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Abstract

A family of higher order implicit methods witk steps is constructed, which exactly integrateiritéal
value problems of second order ordinary differérggguations directly without reformulation to firstder
systems. Implicit methods with step numberk [1{23,...6} are considered. For these methods, a
study of local truncation error is made with thiefrsic properties. Error and step length controbtdam
Richardson extrapolation technique is carried dlaistrative examples are solved with the aid of
MATLAB package. Findings from the analysis of thasiz properties of the methods show that they are
consistent, symmetric and zero-stable. The rexbtained from numerical examples show that these
methods are much more efficient and accurate onpadson. These methods are preferable to some
existing methods owing to the fact that they afieieht and simple in terms of derivation and cortapion

Keywords: Error constant, implicit methods, Order of accyraero-Stability, Symmetry

1. Introduction

In the last decade, there has been much reseatichyaic the area of numerical solution of highender
linear and nonlinear initial value problems of oraly differential equations of the form

FEY.YunY™) =0y () =70y

m=12,..{t yjoo"
)

which are of great interest to Scientists and Emgfie. The result of this activity are methods whiah be
applied to many problems in celestial and quantwuhanics, nuclear and theoretical physics, astsipsy
quantum chemistry, molecular dynamics and transverstion to mention a few. In literature, most niede
encountered are often reduced to first order systEfithe form

y' = f(t,y), yt,) =Y, tO[a b]
)

before numerical solution is sought [see for insegg Abhulimen and Otunta (2006), Ademiluyi and
Kayode (2001), Awoyemi (2005), Chan et al. (2004)].

In this study, our interest is to develop a clask-steps linear multistep methods for integratadrgeneral
second order problems without reformulation to eyst of first order. We shall be concerned primarily
with differential equations of the type
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y" = f(t,y, y')’y(m)(to) :/7m! t D[a’ b]’ f(t,y, y')DDn’ m= 0!1

3

—oo<y<oo

Theorem 1f f(t,y), f: R x R — R isdefined and continuouson all t€[a, b] and and a constant

L exist such that

[f(t,y) = f(t,y)|<Lly-y?|

4)

for every pair (t, y) and (t, y*) in the quoted region then, for any yo€R the stated initial value problem
admits a unique solution which is continuous and differentiable on [a, b].

Efforts are made to develop a class of implicitesnks of higher step-numbers with reduced functions
evaluation for direct integration of problem (3} f&=2,3,... ,6.

The remainder of the paper is organized in thefdglhg way. Under materials and methods, conswucti
of the schemes for approximating the solutions3pig presented with the analysis of their basapprties

for proper implementation. Some sample problemsedad MATLAB are equally considered. Finally,
some concluding comments are made to justify thiioable results and suitability of the proposed
schemes on comparisons.

2. Materialsand methods
2.1 Construction of the schemes: The proposed numerical method of consideratiomii@ct integration of
general second order differential equations of {#)és of the form

_ 2
yn+k - aoyn + alyn+1 oot ak—lyn+k—1 +h (180 fn + lglfnﬂ oot ﬂk fn+k)
(5)
taken from the classical K-step method with theatgm

k k
Z(;al yn+j = hzz(:)ﬁ] fn+j1 n= 0,1,
J= j=

(6)

where ¥ is an approximation to ygx) and fn+j =f(%4j, Yn+j, ¥Y'nsj). The coefficientslj andBj are constants
which do not depend on n subject to the conditions

a, =1 |a |+|B,| 20

are determined to ensure that the methods are syiopeonsistent and zero stable. Also, methodig4)
implicit sincep, 0.
The values of these coefficients are determineat fitte local truncation errott€)

Tn+k = yn+k _[aoyn + alyn+1 oot ak—lyn+k—1 + hz(ﬁo fn + ﬂlfnﬂ oot ﬂk 1:n+k)]
(7
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generated by one-step application of (5) for nucaésolution of (3). Clearly, accuracy of these

schemes depend on the real constairmndgj. In attempt to obtain the numerical values of ¢hesnstants,

the following steps were adopted;

frats Fosn s foae @bout the point

Taylor series expansion o nek s Ynuwr Yoz v Ynk-1and
(t,,y,)yields

(kh)

=y + (kh)y(l) 7 (kh) (2) + +7 (p) +O(h(p+l))

2!

_za {y +(Jh)y(1) +( h) (2)+ +(Jh) (p)+0(Jh) +lyp+1)}
" poot o (p T

_ ’% @) @ (jh)* ) (jh)P? ) (Jh) (p+1)
hJZoﬁJ{ +(Jh)y - ol no te +( _2)| n +0 ( _1)|yn }

8

Terms in equal powers ofare collected to have

k-1 1 k
T .= (1— aj] (k Z ja, jhy(l) +( z a -> B, jh y@ +
0 - - j=0

i= j=0

k3 k-1 3 k )
no_ (J) aj _Zjﬁj jh3yr(13) +. .+

(! 234
{ .p_z

kP kL (iyP k
= - (J)I a, _Z J_
P P = (P-2)
©)
Accuracy of ordep is imposed on Ji«to obtainCi=0, 0 <i < p. Setting k=2(3)6, j=0(1)6 in equation (9),
the obtainable algebraic system of equations anedonith MATLAB in the form AX=B for various
step-numbers to obtain coefficients of the mettpatameters displayed in Table 0.
Using the information in Table 0 for k=2(3)6 in (S)e have the following implicit schemes

B, J“"vép’ +0h")

2

yn+2: 2yn+1 - yn +%(fn+2 +1Ofn+l + fn)

(10)
P=4, G~ -4.1667x10
which coincides with Numerov’'s method of Lambisee for more details in [7])

2

h
Y™ 3Yniz ~3Ypa t Y, +E(fn+3 + 9fn+2 - 9fn+1 - fn)
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(11)

P=5, G,~ -4.1667x10

2

yn+4: 4yn+3 _Gyn+2 + 4yn+1 - yn +%( fn+4 +8fn+3 _18fn+2 +8fn+1 - fn)

(12)
P=6, G.,~ -4.1667x10
yn+5= 5yn+4 _1Oyn+3 +10yn+2 - 5yn+1 + yn
2

+ %(fn% +7 1:n+4 - 26fn+3 + 26fn+2 -7 1:n+1 - fn)
(13)
P=7, G2~ -4.1667x1C0
yn+6: 6yn+5 _15yn+4 + 20yn+3 _15yn+2 + 6yn+1 - y

h2

+E(f”+6 +6f,,—-33f,,, +52f ., -33f ,, +6f , +f)

n

(14)

P=7, G.o~ -4.1667x1C0

2.2 Analysis of the basic properties of methods (10),...,(14).

To justify the accuracy and applicability of ouroposed methods, we need to examine their basic
properties which include order of accuracy, ermmstant, symmetry, consistency and zero stability.

Order of accuracy and error constant:

Definitionl. Linear multistep methods (10)-(14) are said to be of order p, if p is the largest positive integer

for which Cy=C, = ... =C, =C:1 =0 but C,.,, #0. Hence, our methods are of orders p =4(5)8 witcipal
truncation error G.,~ -4.1667x10.

Symmetry: According to Lambert (1976), a class of lineartistep methods (10)-(14) is symmetric if

a; =day;
ﬂj = ng_j , J=0(1) k/2, for everk
(15)

;=70

,Bj = —ng_]_ , J=0(1) k, for oddk
(16)
Consistency

Deinition2: A linear multistep method is consistent if;
a). It hasorder p>1
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0. p(r)=p'(r)=0

g, £'(0=216()

where p(r) and O(r) are the first and second characteristic polyncsnidlour methods. Obviously,

conditions above are satisfied using the infornmatie contained in Tablel for k=2(3)6.

Zero stability

Definition3: A linear multistep method is said to be zero-stable if  no root p(r) has modulus greater than

one (that is, if all roots of p(r) liein or on the unit circle). A numerical solution to class of system (3) is
stable if the difference between the numerical treretical solutions can be made as small as lgessi
Hence, methods (10)-(14) are found to be zero-staiice none of their roots has modulus greater tha
one.

Convergence

Definition 4: The method defined by (5) is said to be convergent if, for all initial value problems satisfying

the hypotheses of the theorem 1, the fixed station limit

hofM-0 vy, =y

t=a+n,,h

(17)

holds for all t€ [a, b] and for all solutions of the equation (5) satisfying starting conditions
y, =¢ (h),0<j<k-1 Jimyo ¢, (h) =Yo

(18)

Theorem 2 The necessary and sufficient conditions for the method (5) or ((10)-(14)) to be convergent
isthat be both consistent and zero-stable.

3. Numerical Experiments: The discrete methods described above are imptigiature, meaning that
they require some starting values before they eimiplemented. Starting values fqfjyy'n:j, 2<j<6 are
predicted using Taylor series up to the order athescheme. For a numerical solution we introduce a
partition of [a, b]: t;=a, th=tg+nh, (=1, 2, ..., nyuysuch thatt,.x =b which means that.., andh are
linked, h=(b-a)/Nyyux.

Accuracy of our methods are demonstrated with §ample initial value problems ranging from general
and special, linear and nonlinear and inhomogensecsnd order differential equations.

Example 1:

y"=(y)? =0, y(0)=1 y'(0) = 05 h=0.003125
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2+t
Analytical solution: Y y(t) = 1+§| (2 J
Example 2:

y"+y=0, y(0) =0, y'(0) =1 h= 0025

Analytical solutiony(t)=sin(t)
Example 3:

y+6y+—y 0 y®O=1y®=1h=0003125

0=2-2
The analytical solution is? " % 3t

Example 4:

y" =100y +99sin(t) =0, y(0) =1 y'(0) =11

y(t) = cos) +sin(0t) +sin()

Whose analytical solution is:

Example 5:

y"+y= 000Icos¢), y(0)=1 y'(0)=0

With analytical solution: y(t) = cosg) +0.0003 sin().

4. Resultsand Discussion

Tables 1-5 present the numerical solutions in tesfrthe global maximum errors obtained for eaclhef
problems considered respectively. The errors ofithe method$10)-(14) denoted as methodA]-[E] are
compared with those of block method of Badmus armhaya (2009) represented aBMY],
exponentially-fitted RK method of Simos (1998) take be BIM]and exponentially fitted RK methods of
Vanden Berghe et al. (1999) denoted\&sN].

Discussion

In tables 1 and 2, we compare the maximum errai@rdd for the proposed schemes in equations ()-(
denoted as methoda ][ E] respectively for the problems considered, resatts given at some selected
steps. In columns 3-7 we give the absolute errors.

In Tables 3 and 5, we compare the block methodBafimus and Yahaya BMY]) and the
exponentially-fitted Runge-Kutta methods of Vandgarghe et al. fAN]) with the new method(] for
problems 3 and 5 respectively. The results in lbages show that our new method is much more efiici
on comparison.

Finally, we also compare the exponentially-fittedthod of Simos §IM]) with our new method)] for
problem 4, the end-point global error is preseirtezblumns 4-5 of Table 4.

5.Conclusion
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In this paper, a new approach for constructingrailfy of linear multistep methods with higher
algebraic orders is developed. Using this new agrpwe can construct akystep method which directly
integrates functions of the form (3) without refadation to first order systems. Based on the negraaxh,
the methods are symmetric, consistent, zero-stafleconvergence.

All computations were carried out with a MATLAB gm@amming language. It is evident from the results
presented in Tables 1-5 that the new methods arsdmrably much more accurate than the other naaleri
methods that we have considered.
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Table 0.

“lag|a|a,|as o |as|a | B |B |8 |8 | B | B |5 |°] 7"

211 -2 1 10 1 4 1
12 |12 |12 24C

3|1 |3 | -3 - 1 9|9 1 5| -
12| 12|12 |12

411 -4 | 6 -4 - 8 18 8 1 6| -
12 |12 | 12|12 |12

51]-1 5 -10| 10| -5 - 1 7 26 26 7 1 7| -
12| 12|12 | 12 |12 |12

6|1 -6 | 15| -20| 15| -6| - 6 33| 52 33| 6 1 1(8]-
12 |12 | 12|12 | 12 |12 ] 12

Table 1: Comparison of errors arising from the megthods for example 1

t Exact [A] [B] [C] D] [E]

0.100 | 1.050041676 | 3.9101E-06 | 1.5497E-08 | 2.3801E-09 | 7.3310E-10 | 2.6314E-12

0.125 | 1.100335360 | 7.8321E-06 | 5.8113E-08 | 4.3400E-09 | 3.5810E-09 | 1.1900E-11

0.150 | 1.151140451 | 1.3721E-05 | 1.3682E-07 | 1.9070E-08 | 8.6691E-09 | 1.9211E-11

0.175 | 1.202732563 | 2.1982E-05 | 1.3721E-07 | 3.6951E-07 | 4.6490E-08 | 2.0601E-10

0.200 | 1.255412817 | 3.3021E-05 | 2.2006E-06 | 6.0871E-07 | 7.5481E-08 | 5.5816E-09

Table 2: Comparison of errors arising from the megthods for example 2

t Exact [A] [B] [C] D [E]

0.100 | 0.074929707 | 1.5616E-06 | 6.2414E-07 | 8.2001E-10 | 8.9611E-10 | 8.8862E-12

0.150 | 0.149438143 | 5.4621E-06 | 3.1184E-06 | 6.4122E-09 | 7.6048E-09 | 5.3631E-12

0.200 | 0.198669344 | 1.3098E-05 | 8.7225E-06 | 2.6520E-08 | 2.2781E-08 | 1.2370E-10

0.250 | 0.247403994 | 2.5699E-05 | 1.8667E-05 | 8.0170E-08 | 9.9998E-08 | 9.6901E-10

0.300 | 0.295520246 | 4.4484E-05 | 3.4171E-05 | 1.9819e-07 | 2.4736E-07 | 3.5761E-08
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Table 3: Comparison of errors of the new scheGjenith method BM Y] for example 3

t Exact [C] Computed [C] [BMY]
0.025000 | 1.022049164 | 1.022049012 | 1.52E-07 | 2.21E-04
0.015625 | 1.014447543 | 1.014447461 | 8.18E-08 | 1.56E-04
0.012500 | 1.011741018 | 1.011741018 | 3.63E-08 | 1.35E-04
0.006250 | 1.006057503 | 1.006057499 | 4.09E-09 | 7.50E-04
0.003125 | 1.003076526 | 1.003076525 | 1.40E-09 | 3.84E-05

Table 4: Comparison of errors of scherdith method [SIM] for example 4

t Exact [D] Computed [D] [SIM]

1.00000 | -0.541621655
0.50000 | -0.195836551

-0.424800002 | 1.1E-01 | 1.4E-01
-0.175498054 | 2.3E-02 | 3.5E-02

0.02500
0.12500
0.06250
0.03125

0.044732488
1.388981715
1.458519710
1.290251377

0.044721485
1.388981253
1.458551881
1.290251373

1.1E-05
4.6E-07
8.9E-08
3.4E-09

1.1E-03
8.4E-05
5.5E-06
3.5E-07

Table 5: Comparison of the end point errors of seh§C] with method VAN] for example 5

T Exact [C] Computed [C] [VAN]

1.00000
0.50000
0.02500
0.12500

0.06250

0.540723041
0.877702418
0.968943347
0.992205459
0.998049463

0.539941907
0.877693052
0.968942743
0.992205416
0.998049460

7.81E-04
9.37E-06
6.05E-07
4.32E-08
2.88E-09

1.20E-03
7.54E-05
4.74E-06
2.96E-07
1.86E-08
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