD —  » ysemiy, — pysemiTY
YTz — YN — VT — Yl
T, T E— Ty, B )

Where A- B represent Aimplies B but not conversely.
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