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Abstract 

In today's global business market place, individual firms no longer compete as independent entities with unique 

brand names but as integral part of supply chain links. Key to success of any business is satisfying customer's 

demands on time which may result in cost reductions and increase in service level. 

In supply chain networks decisions are made with uncertainty about product's demands, costs, prices, lead times, 

quality in a competitive and collaborative environment. If poor decisions are made, they may lead to excess 

inventories that are costly or to insufficient inventory that cannot meet customer's demands. 

In this work we developed a bi-objective model that minimizes system wide costs of the supply chain and delays 

on delivery of products to distribution centers for a three echelon supply chain. Picking a set of Pareto front for 

multi-objective optimization problems require robust and efficient methods that can search an entire space. We 

used evolutionary algorithms to find the set of Pareto fronts which have proved to be effective in finding the 

entire set of Pareto fronts. 

Key words: multi-objective optimization, Pareto fronts, evolutionary algorithms, supply chain networks, 

echelon. 

 

1. Introduction 

A supply chain (SC) is a set of facilities, suppliers, customers, products and methods of controlling inventory, 

purchasing and distribution (Sabri and Beamon, 2000). It is aimed at providing customers with products they 

want in a timely way and efficiently and as profitable as possible. The main objective is to enhance the 

operational efficiency, profitability and competitive position of a firm and its supplier chain partners (Min and 

Zhou, 2002). Each independent entity of supply chain has inherent objective function to maximize in business 

transactions for profit maximization (Pinto, 2004). In a supply chain network (SCN) managers need to make 

strategic decisions that are viable for the business. The decisions range from what product to produce and their 

design, how much, when and from where to buy a product, how much, where and when to produce a product, etc 

(Veinott Jr, 2002). These strategic decisions are made with uncertainty about product demands, costs, prices, lead 

times and quality. Besides, the environment in which these decisions are made is competitive. 

Recently there has been a growing interest in research in supply chain network optimization problems. This may 

be due to increasing competitiveness introduced by rapid globalization such that firms wants to reduce costs and 

maintain profit margins as observed by Altiparmak et al. (2006) or from a practical stand point of view, the rise 

may be from a number of changes in the manufacturing environment including the rising cost of manufacturing, 

the shrinking of manufacturing bases, shortened life cycle, the leveling of the playing field within the 

manufacturing industries and globalization of market economies as suggested by Beamon (1998) as well as 

attractive to cost ratios and building of long term relationships with trusted suppliers as stated by Williams and 

Gunal (2003). 

Supply chain network design problems are functions of different parameters namely lead times at each entity, fill 

rates, inventory management, retailers' and customers' demands, stochastic nature of the SC, logistic issues, etc  

(Pinto, 2004; Cakravastia et al., 2002; Giannoccaro and Pontrandolfo, 2002). The ultimate objective of the SCN 

optimization is to minimize the overall system wide cost while customer service is kept at pre-specified level 

(Truong and Azadivar, 2003) and maximizing profitability of not just one entity but rather all the entities in SCN, 

Pinto (2004). Moreover objective functions of the entities in the SCN are always conflicting in nature. For 

instance, the objective of marketing is to maximize customer service level and sales volume, which is in conflict 

with the objectives of production and distribution which is to produce and ship products of higher quality at 

minimum cost and in adequate amount. Also raw materials procurement decisions are aimed at minimizing cost 

of goods while production and distribution decisions are based on maximum output from plants with minimum 
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production cost and demand. In such a scenario, there is a need to present a vector of options to the decision 

makers, so that the final decisions should be taken after taking a total balance over all criteria into account i.e. 

trade-offs (Latha Shankar et al., 2013).  

Multi-Objective Optimization (MOO) involves simultaneous optimization of problems with at least two 

objective functions which are conflicting in nature. In MOO, there is no single optimum solution, but a number 

of them exist that are optimal called Pareto fronts. There are several approaches of finding the Pareto fronts in 

MOO models. One can aggregate all the objectives into a single objective by scalarization using the weighted 

sum, distance functions, goal programming and   constraint (Konak et al., 2006; Coello, 1999; Zitzler et al., 

2004. In contrast evolutionary algorithms are able to generate and maintain multiple solutions in one simulation. 

Commonly used evolutionary algorithms include genetic algorithms which have been shown to give a good 

approximation of the Pareto fronts (Kalyanmoy et al., 2002; Konak et al., 2006).  

The supply chain network design problem has been optimized as single objective problem (Cohen and Lee, 

1988; Arntzen et al., 1995). However the results obtained from such models were not a true wholesomely 

optimal and to an extent misleading since an optimal solution for a specific scenario is not optimal to the other 

entities' objectives. 

Several studies have been undertaken where the SCN problems have been optimized as MOO problems and the 

results are more than encouraging: Amodeo et al. (2007) optimized a supply chain as a multi-objective 

optimization using genetic algorithms and simulation model. Objectives considered were: minimizing inventory 

cost and maximizing service level. It was concluded that this approach obtained inventory policies better than the 

ones used in practice then with reduced costs and improved service level. Also Erol and Ferrell Jr (2004) 

proposed a model that assigned suppliers to warehouses and warehouses to customers and used multi-objective 

optimization modeling framework for minimizing system-wide costs and maximizing customer satisfaction. 

Chen and Lee (2004) developed a multi-product, multi-stage, and multi-period scheduling model for a multi-

stage SCN with uncertain demands and prices. They simultaneously optimized the following objectives: fair 

profit distribution among all participants, safe inventory levels, maximum customer services, and robustness of 

decision to uncertain demands. 

There has been a growing interest of using evolutionary algorithms to solve multi-objective optimization 

problems recently (Deb, 2001; Pinto, 2004; Farahani and Elahipanah, 2008). Different models have been 

developed with different objective functions where evolutionary algorithms have been used to find Pareto fronts. 

Sabri and Beamon (2000) developed an integrated multi-objective supply chain model for strategic and 

operational under certainties of products-delivery and demands. Similarly Melachrinoudis et al. (2005) worked 

on a bi-objective optimization with cost minimization and service level maximization as objectives. Pinto (2004) 

and Altiparmak et al. (2006) independently proposed a solution procedure based on genetic algorithms to find 

the Pareto optimal solutions for supply chain design problem.  

Farahani and Elahipanah (2008) set up a bi-objective model for the distribution network of a supply chain which 

produces one product in a three echelon supply chain design. The objectives were: minimizing costs and 

minimizing backorders and surpluses of products. The Pareto optimal were found by using mixed integer 

programming by applying non-dominated sorting genetic algorithms.  

Most of the existing models places much emphasis on the optimization of location and allocation decisions while 

ignoring important aspects such as capacities and technology aspects of the manufacturing facilities which also 

affects the production and distribution of products. In addition, many models have been implemented using 

genetic algorithms, genetic algorithms in particular. It should be noted that with large size problems they take 

long run time to find optimal solutions and sometimes they may converge towards a limited region of the Pareto 

fronts ignoring solutions that might be interesting. In such cases, there is need to guide the algorithm to converge 

towards desirable solutions if prior information is available. 

This paper is organized as follows: section 2 gives the problem description in which we introduce the objective 

function and its assumptions followed by the mathematical models for the integrated supply chain. The proposed 

methodology is described in section 4 followed by computed results and discussion in section 5. Finally, the 

conclusion is given in section 6. 

2.  Problem Description 

We consider a general supply chain network model consisting of suppliers, manufacturing plants, distribution 

centers (DC), and retailers as shown in Figure 1 below. The suppliers are companies from which raw materials 

are bought. We assume that each supplier supplies a specific raw material. In additional there are transporting 

vehicles of different capacities which transport the raw materials or products. The manufacturing plant is where 

the products are produced. The distribution centers are the warehouses of different capacities that store the 

products before they are delivered to retailers through use of vehicles. So we need to design a supply chain 
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network that allows strategic decisions like selecting suppliers of raw materials quantities, determining the 

subsets of plants and distribution centers to be opened, and a distribution network strategy that satisfy all 

capacities and customer's demands in such a way that total cost and on time delivery delays are minimized. 

 

 

Figure 1. A Supply Chain Network Model 
Ideally we would like to deliver the products at the right time the retailers have requested and in right amount as 

demanded. This helps to save storage cost and maximize customer services. So we require that every supplier 

must deliver the right amount of products at the right time and to the right place. Though products are stored 

prior to delivery, due to capacity constraints of the distribution centers and plants, it might not be possible to 

satisfy all the requests on time hence we either have to deliver earlier or late sometimes, incurring excess storage 

costs in the process. In this research we simultaneously optimize the following two objective functions: total cost 

of the supply chain which includes the cost of opening and running manufacturing plants and distribution 

centers, cost of buying and transporting raw materials, cost of transporting products from plants to DCs and from 

DCs to retailers, and cost of holding products at DCs. The other objective function is about on-time delivery 

(minimum delay) which involves earliness: representing the amount of products that are delivered prior to the 

due date, and tardiness: representing the amount of products that are delivered after their due date. 

In terms of minimizing cost objective, it would be costly to supply products earlier to the distribution centers and 

deliver them late to retailers as we will incur holding costs. While for on time delivery objective we would want 

the warehouses to be supplied products earlier and have to store them up to an appropriate time so that we don't 

miss customer demands. As such we require a trade-off between delivering the products late or earlier and 

minimizing storage cost at the distribution center while maximizing customer service in terms of not missing 

customers' demands.  

We considered the following assumptions:  

 Number of retailers and suppliers and the capacity of suppliers are known. 

 Number of plants and distribution centers and their maximum capacities are known. 

 Demands of retailers are uncertain but can be determined from past history. 

 We only consider that storage costs are incurred at distribution centers since that is where they 

may stay for long time before being delivered to retailers. 

 Each retailer is served from one distribution center, while manufacturing plants delivers their 

products to many distribution centers. 

 Each plant gets raw materials from all the suppliers. 

3. The Mathematical Model  

We use the following notations for our mathematical model formulation. 

a) Notation for indices of the entities are as follows: 

s: supplier  

k: plant  

j: distribution center  
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i: retailer  

p: product type  

t: time 

b) Variables for quantities are as follows: 

rsk : Amount of raw materials from supplier s to plant k 

fkj: Total number of products from plant k to distribution center j 

qji: Total number of products from distribution center j to retailer i 

bpjt : Total number of backorders of products at distribution center j in time t (tardiness) 

zpjt : Total number of products delivered to distribution center j in time t (earliness) 

bj : Binary variable to indicate whether a distribution center j is open or closed 

bk : Binary variable to indicate whether a plant k is open or closed 

c) The variable notation for model parameters are: 

Dk: Capacity of plant k 

SCs: Capacity of supplier s   

di: Quantity of demanded items from retailer i 

dit: Quantity of demanded items from retailer i on a given time t 

DCtot: Total number of distribution centers 

Ptot: Total number of plants 

vj: Fixed cost of operating distribution center j 

gk: Fixed cost of operating plant k 

ckj: Unit transportation of products from plant k to distribution center j 

tsk: Unit transportation cost of raw materials from supplier s to plant k 

cs : Unit cost of raw material from supplier s 

hj: unit holding cost at distribution center j 

rji: Unit transportation cost from distribution center j to retailer i 

Qj: Holding capacity of distribution center j   

u: utilization rate of raw materials per unit of each product 

blpjt: Maximum amount of permitted backorder for distribution center j in time t. 

The mathematical formulation of the model is as follows:  

minimize 

1 ( )k k j j s sk sk kj kj j pjt ji ji

k j s k k j j t j i

f g b v b c t r c f h b r q           

 (0.1) 

and minimize   

2 (b z )pjt pjt

p j t

f                       (0.2)  

Subject to the following constraints: 

bpjt ≤ Qj : Warehouse's (distribution center) holding capacity. 

bpjt ≤ blpjt : Allowable backorder. 

i j

i j

d Q   : Capacity constraint for distribution centers. 

kj ji

k i

f q   :  Amount of products sent to retailers is within 

the capacity  of the distribution centers capacity. 

jt it

j i

q d   : Customer satisfaction. 

it i

t

d d : Total demand of product by  retailer i over total time. 

sk s

k

r SC : Supplier's capacity. 
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kj sk

j s

u f r  : Supplier's capacity on production of products. 

kj k

j

u f D : Plant's capacity for each product. 

1

1, 1,2,..., :
totDC

ji

j

b i N


   Each customer is served by a single DC. 

 0,1jb   ,  0,1kb   : Binary variables 

, r , , , ,c , , ,b , , , , 0kj sk k j sk kj pjt j pjt pjt s k itf g v t bl Q z SC D d   

4. Multi-Objective Evolutionary Algorithms (MOEA) 

In general a MOO problem has the form 

min  F={f1(x), f2(x),..., fN(x)}  

subject to  gi(x)≤0, i=1,...,M 

          hj(x)=0, j=1,...K 

          xl ≤ x ≤ xu    

In MOO, mathematically, a feasible solution x1 is said to dominate another feasible solution x2 if and only  if 

fi(x1) ≤ fi(x2), i = 1, 2,..., N and fj(x1) < fj(x2) for at least one objective function j. A solution that is not 

dominated by any other solution is called Pareto-optimal. The set of all non-dominated solutions is called Pareto-

Optimal set and the corresponding objective values for the Pareto-optimal set in the objective space is called 

Pareto-fronts. Hence the ultimate goal in MOO is to find the Pareto fronts which give trade-offs among the 

objectives being optimized. Pareto fronts cannot be improved with respect to any objective without worsening at 

least one other objective function. 

Identifying the entire Pareto-optimal set, for many multi-objective problems is practically impossible due to its 

size, in addition, for combinatorial problems like supply chain network, proof of optimality is computationally 

infeasible (Konak et al., 2006). Therefore we investigate a set of solutions that approximate the Pareto-optimal 

set as much as possible. Over the past decades, several multi-objective evolutionary algorithms (MOEA) have 

been proposed by different researchers to solve MOO problems (Deb et al., 2002). The advantages of MOEAs is 

that they deal with a set of possible solutions called populations which enables finding of the entire set of Pareto 

fronts and maintaining them in one run of the algorithm which is one of the necessary element in multi-objective 

optimization (Deb, 2001; Donoso and Fabregat, 2010) . In addition they are less susceptible to the shape or 

continuity of the Pareto fronts (Coello, 1999; Deb et al., 2002). Evolutionary algorithms originate in Darwin's 

theory of evolution and were first developed as solution for optimization problems by  Holland (1975). 

Simulating the biological evolution process, the algorithms use structure or individuals to solve the problem 

(Donoso and Fabregat, 2010; Konak et al., 2006). The algorithm consists of individuals called chromosome, the 

population of the individuals, the fitness of each of the individuals that is its phenotype, and  the genetic 

operators namely mutation, selection and cross over. Each chromosome is made up of discrete units called genes 

that controls one or more features of the chromosome, and corresponds to a unique solution. In crossover, 

generally two chromosomes referred as parents combine to form new chromosomes called offspring while 

mutation introduces random change into characteristics of chromosomes which helps to re-introduce genetic 

diversity back into the population so as to avoid converging to a local optimal. Selection is the process of 

choosing chromosomes among the population to form the next generation. Some methods of selection include 

proportional selection, ranking and tournament selection and ( )   selection. Evolutionary algorithms run in 

polynomial time, so even though there is no guarantee that an  optimal value will necessarily be found, we can 

find a good approximate value that we can actually use (Donoso and Fabregat, 2010; Deb, 2001).  

The first MOEA was vector evaluated genetic algorithm (VEGA) proposed by Schaffer (1984), which was an 

extension of simple genetic algorithm to accommodate vector-valued fitness measures followed by multi-

objective genetic algorithm (MOGA) proposed by Fonseca and Fleming (1993). Both VEGA and MOGA had no 

mechanisms to preserve best fit individuals that should have been passed to the next generation which enhances 

convergence to optimal solutions. Since then, several MOEAs have been developed namely niched pareto 

genetic algorithm, random weighted genetic algorithm (RWGA), non-dominated sorting algorithm (NSGA), 

strength Pareto evolutionary algorithm (SPEA), and fast non dominated sorting algorithm (NSGA-II) (Konak et 

al., 2006; Deb et al., 2002; Srinivas and Deb, 1994; Coello, 1999). They all incorporate crossover, selection, 
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mutation and replacement, but they differ in the way they implement them and how they deal with multiple 

objectives and preservation of diversity in the solutions.  

In this research we make use of NSGA-II genetic algorithm proposed by Deb et al. (2002) which was aimed at 

overcoming problems associated with NSGA. NSGA developed by Srinivas and Deb (1994) was  based exactly 

on MOGA except for the specification of the sharing parameter. However it has higher computational 

complexity of O(MN
3
) for M objectives and a population size of N lacked elitism and required specification of a 

sharing parameter for the fitness value. Unlike NSGA, NSGA-II implements elitism which is a mechanism that 

allows preservation of best fit individuals in a population to ensure good fitness already obtained does not get 

lost in subsequent generations. It has a reduced computational complexity of O(MN
2
). NSGA-II uses tournament 

selection whereby a group of individuals takes part in a tournament and the winner is judged by fitness levels 

that each individual brings to the tournament. It has been shown that it outperforms most contemporary MOEAs 

like SPEA, PAES, etc and its performance has been tested on several test problems where it has given accurate 

results in generating Pareto fronts (Deb et al., 2002; Pinto, 2004).  

Our choice of NSGA-II for the research is based on the fact that it is an elitist and fast strategy, modular and 

flexible, emphases on the non dominated solutions, can be applied to a large wide of problems and the 

availability of global optimization toolbox in MATLAB that implements it so that we do not re-invent the wheel. 

The main principle in NSGA-II is that we categorize all solutions into ranks and for each individual solution we 

calculate the crowding distance. To determine the ranking, two entities are calculated for each solution p namely 

np domination count representing the number of solutions that dominate solution p, and sp set of all solutions q 

dominated by solution p. All solutions p with np = 0 are identified and ranked as 1, the first non-domination 

front. Thereafter, we visit each member q of sp where np = 0 and reduce its domination count by 1. If nq = 0 then 

solution q is ranked as 2, the second non-domination front. We continue in this way until all ranks are identified. 

Solutions with rank 1 are non-dominated and represent the best. Then we calculate the overcrowding distance of 

each solution which is the measure of the diversity of solutions along the front of the non dominated solutions 

and enables the algorithm to obtain uniformly distributed solutions over the true Pareto fronts. The crowding 

distance of each solution tan[ ]dis ceI i  is calculated as follows: 

Let n=|I|, I is set of solutions. For each ,i I assign tan[ ] 0.dis ceI   

For each objective m sort the set I in ascending order based on the objective values. 

For each objective m, assign large distances to the boundary solutions, tan tan[1] [ ] .dis ce dis ceI I n   For all 

solutions i=2 to n-1, then 

tan tan max min

( [ 1] [ 1] )
[ ] [ ] ,m m

dis ce dis ce

m m

I i I i
I i I i

f f

  
 


where 

[ ] :mI i  
thm  objective function value of the 

thi  individual in the set ,I  

max :mf  maximum value of the 
thm  objective function, 

min :mf  minimum value of the 
thm  objective function. 

NSGA-II uses a two step selection process, which combines binary tournament and ( )   selection (Reed et 

al., 2003). The binary tournament allows only the fittest individuals to be placed in the mating population while 

( )   selection, selects which of the parents or children should form the next generation. To enable elitism, 

individuals for the next generation are selected from both the parents and children based on their non-domination 

front and crowding distance in case of tier until N  individuals. Here are the steps involved in the algorithm: 

Step1: Generate a parent population Pt randomly and create an offspring population Qt from Pt using genetic 

operators: selection, crossover and mutation each of size N. 

Step 2: Combine Pt and Qt into a single population set St where |St| = 2N. 

Step3: Classify and rank each individual in St. 

Step 4: Select the best N individuals from St based on ranks and crowding distance to form a parent population 

Pt+1 for the next generation. 

Step 5: Repeat steps 1-4 until the termination criteria is met.  
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For each of plant, distribution center and retailer, we dedicate a section in the chromosome for its representation 

as in Figure 2.  

 

Figure 2. An example chromosome  
 

The variables Pk represents amount of raw materials received on each plant P, while DCj are the amount of 

products that are produced and transported to distribution center DC. RTn is amount of products received on each 

retailer RT. 

5. Results and Discussion 

In this research, data was collected from SBC Tanzania which is a supply chain company that produces and sells 

soft drinks to both retailers and wholesalers (SBC Tanzania, 2010). The simulation was run in MATLAB 2013A 

with the following parameters: population size is 1290 (default) which is initially uniformly created, selection is 

by tournament with crossover probability of 0.6. Mutation is at 0.01. The mutation and crossover probabilities 

are chosen to tally with the recommendation of Reed et al. (2003) on choices of parameters for NSGA-II after 

we had run the simulation for several values. The Pareto fronts are shown in the figure below for a maximum 

generation of 500 and the default maximum value in MATLAB : 

 

Figure 3. Pareto Fronts at 500 Generations 
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Figure 4. Pareto Fronts Using Maximum Generations 
The objective function values are shown in the Table 1 and Table 2 below: 

Table 1. Pareto Fronts at 500 Generations 

Total Cost 

(TZ shillings/week) 

Minimum  

Delays (Days) 

Total Cost 

(TZ shillings/week) 

Minimum  

Delays(Days) 

42496345 3.43 42697666 3.06 

42529667 3.34 42750136 3.05 

43384315 2.98 42716485 3.06 

42524359 3.40 42599589 3.10 

43075927 2.99 42906090 3.01 

42804906 3.05 42683399 3.07 

42529667 3.34 42737024 3.06 

42558216 3.24 42863937 3.04 

42529430 3.37 42539146 3.28 

42610867 3.07 42808494 3.04 

42519600 3.42 42980958 3.00 

42818656 3.04 42459411 3.64 

42846044 3.04 42858301 3.04 

42529667 3.34 42737934 3.05 

42529667 3.34 43384315 2.98 

42562288 3.11 42456237 3.77 

42870315 3.04 42558216 3.24 

42877834 3.02 
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Table 2. Pareto Fronts at Maximum Generations 

Total Cost  

(TZ Shillings/week) 

Minimum Delay 

(Days) 

Total Cost  

(TZ Shillings/week) 

Minimum Delay 

(Days) 

42392602 2.11 42343410 2.31 

42512544 2.01 42453549 2.05 

42479149 2.02 42373738 2.13 

42426517 2.06 42359834 2.15 

42319822 2.37 42433977 2.05 

42344611 2.26 42469855 2.04 

42396879 2.06 42350870 2.18 

42369365 2.14 42303267 3.40 

42392100 2.12 42310332 2.73 

42575749 1.98 42392297 2.11 

42298487 3.46 

 

With this vector of optimal choices offering several trade-offs, the decision maker can thus intelligently decide 

based on expertise to evaluate those solutions that would be most beneficial to the company from a system's 

optimization perspective. 

On the results itself, it was found that there is an inverse relationship between the total cost and the allowable 

delay in both simulations though with a slight difference. If products are delayed for many days the total cost 

decreases and if demands are met with minimum delays the cost becomes bigger. The results can be interpreted 

as follows: to satisfy customers demands we need to have minimum delays in delivering goods once they have 

requested. Since goods are manufactured from plants and temporally stored in distribution centers then we incur 

several costs in terms of production as there is need to manufacture more goods so that they are readily available 

once they are ordered. In the same way these products may be kept for long time at distribution centers hence 

incurring more storage costs. There might also be a need for more transporting vehicles hence increasing 

transportation cost. With maximum delays these additional costs may be small or not there at all as we can 

deliver goods as long as they are available with no pressure. 

From our perspective, we would advise the industry not to delay the deliveries with more than two days as it 

makes a good business sense and the earlier the delivery the better. And it is advisable most times to choose 

extremes when a decision cannot be made on which option to select. 

The results obtained in this optimization ranges from 40-50 million TZ Shillings which is less compared to the 

actual amount that is spend by the company in a week which is 45-65 million TZ shillings on the same processes 

considered. 

6. Conclusion 

In this paper, we have developed a mathematical model for a distribution network in a three echelon supply 

chain that minimizes the system-wide costs and delays on delivery of products. The mathematical model is 

designed as a multi-objective optimization problem taking into account the two conflicting objective functions. 

We have found several options in which, for some cases we might opt for high costs to maintain customer 

satisfaction, whereas in other cases depending on the situation we might opt to save costs. We used NSGA-II 

through the Global Optimization Toolbox in MATLAB. The algorithm clearly provides the Pareto fronts which 

are efficient solutions so that decision makers can use in planning and designing to improve the supply chain 

services. This work demonstrates that evolutionary algorithms provide a successful way of dealing with multi-

objective optimization problems and have potential to solve combinatorial problems. Though the MOEAs have 

proved to be efficient in solving multi-objective problems, they become unsuccessful as the number of objectives 

increases from two in the problem. The main principle of these algorithms is the emphasis on non-dominated 

solutions in a population; however, as the number of objectives increases most population members in a 

randomly created population tend to become non-dominated to each other resulting in the algorithm failing to 

introduce new population members in the new generation thereby causing a stagnant performance. For instance 

10% and 90% of members in a population of size 200 are non-dominated in a 3 and 10 objective functions 

problem respectively (Deb, 2011; Reed et al., 2003). 
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Future research should consider designing of a model where the company hires transporting vehicles rather than 

having their own as there are other costs like maintenance and wear and tear. In addition, it might be interesting 

to if reducing product's cost and allowing retailers to organize their own transport to collect products from 

distribution centers is optimal or not as compared to the current scenario where the company delivers products to 

retailers as the number of customers keep increasing. 
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