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Abstract 

A family of higher order implicit methods with k steps is constructed, which exactly integrate the initial 
value problems of second order ordinary differential equations directly without reformulation to first order 
systems.  Implicit methods with step numbers }6,...,3,2{∈k  are considered. For these methods, a 
study of local truncation error is made with their basic properties. Error and step length control based on 
Richardson extrapolation technique is carried out. Illustrative examples are solved with the aid of 
MATLAB package. Findings from the analysis of the basic properties of the methods show that they are 
consistent, symmetric and zero-stable. The results obtained from numerical examples show that these 
methods are much more efficient and accurate on comparison.  These methods are preferable to some 
existing methods owing to the fact that they are efficient and simple in terms of derivation and computation 

Keywords: Error constant, implicit methods, Order of accuracy, Zero-Stability, Symmetry 

 

1. Introduction 

In the last decade, there has been much research activity in the area of numerical solution of higher order 

linear and nonlinear initial value problems of ordinary differential equations of the form 

         10
)1()( )(,0)...,,,,( −

− == m
mm tyyyytf η     

             
nytm ℜ∈= },{,...,2,1                                                                                    

(1) 

which are of great interest to Scientists and Engineers. The result of this activity are methods which can be 

applied to many problems in celestial and quantum mechanics, nuclear and theoretical physics, astrophysics, 

quantum chemistry, molecular dynamics and transverse motion to mention a few. In literature, most models 

encountered are often reduced to first order systems of the form 

                             
],[,)(),,( 00 batytyytfy ∈==′       

                             (2) 

before numerical solution is sought  [see for instance, Abhulimen and Otunta (2006), Ademiluyi and 

Kayode (2001), Awoyemi (2005), Chan et al. (2004)]. 

In this study, our interest is to develop a class of k-steps linear multistep methods for integration of general 

second order problems without reformulation to systems of first order. We shall be concerned primarily 

with differential equations of the type 
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Theorem 1 If f(t,y), f:Ʀ x Ʀ → Ʀ is defined and continuous on all tЄ[a, b] and ∞<<∞− y  and a constant 

L exist such that 

 

                                
**),(),( yyLytfytf −<−                                                

(4) 

for every pair (t, y) and (t, y*) in the quoted region then, for any y0ЄƦ the stated initial value problem 

admits a unique solution which is continuous and differentiable on [a, b].    

Efforts are made to develop a class of implicit schemes of higher step-numbers with reduced functions 

evaluation for direct integration of problem (3) for k=2,3,... ,6. 

The remainder of the paper is organized in the following way.  Under materials and methods, construction  

of the schemes for approximating the solutions of (3) is presented with the analysis of their basic properties 

for proper implementation. Some sample problems coded in MATLAB are equally considered. Finally, 

some concluding comments are made to justify the obtainable results and suitability of the proposed 

schemes on comparisons.   

 

2. Materials and methods 

2.1 Construction of the schemes: The proposed numerical method of consideration for direct integration of 

general second order differential equations of type (3) is of the form 

)...(... 110
2

11110 knknnknknnkn fffhyyyy ++−+−++ +++++++= βββααα
,                                   

(5)  

taken from the classical K-step method with the algorithm 
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= =

++ ==
k

j

k

j
jnjjnj nfhy

0 0

2 ...,1,0,βα                          

(6) 
where yn+j is an approximation to y(xn+j) and fn+j =f(xn+j, yn+j, y’n+j). The coefficients αj and βj are constants 

which do not depend on n subject to the conditions 

0,1 00 ≠+= βαα k  

are determined to ensure that the methods are symmetric, consistent and zero stable. Also, method (4) is 

implicit since βk≠0. 

The values of these coefficients are determined from the local truncation error (lte) 

)]...(...[ 110
2

11110 knknnknknnknkn fffhyyyyT ++−+−+++ +++++++−= βββααα
           

(7) 
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generated by one-step  application of (5) for numerical solution of (3). Clearly, accuracy of these 

schemes depend on the real constants αj and βj. In attempt to obtain the numerical values of these constants, 

the following steps were adopted; 

Taylor series expansion of kny + , 121 .,..,, −+++ knnn yyy and knnn fff +++ .,..,, 21    about the point 

),( nn yt yields  
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Terms in equal powers of h are collected to have 
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(9) 

Accuracy of order p is imposed on Tn+k to obtain Ci=0, 0 ≤ i ≤ p. Setting k=2(3)6, j=0(1)6 in equation (9), 

the obtainable algebraic system of equations are solved with MATLAB in the form AX=B for various 

step-numbers to obtain coefficients of the methods parameters displayed in Table 0. 

Using the information in Table 0 for k=2(3)6 in (5), we have the following implicit schemes 
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(10) 

P=4, Cp+2 ≈ -4.1667x10-3 

 which coincides with Numerov’s  method of Lambert (see for more details in [7]) 
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(11) 

P=5, Cp+2 ≈ -4.1667x10-3 
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P=6, Cp+2 ≈ -4.1667x10-3   
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P=7, Cp+2 ≈ -4.1667x10-3   
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(14) 

P=7, Cp+2 ≈ -4.1667x10-3   

2.2 Analysis of the basic properties of methods (10),...,(14). 

To justify the accuracy and applicability of our proposed methods, we need to examine their basic 

properties which include order of accuracy, error constant, symmetry, consistency and zero stability. 

Order of accuracy and error constant:  

Definition1. Linear multistep methods (10)-(14) are said to be of order p, if p is the largest positive integer 

for which C0 =C1 = ... =Cp =Cp+1 =0 but Cp+2 ≠0. Hence, our methods are of orders p =4(5)8 with principal 

truncation error Cp+2 ≈ -4.1667x10-3. 

Symmetry: According to Lambert (1976), a class of linear multistep methods (10)-(14) is symmetric if  

   jkj −= αα   

jkj −= ββ , j=0(1) k/2, for even k                                                                                                  

(15) 

   jkj −−= αα   

   jkj −−= ββ , j=0(1) k, for odd k                                                     

(16)
 

Consistency  

Deinition2: A linear multistep method is consistent if; 

a). It has order p≥1 
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where )(rρ  and )(rδ  are the first and second characteristic polynomials of our methods. Obviously, 

conditions above are satisfied using the information as contained in Table1 for k=2(3)6.  

Zero stability 

Definition3: A linear multistep method is said to be zero-stable if  no root ρ(r) has modulus greater than 

one (that is, if all roots of ρ(r) lie in or on the unit circle). A numerical solution to class of system (3) is 

stable if the difference between the numerical and theoretical solutions can be made as small as possible.  

Hence, methods (10)-(14) are found to be zero-stable since none of their roots has modulus greater than 

one. 

Convergence 

Definition 4: The method defined by (5) is said to be convergent if, for all initial value problems satisfying 

the hypotheses of the theorem 1, the fixed station limit 

 hnat

tyyh n
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lim )(0
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(17)

 

holds for all tЄ [a, b] and for all solutions of the equation (5) satisfying starting conditions  

10),( −<<= kjhy jj φ ,limh→0 )(hjφ =y0                               

(18).    

Theorem 2  The necessary and sufficient conditions for the method (5) or  ((10)-(14)) to be convergent  

is that be both consistent and zero-stable.  

3. Numerical Experiments:  The discrete methods described above are implicit in nature, meaning that 

they require some starting values before they can be implemented. Starting values for yn+j, y’n+j, 2≤j≤6 are 

predicted using Taylor series up to the order of each scheme. For a numerical solution we introduce a 

partition of [a, b]: t0=a, tn=t0+nh, (n=1, 2, ..., nmax)such that tnmax =b which means that nmax and h are 

linked, h=(b-a)/nmax.  

Accuracy of our methods are demonstrated with five sample initial value problems ranging from general 

and special, linear and nonlinear and inhomogeneous second order differential equations. 

Example 1: 

       
003125.0,5.0)0(,1)0(,0)( 2 ==′==′−′′ hyyyy
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        Analytical solution: 
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Example 2:  

        
025.0,1)0(,0)0(,0 ==′==+′′ hyyyy

 

        Analytical solution: y(t)=sin(t) 

  Example 3: 

        
003125.0,1)1(,1)1(,0

46
2

==′==+′+′′ hyyy
t

y
t

y
 

        The analytical solution is: 43

2

3

5
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Example 4: 

11)0(,1)0(,0)sin(99100 =′==+−′′ yytyy
 

Whose analytical solution is: 
)sin()10sin()10cos()( tttty ++=

  

Example 5: 

0)0(,1)0(),cos(001.0 =′==+′′ yytyy
 

With analytical solution: 
).sin(0005.0)cos()( tttty +=

 

4. Results and Discussion 

Tables 1-5 present the numerical solutions in terms of the global maximum errors obtained for each of the 

problems considered respectively. The errors of the new methods (10)-(14) denoted as methods [A]-[E] are 

compared with those of block method of Badmus and Yahaya (2009) represented as [BMY], 

exponentially-fitted RK method of Simos (1998) taken to be [SIM]and exponentially fitted RK methods of 

Vanden Berghe et al. (1999) denoted as [VAN].  

 

Discussion 

In tables 1 and 2, we compare the maximum errors obtained for the proposed schemes in equations (10)-(14) 

denoted as methods [A]-[ E] respectively for the problems considered, results are given at some selected 

steps. In columns 3-7 we give the absolute errors. 

In Tables 3 and 5, we compare  the block method of Badmus and Yahaya ([BMY]) and the 

exponentially-fitted Runge-Kutta methods of Vanden Berghe et al. ([VAN]) with the new method [C] for 

problems 3 and 5 respectively. The results  in both cases show that our new method is much more efficient 

on comparison. 

Finally, we also compare the exponentially-fitted method of Simos ([SIM]) with our new method [D] for 

problem 4, the end-point global error is presented in columns 4-5 of Table 4. 

 

 5. Conclusion   
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 In this paper, a new approach for constructing a family of linear multistep methods with higher 

algebraic orders is developed. Using this new approach, we can construct any k-step method which directly 

integrates functions of the form (3) without reformulation to first order systems. Based on the new approach, 

the methods are symmetric, consistent, zero-stable and convergence. 

All computations were carried out with a MATLAB programming language. It is evident from the results 

presented in Tables 1-5 that the new methods are considerably much more accurate than the other numerical 

methods that we have considered.   
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Table 0. 
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Table 1: Comparison of errors arising from the new methods for example 1   

  t    Exact       [A]       [B]       [C]      [D]       [E] 

0.100 

0.125 

0.150 

0.175 

0.200 

1.050041676 

1.100335360 

1.151140451 

1.202732563 

1.255412817 

3.9101E-06 

7.8321E-06 

1.3721E-05 

2.1982E-05 

3.3021E-05 

1.5497E-08 

5.8113E-08 

1.3682E-07 

1.3721E-07 

2.2006E-06 

2.3801E-09 

4.3400E-09 

1.9070E-08 

3.6951E-07 

6.0871E-07 

7.3310E-10 

3.5810E-09 

8.6691E-09 

4.6490E-08 

7.5481E-08 

2.6314E-12 

1.1900E-11 

1.9211E-11 

2.0601E-10 

5.5816E-09 

 

Table 2: Comparison of errors arising from the new methods for example 2 

   t      Exact       [A]     [B]      [C]       [D]      [E] 

0.100 

0.150 

0.200 

0.250 

0.300 

0.074929707 

0.149438143 

0.198669344 

0.247403994 

0.295520246 

1.5616E-06 

5.4621E-06 

1.3098E-05 

2.5699E-05 

4.4484E-05 

6.2414E-07 

3.1184E-06 

8.7225E-06 

1.8667E-05 

3.4171E-05 

8.2001E-10 

6.4122E-09 

2.6520E-08 

8.0170E-08 

1.9819e-07 

8.9611E-10 

7.6048E-09 

2.2781E-08 

9.9998E-08 

2.4736E-07 

8.8862E-12 

5.3631E-12 

1.2370E-10 

9.6901E-10 

3.5761E-08 
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Table 3: Comparison of errors of the new scheme [C] with method [BMY] for example 3 

    t     Exact [C] Computed    [C] [BMY] 

0.025000 

0.015625 

0.012500 

0.006250 

0.003125 

1.022049164 

1.014447543 

1.011741018 

1.006057503 

1.003076526 

1.022049012 

1.014447461 

1.011741018 

1.006057499 

1.003076525 

1.52E-07 

8.18E-08 

3.63E-08 

4.09E-09 

1.40E-09 

2.21E-04 

1.56E-04 

1.35E-04 

7.50E-04 

3.84E-05 

 

Table 4: Comparison of errors of scheme [D]with method [SIM] for example 4 

      t       Exact [D] Computed [D] [SIM] 

1.00000 

0.50000 

0.02500 

0.12500 

0.06250 

0.03125 

-0.541621655 

-0.195836551 

  0.044732488 

  1.388981715 

  1.458519710 

  1.290251377 

-0.424800002 

-0.175498054 

  0.044721485 

  1.388981253 

  1.458551881 

  1.290251373 

1.1E-01 

2.3E-02 

1.1E-05 

4.6E-07 

8.9E-08 

3.4E-09 

1.4E-01 

3.5E-02 

1.1E-03 

8.4E-05 

5.5E-06 

3.5E-07 

 

Table 5: Comparison of the end point errors of scheme [C] with method [VAN] for example 5 

T Exact [C] Computed [C] [VAN] 

1.00000 

0.50000 

0.02500 

0.12500 

0.06250 

0.540723041 

0.877702418 

0.968943347 

0.992205459 

0.998049463 

0.539941907 

0.877693052 

0.968942743 

0.992205416 

0.998049460 

7.81E-04 

9.37E-06 

6.05E-07 

4.32E-08 

2.88E-09 

1.20E-03 

7.54E-05 

4.74E-06 

2.96E-07 

1.86E-08 
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