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Abstract 

Tuberculosis (TB) is a chronic airborne disease caused mainly by Mycobacterium tuberculosis and has caused 

many deaths globally and Tanzania in particular due to failure or delayed intervention. In this paper, a 

deterministic mathematical model for transmission dynamics of TB with vaccination and screening the 

population for the purpose of identifying those for immediate treatment is formulated. The effective reproduction 

number is computed in order to measure the relative impact for individual or combined intervention for effective 

disease control. Numerical simulations of the basic reproduction number shows that, the combination of 

vaccination, screening and treatment is the most effective intervention for minimizing the transmission of TB in 

a population. 

Key words: Tuberculosis, Modeling, Screening, Treatment. 

 

1. Introduction 

Tuberculosis is a chronic infectious disease caused mainly by Mycobacterium tuberculosis (tubercle bacillus). 

Worldwide 8.6 million people fell ill due to TB, of which 1.3 million people die annually. In developing 

countries especially in Africa, the TB incidences, prevalence, and deaths per 100,000 population are 262, 293, 

and 26 respectively and Tanzania incidences, prevalence and deaths per 100,000 population are 177, 183, and 14 

as per WHO (2013). Therefore it is becoming essential to find a viable alternative to minimize/reduce the 

prevalence of the disease. Basically there are two types of tuberculosis: pulmonary tuberculosis which affects the 

lungs and is the commonest and infectious form of the disease and extra-pulmonary tuberculosis that affects 

organs other than the lungs, such as pleura, lymph nodes, pericardium, spine, joints, abdomen or genito-urinary 

tract (URT, 2006). This study concentrates only on the infectious pulmonary TB. Tuberculosis occurs in two 

forms namely: latent tuberculosis and active tuberculosis (progressive TB). The most common form of the 

disease is latent tuberculosis. Many people remain latent and are at risk of developing active TB as a 

consequence of either exogenous or endogenous re-infection of latent bacilli. It is estimated that ten percent of 

infected individuals develop active tuberculosis and the rest have strong immunity which limits multiplication of 

tubercle bacilli (Castillo-Chavez and Feng, 1998; Feng et al., 2000; Castillo-Chavez and Song, 2004). 

Tuberculosis is the seventh most important cause of global premature mortality and disability and is projected to 

remain among the 10 leading causes of disease burden through the year 2020 (Murray and Lopez, 1997). The 

disease spreads from one individual to another through air as an individual with active TB coughs, sneezes, 

speaks, spits, kisses and sings. Upon infection, the body slowly develops immunity within 1-2 months to kill the 

organisms and the infection heals, or it develops into active infection (Adetunde, 2008). The symptoms include 

coughing up blood or sputum, excessive weight loss, fever, loss of appetite, shortness of breath to people at an 

advanced stage of TB, fatigue, night sweats, chest pain and a bad cough lasting longer than two weeks (Okyere, 

2007). The realization that TB had not been defeated by effective antimicrobial treatment in developing countries 

where crowded accommodation, poor nutrition, emergence of AIDS and resistance to the limited number of 

antituberculosis drugs available lead to the need for more-complex and renewed concern over the disease.  

The influence for the use of mathematical modelling in theory and practice of disease management and control 

have increased due to the fact that, the approach helps in figuring out decisions that are of significant importance 

on the outcomes and provide comprehensive examinations that enter into decisions in a way that gives quick 

approach and control of the disease. Okuonghae and Korobeinikov (2007) developed a SEIJT 

(Susceptible-Exposed-Undetected Infected-Detected Infected-Treated) model on the effect of Direct Observation 

Therapy Strategy (DOTS) in Nigeria. Their results showed that, provided that the fraction of detected infectious 

individuals exceeded a critical value, there exists a globally stable disease free equilibrium. However, if this 

critical detection level is not reached, the disease-free equilibrium will be unstable even with the very high 

probability successful treatment under DOTS. Ssematimba et al. (2005), focused on the density of individuals 
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with an aim of calculating the size of the area an individual is supposed to occupy in order to eliminate the TB 

epidemic. This study recommended that, in order to minimize the TB incidence in a population, the characteristic 

area per individual should be at least 0.25 square kilometres. Enagi and Ibrahim (2011) presented a mathematical 

model on of effect of bacillus calmette-guérin vaccine in preventing mother to child transmission of tuberculosis. 

Their findings show that, tuberculosis can be eradicated completely if the total removal rate from the infectious 

class is greater than the total number of latent infections produced throughout the infectious period. This can be 

achieved by effective immunization of new born infants against infection using BCG vaccines. Ziv et al (2001) 

conducted a study on Early Therapy for Latent Tuberculosis Infection. Their results shows that tuberculosis 

control programmes develop the ability to find and treat active cases of disease; they further suggest that, the 

next step in tuberculosis control should be to develop methods of preventing new cases. Screening is a strategy 

used in a population to identify an unrecognized disease in individuals without signs or symptoms 

(Hove-Musekwa and Nyabadza, 2009).In this paper, we investigate the effect of vaccination, screening and 

treatment on transmission dynamics of TB infections in a homogenous population.  

The outline of the rest of the paper is as follows; section 2: model formulation, section 3: model analysis, and 

section 4: numerical simulations. 

 

2. Model Formulation 

The total population )(tN is divided into eight compartments depending on the epidemiological status of 

individuals: Vaccinated )(tV , Susceptible )(tS , Exposed )(tE , Screened )(tET , infectious at mild stage 

)(1 tI , infectious at severe stage )(2 tI , Treated )(tT and Recovered )(tR . In this model, individuals are 

recruited into the population by either immigration at the rate   or per capita birth rate . We assume that 

proportions   of newborns in the population and   of the immigrants were vaccinated at birth to protect 

them against infection. Furthermore, the immunized class increases due to the coming in of the immunized 

children and reduces due to expiration of duration of vaccine efficacy at the rate  and death for reasons that are 

not related to the disease (natural death) at the rate  . Susceptible population increases due to the coming in of 

new births not vaccinated against the infection and those who were vaccinated but lose their immunity. When 

some susceptible individuals come into contact with infectious individuals at a rate, c , they get infected and 

progress to latently infected class at a force of infection rate  . More importantly, screening is done to 

individuals with no symptoms (the susceptible and exposed individuals) and a proportion  of those who found 

to be latently infected opt to go for treatment when their TB is still at latent stage and recovers at the rate, , 

while the remaining proportion )1(  of the latently infected individuals may not have opportunity for 

treatment or they stubbornly refuse to go for early treatment until their TB progresses to active stages at the 

rate  . A proportion η of the latent/exposed individuals that do not go for early treatment, their TB progress to 

severe infectious stage  due to their weak immunity and later go for treatment after realizing the severity of 

the disease or been forced by their relatives or friends. This group goes for treatment at the rate   and recover 

at the rate 1 , where  <1 .Those with strong immunity ( 1 ) will deviate to infectious class  in 

which their TB status is at mild stage. Individuals leaves 
 

at the rate   in which, the proportion 

1 recovers naturally, 2  goes for treatment and the remaining proportion 3  their TB advances to severe 

stage. Due to the nature of the disease, the infection will only kill individuals whose TB progresses to the severe 

infectious class. In other words, there is no TB induced deaths at mild stage. Moreover, individuals in the 

recovery class, R  are temporarily recovered. Soon they revert back to the latently infected class, E   after 

been reinfected by either 1I  or 2I at the rate   where   is the reduction in susceptibility due to prior 

endogenous infection. We assume each class conforms to natural death at the rate µ while infectious individuals 

in  die due to TB at the rate d . 

Furthermore, the following assumptions are made in formulation of the model 

 The mixing in this model is homogeneous, that is, all susceptible individuals are equally likely to be 

infected by infectious individuals in case of contact.  

 Recruits are either vaccinated or susceptible.  

 Individuals at mild stage may recover naturally or by treatment; otherwise they advance to severe stage. 

 On recovery there is temporal immunity. 

  People in each compartment have equal natural death rate    

The above description leads to the compartmental diagram in Figure 1. The parameters  indicated Figure 1 are 
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described in Table 1. 

 

Figure 1: Compartmental diagram for a TB transmission model with vaccination, screening and treatment. 

Table 1: Parameters used in the model formulation and their description 

Parameter Description 

  Recruitment rate of the immigrants into the population. 

  Per capita birth rate. 

  Proportion of babies vaccinated at birth. 

  Proportion of vaccinated immigrant babies. 

c  Per capita contact rate. 

  Probability of acquiring TB infections per contact with one infectious individual. 

  Level of infectiousness of severely infected. 

  Proportion of latently infected individuals who go for treatment after screening. 

  Progression rate from latency to active TB. 

  Proportion of latently infected individuals that progress to severe TB. 

  The departure rate from mild stage  

1  
Proportion of infectious individuals at mild stage who recover naturally. 

2  
Proportion of infectious individuals who are treated at mild stage. 

3  
Proportion of infectious individuals at mild stage who progress to severe stage. 

  Rate at which the infectious individuals at severe stage are isolated for treatment. 

1  
 Recovery rate of treated infectious individuals who are at severe conditions  

d  The tuberculosis induced mortality rate. 

  Per capita natural mortality death rate. 

  
The recovery rate after treatment of the aware infected individuals. 

   Progression from immune to susceptible. 

  Probability of individual to be passive infected from recovery.  

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.7, 2014 

 

54 

2.1 The Model Equations 

Based on the assumptions and the inter-relations between the variables and the parameters as shown in the model 

compartments in Figure 1, the effect of screening and treatment on tuberculosis transmission dynamics can be 

described by the following ordinary differential equations. 

VN
dt

dV
)(   , 

SVN
dt

dS
)()1()1(   , 

ERS
dt

dE
)(    ,     

T
T EE

dt

dE
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where the total population size, RTIIEESVN T  21  

satisfies the equation:      
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derived by adding the state equations of  (1)  

and  .) ( 21 NIIc +=   

2.2 Dimensionless transformation  

We consider the equations for the normalized quantities because it is easier to analyze our model in terms of 

proportions of quantities than of actual populations. This can be done by scaling the population of each class by the 

total population.  

We make the transformation 
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Differentiating the fractions with respect to time t  and simplifying leads to the system: 

vdikk
dt

dv
)( 1     

sdikvk
dt

ds
)()1()1( 1 
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dt
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T
T edike

dt
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)( 1                                     (3)                   

1123
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dt
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dt

dr
T )( 1211     

subject to the restriction 121 =+++++++ rhiieesv T  that leads to studying system (3) in the region 

}1≤:∈) ,,i , , , ,,{( 21

8

21 rhiieesvRrhieesv TT +++++++= +  where the model makes 

biological sense that can be shown to be positively invariant and globally attracting in
8

+R  with respect to our 

system. 

 

3. Model analysis 

The Model (3) is analyzed qualitatively to get insights into its dynamical features which gives better 

understanding of the effect of screening and treatment on the transmission of TB infection in a population. 

 

3.1 Disease Free Equilibrium (DFE), E0 

The disease free equilibrium of the model (3) is obtained by setting   

                          

021 
dt

dr

dt

dh

dt

di

dt

di

dt

de

dt

de

dt

ds

dt

dv T

 

1 2and in case of no disease, and the sum of susceptible and vaccinated = = populations= = 0  Te e i i

equals to total population, that is to say 
* *+ =1s v . 

The statement above reduces system (3) to: 
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Therefore, the disease free equilibrium (DFE) denoted by 0E  of the model (3.3) is given by: 
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3.2 The Basic Reproduction Number, R0 

The basic reproduction number, R0 is defined as the effective number of secondary infections caused by typical 

infected individual during his entire period of infectiousness (Diekman et al., 1990). This definition is given for 

the models that represent spread of infection in a population. We calculate the basic reproduction number by 

using the next generation operator method on the system (3). 

The basic reproduction number is obtained by taking the largest (dominant) eigenvalue (spectral radius) of 

1
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where i  is the rate of appearance of new infection in compartment i , i  is the transfer of infections from 

one compartment i  to another and 0E  is the disease-free equilibrium. 

From system (3), we derive i  and i  as  
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Using the linearization method, the associated matrix at DFE for F is given by:  
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On the other hand, the matrix V for the transfer of individuals out of the compartment i  is given by; 
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Finding the inverse of V  above, we get:   
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For simplicity, 
1FV  can be written as   
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The eigenvalues, λ  of matrix (5) can be computed from the characteristic equation: 0IFV  1
.  And 

we see that from our matrix that 0432    and  

* *

3
1

((1 ) ( )(1 ) ) (1 )

( )( )( ) ( )( )

k c s c s

k d k k k k

         


         

     
 

          
 

Clearly 1  is the dominant eigenvalue and thus is the effective reproduction number, 1eVTR   of our 

normalised model system (3) with vaccination, screening and treatment.  

Therefore:  

* *

3
1

((1 ) ( )(1 ) ) (1 )

( )( )( ) ( )( )
eVT

k c s c s
R

k d k k k k

         

         

     
 

          
       (6) 

where,     

* ( ) ( )

( )

k k
s

k

   

 

   


 
 

When there is no screening, (i.e. 0  ) the effective reproduction number with vaccination and treatment only 

is given by: 
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* *

3
2

((1 ) ( ) ) (1 )

( )( )( ) ( )( )
eVT

k c s c s
R

k d k k k k

        

         

    
 

          
               (7) 

Considering equation (6), when some of individuals progress to infectious stage and no treatment is provided, 

the parameters 0 , consequently the effective reproduction number with vaccination only ( eVR ) is 

given by: 

* *

3((1 ) ( ) ) (1 )

( )( )( ) ( )( )
eV

k c s c s
R

k d k k k k

        

        

    
 

         
               (8) 

It can be noted that the term  )( ++ k
 

is multiplied by a proportion )-1(  in 1eVTR
 

which implies 

that eVeVT RR <1  and we conclude that the endemicity of the infection is reduced more when the combination 

of vaccination, screening and treatment are introduced. Furthermore, if there is no vaccination then, the 

proportion of children vaccinated at birth  and that of immigrants   becomes zero. Subsequently, the expiry 

rate of the vaccination efficacy is zero and 1s . Thus, the reproduction number for screening and treatment 

only becomes:  

3
1

((1 ) ( )(1 ) ) (1 )

( )( )( ) ( )( )
eT

k c c
R

k d k k k k

         

         

     
 

          
             (9)

 

Also we note that 1eTeVT sRR =
 

where 
*0 1s  , which implies that 11 eTeVT RR < .Thus, the endemicity 

of the infection is reduced when vaccination, screening and treatment are introduced rather than screening and 

treatment only. In addition to that, if there is no vaccination and screening the parameters ,   and  are zero 

and the reproduction number for our model with treatment only becomes:    

3
2

((1 ) ( ) ) (1 )

( )( )( ) ( )( )
eT

k c c
R

k d k k k k

        

         

    
 

          
             (10) 

Finally, we compute the basic reproduction number 0R  from the equation for eVTR , that is if there is no 

vaccination and treatment. That is, 0  .  

Thus,  

))((

)1(

))()((

))()1(( 3

0


















kk

c

kkdk

ck
R                    (11) 

Moreover, equation (11) shows that the basic reproduction number for system (3) is the sum of the basic 

reproduction numbers for severe infection, 
10iR  and mild infection,

 20iR .  

Thus,
        

21 000 ii RRR  . 
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where, 

))()((

))()1(( 3

0 1 








kkdk

ck
R i  and 

))((

)1(
20










kk

c
R i

 

However, the comparison between most of the reproduction numbers in (6), (7), (8), (9), (10) and (11) 

analytically is not that direct. Hence we go for numerical simulations. 

4. Simulation and Discussion  

A Tuberculosis model with vaccination, screening and treatment is formulated and analyzed. The main objective 

of this study was to assess the effect of these control strategies, individually or in combination on the 

transmission dynamics of the disease. In order to support the analytical results, graphical representations 

showing the variations in reproduction numbers with respect to exposure rate, c  are provided in Figure 2. 

However, most of the parameters are not readily available and we use values from the literature and others are 

estimated for the purpose of illustration. Table 2 shows the set of parameter values which were used. 

Table 2: Parameters used in model simulations 

Parameters value Source 

k  0.0006yr
-1

 Estimated 

  0.03725yr
-1

 Estimated 

  0.4 Estimated 

  0.2 Estimated 

c  2 Feng et al (2000) 

  0.5 Geomira (2008) 

  0.2 Estimated 

  0.3 WHO(2013) 

  0.03yr
-1 

Cohen et al (2007) 

  0.004 Egbetade (2012) 

  0.37 Egbetade (2012) 

3  
0.02 Estimated 

  2 Feng et al (2000) 

d  0.3yr
-1

 Adetunde(2008) 

  0.04yr
-1

 Estimated 

 

Figure 2: Variations in reproduction number with respect to exposure rate 
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Figure 2 shows that, 02121 RRRRRR eTeVeTeVTeVT <<<<< . This implies combination of vaccination, 

screening and treatment is the most effective strategy in controlling the transmission of TB infection in a 

population followed by the combination of vaccination and treatment. The combination of screening and 

treatment is the third advisable while vaccination only and treatment only are not advisable in combating TB.   

On the other hand, the contribution of severe and mild infectious individuals to the disease transmission were 

investigated, Figure 3 shows the graphical results. 

 

 

Figure 3: Variations in basic reproduction number for mild and severe infectives 

Figure 3 shows that the basic reproduction number for individual at mild stage is greater than or equal to that of 

individuals at severe stage. This implies that infectious individuals who are at mild stage have a significant 

contribution on the transmission of the infection and keeping the disease endemic in the population compared to 

the one at severe conditions whose TB status are well known and most of them expected to be hospitalized. This 

conforms to the intuition that individuals at mild stage stay in a population for a long time and interact with 

many people compared to those at severe stage. Therefore, they are more dangerous than the sick ones 

(infectious at severe stage). 
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