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Abstract.
In the present paper, we have presented a recursive method namely the Power Series Method (PSM)

to solve first the linear and nonlinear Volterra integral and integro-differential equations. The PSM is
employed then to solve resulting equations of the nonlinear Volterra integral and integro-differential
forms of the Lane-Emden equations. The Volterra integral and integro-differential equations forms
of the Lane-Emden equation overcome the singular behavior at the origin x = 0. Some examples
are solved and different cases of the Lane-Emden equations of first kind are presented. The results
demonstrate that the method has many merits such as being derivative-free, and overcoming the
difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian De-
composition Method (ADM). It does not require to calculate Lagrange multiplier as in Variational
Iteration Method (VIM) and no need to construct a homotopy as in Homotopy Perturbation Method
(HPM). The results prove that the present method is very effective and simple and does not require
any restrictive assumptions for nonlinear terms. The software used for the calculations in this study
was MATHEMATICA r 8.0.

Keywords: Power series method, Volterra integral equation, Lane-Emden equations, Singular bound-
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1 Introduction

A variety of problems in physics, chemistry and biology have their mathematical setting as integral
equations. Many methods have been developed to solve integral equations, especially nonlinear, which
are receiving increasing attention.

Many attempts have been made to develop analytic and approximate methods to solve the linear
and nonlinear Volterra integral and integro-differential equations, see [1–10]. Moreover, Chebyshev
polynomials are applied for solving of nonlinear Volterra integral [11]. Although such methods have
been successfully applied but some difficulties have appeared, for examples, construct a homotopy in
HPM and solve the corresponding algebraic equations, in calculating Adomian polynomials to handle
the nonlinear terms in ADM and calculate Lagrange multiplier in VIM, respectively.

Recently Tahmasbi and Fard [11, 12] have proposed a new technique namely the Power Series
Method (PSM) for solving nonlinear and system of the second kind of Volterra integral equations,
respectively. The PSM converges to the exact solution, if it exists, through simple calculations .
However for concrete problems, a few approximations can be used for numerical purposes with high
degree of accuracy. The PSM is simple to understand and easy to implement using computer packages
and does not require any restrictive assumptions for nonlinear terms. In this paper, the applications
of the PSM for both the linear and nonlinear Volterra integral and integro-differential equations and
the resulting equations of the nonlinear Volterra integral and integro-differential equations forms of
the Lane-Emden equations will be presented.

The results obtained in this paper are compared with those obtained by other iterative methods
such as ADM [13], and the VIM [14].

The present paper has been organized as follows. In section 2 the power series method (PSM) is
explained. In section 3 the analytical approximate solutions for linear and nonlinear Volterra integral
equations by PSM are presented. In section 4 solving linear and nonlinear Volterra integro-differential
equations by using PSM are given. In section 5 the applications of PSM for the Lane-Emden equation
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of first kind and how to convert it to Volterra integral and integro-differential equations (of first and
second orders) and some illustrative cases are solved and finally in section 6 the conclusion is presented.

2 The power series method (PSM)

Consider the nonlinear Volterra integral equation of second kind

u(x) = f(x) +

x∫
0

K(x, t)F (u(t))dt. x ∈ [0, 1] (1)

the kernel K(x, t) and the function f(x) are given real-valued functions, and F (u(x)) is a nonlinear
function of u(x) such as u2(x), sin(u(x)) and eu(x).
Suppose the solution of Eq.(1) be as

u(x) = c0 + c1x, (2)

where c0 = f(0) = u(0) and c1 is a unknown parameter. By Substituting Eq.(2) into Eq.(1) with
simple calculations, we get

(ac1 − b)x+Q(x2) = 0. (3)

where Q(x2) is a polynomial of order greater than one. By neglecting Q(x2), we have linear equation
of c1 in the form,

ac1 = b. (4)

the parameter c1 of x in Eq.(2) is then obtained. In the next step, we assume that the solution of
Eq.(1) is

u(x) = c0 + c1x+ c2x
2 (5)

where c0 and c1 both are known and c2 is unknown parameter. By Substituting Eq.(5) into Eq.(1),
we get

(ac2 − b)x2 +Q(x3) = 0, (6)

where Q(x3) is a polynomial of order greater than two. By neglecting Q(x3), we have linear equation
of c2 in the form,

ac2 = b (7)

the unknown parameter c2 of x2 in Eq.(5) is then obtained. Having repeated the above procedure for
m iterations, a power series of the following form is derived:

u(x) = c0 + c1x+ c2x
2 + ...+ cmxm (8)

Eq.(8) is an approximation for the exact solution u(x) of Eq.(1) in the interval [0, 1].

Theorem 2.1 [11]
Let u = u(x) be the exact solution of the following volterra integral eqution

u(x) = f(x) +

x∫
0

K(x, t)[u(t)]pdt (9)

Then, the proposed method obtains the Taylor expansion of u(x).

134



3 Analytical approximate solutions for linear and nonlinear Volterra integral equations by using PSM 3

Corollary 2.2 [11]

If the exact solution to Eq.(9) be a polynomial, then the proposed method will obtain the real
solution.

3 Analytical approximate solutions for linear and nonlinear Volterra integral equations
by using PSM

In this section, the PSM is applied to solve the linear and nonlinear Volterra integral equations.

3.1 Linear Volterra integral equations

The standard form of the linear Volterra integral equation of second kind is given by [7, 15]

u(x) = f(x) +

x∫
0

K(x, t)u(t)dt (10)

Where, K(x, t) and f(x) are given functions, and u(x) is unknown function occurs to the first power
under the integral sign.
The PSM can be applied by following the same procedure as in section 2 to the following example:

Example 1: Consider the following linear Volterra integral equations [7]:

u(x) = 1 + x+
x3

6
−

x∫
0

(x− t)u(t)dt (11)

c0 = u(0) = f(0) = 1 as the initial condition, suppose the solution of Eq.(11) be

u(x) = c0 + c1x = 1 + c1x (12)

Substitute Eq.(12) in Eq.(11) we get

1 + c1x = 1 + x+ x3

6 −
x∫
0

(x− t)(1 + c1t)dt

By integrating and solving we get

(c1 − 1)x− (−x2

2 + (16 − 1
6c1)x

3) = 0, by neglecting (−x2

2 + (16 − 1
6c1)x

3), therefore c1 = 1

(13)

Substitute c1 = 1 in Eq.(12) we get

u(x) = 1 + x. (14)

Suppose the solution of Eq.(11) be as

u(x) = c0 + c1x+ c2x
2 = 1 + x+ c2x

2

(15)

Substitute Eq.(15) in Eq.(11) we get

135



3 Analytical approximate solutions for linear and nonlinear Volterra integral equations by using PSM 4

1 + x+ c2x
2 = 1 + x+ x3

6 −
x∫
0

(x− t)(1 + t+ c2t
2)dt

By integrating and solving we get

(c2 +
1
2)x

2 + (c2
x4

12 ) = 0, by neglecting c2
x4

12 , therefore c2 = −1
2

(16)

Substitute c2 = −1
2 in Eq.(15) we get

u(x) = 1 + x− x2

2
. (17)

Suppose the solution of Eq.(11) be as

u(x) = c0 + c1x+ c2x
2 + c3x

3 = 1 + x− x2

2 + c3x
3

(18)

Substitute Eq.(18) in Eq.(11) we get

1 + x− x2

2 + c3x
3 = 1 + x+ x3

6 −
x∫
0

(x− t)(1 + t− t2

2 + c3t
3)dt

By integrating and solving we get

c3 − ( 1
24x

4 − c3
x5

20 ) = 0, by neglecting ( 1
24x

4 − c3
x5

20 ), therefore c3 = 0

(19)

Substitute c3 = 0 in Eq.(18) we get

u(x) = 1 + x− x2

2
. (20)

Continue by this way we will get series of the form u(x) = x+ (1− x2

2 + x4

24 − x6

720 + ..., ) so that gives
the exact solution u(x) = x+ cosx [7].

3.2 Nonlinear Volterra integral equation

The standard form of the nonlinear Volterra integral equation (VIE) of the second kind is given
by [7, 15]

u(x) = f(x) +

x∫
0

K(x, t)F (u(t))dt (21)

where, F (u(t)) is a nonlinear function of u(t).
The algorithm of power series method is given by the same procedure as in section 2. The PSM will
be applied to the following example:

Example 2: Consider the following nonlinear Volterra integral equation [7]:

u(x) =
1

4
+

x

2
+ ex − e2x

4
+

x∫
0

(x− t)u2(t)dt. (22)

c0 = u(0) = f(0) = 1 as the initial condition,
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Suppose the solution of Eq.(22) be as

u(x) = c0 + c1x = 1 + c1x (23)

substitute Eq.(23) in Eq.(22) we get

1 + c1x = 1
4 + x

2 + ex − e2x

4 +
x∫
0

(x− t)(1 + c1t)
2dt

By integrating and solving we get

(c1 − 1)x− (14 + ex − e2x

4 + x2

2 + c1x3

3 ) = 0, by neglecting (14 + ex − e2x

4 + x2

2 + 1
3), therefore c1 = 1

(24)
substitute c1 = 1 in Eq.(23) we get

u(x) = 1 + x. (25)

Suppose the solution of Eq.(22) be as

u(x) = c0 + c1x+ c2x
2 = 1 + x+ c2x

2 (26)

substitute Eq.(26) in Eq.(22) we get

1 + x+ c2x
2 = 1 + c1x = 1

4 + x
2 + ex − e2x

4 +
x∫
0

(x− t)(1 + t+ c3t3)2dt

By integrating and solving we get

(c2 − 1
2)x

2 − (14 + ex − e2x

4 + x+ x2

2 + c1x3

6 + ( 1
48 + c2

6 )x
4) + c2x5

20 +
c22x

6

30 ) = 0.

By neglecting − (14 + ex − e2x

4 + x+ x2

2 + c1x3

6 + ( 1
48 + c2

6 )x
4 + c2x5

20 +
c22x

6

30 ), therefore c2 =
1
2

(27)

Substitute c2 =
1
2 in Eq.(26) we get

u(x) = 1 + x+
x2

2
. (28)

Continue by this way we will get series of the form u(x) = 1+ x+ x2

2 + x3

6 − x4

24 + ..., so that gives the
exact solution u(x) = ex [7].

4 Solving linear and nonlinear Volterra integro-differential equations by PSM

In this section some linear and nonlinear Volterra integro-differential equations will be solved by PSM
to show effectiveness of PSM .

4.1 Solving linear Volterra integro-differential equations by PSM

Let us consider the following linear Volterra integro-differential equation of kth order.

uk(x) = f(x) +

x∫
0

K(x, t)u(t)dt. (29)
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where u(k)(x) = dk

dxk . Because the resulted equation in (29) combines the differential operator and

the integral operator, then it is necessary to define initial conditions u(0), u′(0), ..., u(k−1)(0) for the
determination of the particular solution u(x) of the Volterra integro-differential equation (29). Without
loss of generality, we may assume a Volterra integro-differential equation of the second kind given by

u
′′
(x) = f(x) +

x∫
0

K(x, t)u(t)dt, u(0) = α0, u
′(0) = α1 (30)

By integrating both sides of Eq.(30) twice from 0 to x and use initial the conditions we get,

u(x) = α0 + α1x+

x∫
0

x∫
0

f(x)dxdx+

x∫
0

x∫
0

x∫
0

K(x, t)u(t)dtdxdx (31)

The algorithm of power series method is given by the same procedure as in section 2. The PSM will
be applied to the following example:

Example 3: Consider the following linear Volterra integro-differential equation of the second order:

u′′(x) = 1 + x+

x∫
0

(x− t)u(t)dt, u(0) = 1, u′(0) = 1. (32)

By integrating both sides of Eq.(32) twice, we get

u(x) = 1 + x+ x2

2 + x3

6 +
x∫
0

x∫
0

x∫
0

(x− t)u(t)dtdxdx. (33)

c0 = u(0) = f(0) = 1 as the initial condition,

Suppose the solution of Eq.(33) be

u(x) = c0 + c1x = 1 + c1x (34)

Substitute Eq.(34) in Eq.(33) we get

1 + c1x = 1 + x+ x2

2 + x3

6 +
x∫
0

x∫
0

x∫
0

(x− t)(1 + c1t)dtdxdx

By integrating and solving we get

(c1 − 1)x− (x
2

2 + (x
2

2 + x3

3 + x4

24 + c1
x5

120)) = 0.

By neglecting x2

2 + (x
2

2 + x3

3 + x4

24 + c1
x5

120), therefore c1 = 1

(35)

Substitute c1 = 1 in Eq.(34) we get

u(x) = 1 + x. (36)

Suppose the solution of Eq.(33) be

u(x) = c0 + c1x+ c2x
2 = 1 + x+ c2x

2

(37)

Substitute Eq.(37) in Eq.(33) we get
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1 + x+ c2x
2 = 1 + x+ x2

2 + x3

6 +
x∫
0

x∫
0

x∫
0

(x− t)(1 + t+ c2t
2)dtdxdx

By integrating and solving we get

(c2 − 1
2)x

2 + (x
3

3 + x4

24 + ( x5

120 + ( x6

360c2)) = 0.

By neglecting (x
3

3 + x4

24 + ( x5

120 + ( x6

360c2), therefore c2 =
1
2 .

(38)

Substitute c2 =
1
2 in Eq.(37) we get

u(x) = 1 + x+
1

2
x2. (39)

Continue by this way we will get series of the form u(x) = 1 + x + 1
2x

2 + 1
6x

3 + ..., so that gives the
exact solution u(x) = ex.

4.2 Solving nonlinear Volterra integro-differential equations by PSM

Let us consider the following integro-differential equation of kth order.

uk(x) = f(x) +

x∫
0

K(x, t)F (u(t))dt, (40)

where u(k)(x) = dk

dxk . Because the resulted equation in (40) combines the differential operator and

the integral operator, then it is necessary to define initial conditions u(0), u′(0), ..., u(k−1)(0) for the
determination of the particular solution u(x) of the Volterra integro-differential equation (40). Without
loss of generality, we may assume a Volterra integro-differential equation of the second kind given by

u
′′
(x) = f(x) +

x∫
0

K(x, t)F (u(t))dt, u(0) = α0, u
′(0) = α1 (41)

By integrating both sides of Eq.(41) twice from 0 to x and use the initial conditions, we get

u(x) = α0 + α1x+

x∫
0

x∫
0

f(x)dxdx+

x∫
0

x∫
0

x∫
0

K(x, t)F (u(t))dtdxdx (42)

The algorithm of power series method is given by the same procedure as in section 2. The PSM will
be applied to the following example:

Example 4: Consider the following nonlinear Volterra integro-differential equation of the first order:

u′′(x) = −x2 − 1

4
x5 + xu(x) +

x∫
0

xu(t)3dt, u(0) = 0, u′(0) = 1. (43)

By integrating both sides of Eq.(43) twice, we get

u(x) = x− 1
8x

4 − 1
168x

7 +
x∫
0

x∫
0

xu(x)dxdx+
x∫
0

x∫
0

x∫
0

xu(t)3dtdxdx. (44)

c0 = u(0) = f(0) = 0 as the initial condition,
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Suppose the solution of Eq.(44) be

u(x) = c0 + c1x = c1x (45)

Substitute Eq.(45) in Eq.(44) we get

c1x = x− 1
8x

4 − 1
168x

7 +
x∫
0

x∫
0

x(c1x)dxdx+
x∫
0

x∫
0

x∫
0

x(c1t)
3dtdxdx.

By integrating and solving we get

(c1 − 1)x− (16x
3 + (− 1

24 + c1
1
12)x

4 + 3c1x
5 1
40 + c21x

6 1
30 + (− 1

168 + c31
1

168)x
7) = 0

By neglecting − ((16x
3 + (− 1

24 + c1
1
12)x

4 + 3c1x
5 1
40 + c21x

6 1
30 + (− 1

168 + c31
1

168)x
7), therefore c1 = 1.

(46)
Substitute c1 = 1 in Eq.(45) we get

u(x) = x. (47)

Suppose the solution of Eq.(44) be

u(x) = c0 + c1x+ c2x
2 = x+ c2x

2 (48)

Substitute Eq.(48) in Eq.(44) we get

x+ c2x
2 = x− 1

8x
4 − 1

168x
7 +

x∫
0

x∫
0

x(x+ c2x
2)dxdx+

x∫
0

x∫
0

x∫
0

x(t+ c2t
2)3dtdxdx.

By integrating and solving we get

c2x
2 + (− 1

24x
4 + c2x5

20 + 3c2x8

280 +
c22x

9

144 +
c32x

10

630 ) = 0.

By neglecting − 1
24x

4 + c2x5

20 + 3c2x8

280 +
c22x

9

144 +
c32x

10

630 , therefore c2 = 0

(49)

Substitute c2 = 0 in Eq.(48) we get

u(x) = x. (50)

Note that cj = 0 for j ≥ 2, so that gives the exact solution u(x) = x [16].

5 Applications

In this section the applications of the PSM for resulting equations of the nonlinear volterra integral
and integro-differential equations forms of the Lane-Emden equation of first kind are presented.

5.1 The Lane-Emden equation of first kind

The Lane-Emden equation of the first kind in standard form [13]:

u′′ +
k

x
u′ + f [u(t)] = 0, u(0) = α, u′(0) = 0, k ≥ 0. (51)

where f [u(t)] = um, Eq.(51) is a basic equation in the theory of stellar structure for k = 2. It is a useful
equation in astrophysics for computing the structure of interiors of polytropic stars. This equation
describes the temperature variation of a spherical gas could under the mutual attraction of its molecules
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and subject to the of laws of thermodynamics [13]. This equation is linear for m = 0, 1 and nonlinear
otherwise. We convert the differential equation to integral equation for several reasons, through the
integration we can rid of the singularity formula which is a problem in differential equations, and also
in the integral equation we get more stable results [17]. Moreover, as indicated before, the power series
method worked perfectly for the resulting integral equation rather than the original ODE, since it is
required to convert the ODE to integral equation.

5.2 Convert the Lane-Emden equation of shape factor of 2 to volterra integral
equation

The Lane-Emden equation of shape factor of 2 reads

u′′ +
2

x
u′ + f [u(t)] = 0, u(0) = α, u′(0) = 0, k ≥ 0. (52)

To convert Eq. (52) to Volterra integral form, we follow the same procedure as in [13], however
the prove is given here:

(x2u′)′ = −x2f(u(t)) (53)

u′ = − 1
x2

x∫
0

t2f [u(t)]dt

x∫
0

u′dx = −
x∫
0

1
x2

x∫
0

t2f [u(t)]dtdx,

By integrating both sides of Eq.(53) twice

u(x)− u(0) =
x∫
0

x∫
0

t2f [u(t)]dtd( 1x)

then by integrating by part, we get,

=

[
x∫
0

t2f [u(t)]dt 1x

]x
0

−
x∫
0

1
xd

(
x∫
0

t2f [u(t)]dt

)

=
x∫
0

t2f [u(t)]dt 1x −
x∫
0

1
xx

2f [u(x)]dx

by using Leibnitz rule, we obtain

=
x∫
0

t2

x f [u(t)]dt−
x∫
0

tf [u(t)]dt

u(x)− α =
x∫
0

t( tx − 1)f [u(t)]dt

then the Lane-Emden equation of shape factor of 2 is

u(x) = α+

x∫
0

t(
t

x
− 1)f [u(t)]dt (54)

By differentiating Eq.(54) twice, using Leibnitz rule, gives
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u′(x) = −
x∫

0

(
t2

x2
)f [u(t)]dt (55)

u′′(x) = −f [u(x)] +

x∫
0

2(
t2

x3
)f [u(t)]dt (56)

Multiplying u′(x) by 2
x adding the result to u′′(x) gives the Lane-Emden equation of shape factor of

2 in Eq.(52) .
This shows that the Volterra integral form Eq.(54) is the equivalent integral form for the Lane-Emden
equation of shape factor of 2 [13].

5.3 The Lane-Emden equation of shape factor of k

The Lane-Emden equation of shape factor of k reads

u′′ +
k

x
u′ + f [u(t)] = 0, u(0) = α, u′(0) = 0, k ≥ 0, (57)

If k ̸= 1, by the same way that we got through it on the Eq.(54) we will get Eq. (59):

u(x) = α− 1

k − 1

x∫
0

t(1− tk−1

xk−1
)f [u(t)]dt (58)

By differentiating Eq.(58) twice, using Leibnitz rule, gives

u′(x) = −
x∫

0

(
tk

xk
)f [u(t)]dt (59)

u′′(x) = −f [u(x)] +

x∫
0

(
tk

xk+1
)f [u(t)]dt (60)

Multiplying u′(x) by k
x adding the result to u′′(x) gives the generlaized Lane-Emden equation Eq.(58).

This shows that the Volterra integral form Eq.(58) is the equivalent integral form for the generlaized
Lane-Emden equation [13].

If k = 1 the integral form is :

u(x) = α+

x∫
0

t(ln
t

x
)f [u(t)]dt, (61)

which can be obtained in limit as k → 1 in Eq. (58) in fact, we have by L’Hospital’s rule.

lim
k→1

[
1

k − 1
− { 1

(k − 1)
(
t

x
)k−1}]

= lim
k→1

1

k − 1
− lim

k→1

1

k − 1
(
t

x
)k−1

Applying L’Hospital’s rule on each part, the first part

lim
k→1

1

k − 1
= 0
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The second part is also applied by the same rule we obtain f(k) = ( tx)
k−1 and g(k) = 1

k−1

f(k) = ( tx)
k−1 then f ′(k) = ( tx)

k−1 ln t
x , bcause

[
d
dx(a

x) = ax ln a
]
and g′(k) = 1

Then:

limk→1
1

k−1 − limk→1
( t
x
)k−1

k−1

= 0− limk→1
f ′(k)
g′(k)

= 0− limk→1(
t
x
)k−1 ln t

x
1

= 0− limk→1 (
t
x)

k−1 ln ( tx)

= − ln t
x

Therefore, the Volterra integral forms for the Lane-Emden equation is give by [13].

u(x) =


α+

x∫
0

t(ln t
x)f [u(t)]dt, for k = 1, f [u(t)] = um(t)

α− 1
k−1

x∫
0

t(1− tk−1

xk−1 )f [u(t)]dt, for k > 0, k ̸= 1

(62)

The Volterra integral equation Eq.(62) and integro-differential equations Eqs.(59)-(60) forms of the
Lane-Emden equation overcomes the singular behavior at the origin x = 0. The PSM will be applied
to the following examples:

Example 5: Consider the following Volterra integral forms for the Lane-Emden equation when
k = 2,m = 0 :

u(x) = 1−
x∫

0

t(1− t

x
)dt (63)

c0 = u(0) = f(0) = 1 as the initial condition,

Suppose the solution of Eq.(63) be as

u(x) = c0 + c1x = 1 + c1x. (64)

Substitute Eq.(64) in Eq.(63) we get

1 + c1x = 1−
x∫
0

t(1− t
x)dt

By integrating and solving we get

c1x+ x2

6 = 0, by neglecting x2

6 , therefore c2 = 0.

(65)

Substitute c1 = 0 in Eq.(64) we get
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u(x) = 1. (66)

Suppose the solution of Eq.(63) be as

u(x) = c0 + c1x+ c2x
2 = 1 + c2x

2. (67)

Substitute Eq.(67) in Eq.(63) we get

1 + c2x
2 = 1−

x∫
0

t(1− t
x)dt

By integrating and solving we get

(c2 +
1
6)x

2 = 0, by neglecting x2

6 , therefore c2 = −1
6 .

(68)

Substitute c2 = −1
6 in Eq.(67) we get

u(x) = 1− x2

6
. (69)

Note that cj = 0 for j ≥ 3, so that the exact solution u(x) = 1− x2

6 .

Example 6: Consider the following Volterra integral forms for the Lane-Emden equation when k =
2,m = 1:

u(x) = 1−
x∫

0

t(1− t

x
)u(t)dt (70)

c0 = u(0) = f(0) = 1 as the initial condition,

Suppose the solution of Eq.(70) be as

u(x) = c0 + c1x = 1 + c1x. (71)

Substitute Eq.(71) in Eq.(70) we get

1 + c1x = 1−
x∫
0

t(1− t
x)(1 + c1t)dt

By integrating and solving we get

c1x− x2

6 − c1
x3

12 = 0, by neglecting x2

6 − c1
x3

12 , therefore c1 = 0.

(72)

Substitute c1 = 0 in Eq.(71) we get

u(x) = 1. (73)

Suppose the solution of Eq.(70) be as

u(x) = c0 + c1x+ c2x
2 = 1 + c2x

2. (74)

Substitute Eq.(74) in Eq.(70) we get

144



5 Applications 13

1 + c2x
2 = 1−

x∫
0

t(1− t
x)(1 + c2t

2)dt.

By integrating and solving we get

(c2 +
x2

6 )x
2 − c2

x4

20 = 0, by neglecting x2

6 , therefore c2 = −1
6 .

(75)

Substitute c2 = −1
6 in Eq.(74) we get

u(x) = 1− x2

6
. (76)

Suppose the solution of Eq.(70) be as

u(x) = c0 + c1x+ c2x
2 + c3x

3 = 1− x2

6 + c3x
3. (77)

Substitute Eq.(77) in Eq.(70) we get

1− x2

6 + c3x
3 = 1−

x∫
0

t(1− t
x)(1−

t2

6 + c3t
3)dt.

By integrating and solving we get

c3x
3 + (−x2

6 + x2

6 + x4

24 − c3
x5

6 + ...) = 0. By neglecting(−x2

6 + x2

6 + x4

24 − c3
x5

6 + ...), therefore c3 = 0.

(78)
Substitute c3 = 0 in Eq.(77) we get

u(x) = 1− x2

6
. (79)

Continue by this way we will get series of the form u(x) = 1 − x2

6 + 1
120x

4 + ...,, so that the exact
solution u(x) = sinx

x .

Example 7: Consider the following Volterra integral forms for the Lane-Emden equation when
k = 2,m = 5 :

u(x) = 1−
x∫

0

t(1− t

x
)u(t)5dt (80)

c0 = u(0) = f(0) = 1 as the initial condition,

Suppose the solution of Eq.(80) be as

u(x) = c0 + c1x = 1 + c1x. (81)

Substitute Eq.(81) in Eq.(80) we get
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1 + c1x = 1−
x∫
0

t(1− t
x)(1 + c1t)

5dt.

By integrating and solving we get

c1x− (−x2

6 − c1
5x3

12 − c21
x4

2 − c31
x5

3 − c41
5x6

42 − c51
x7

56 ) = 0.

By neglecting − (−x2

6 − c1
5x3

12 − c21
x4

2 − c31
x5

3 − c41
5x6

42 − c51
x7

56 ), therefore c1 = 0.

(82)

Substitute c1 = 0 in Eq.(81) we get

u(x) = 1. (83)

Suppose the solution of Eq.(80) be

u(x) = c0 + c1x+ c2x
2 = 1 + c2x

2. (84)

Substitute Eq.(84) in Eq.(80) we get

1 + c2x
2 = 1−

x∫
0

t(1− t
x)(1 + c2t

2)5dt.

By integrating and solving we get

(c2 +
1
6)x

2 − (−c2
42x4

84 + ...) = 0, by neglecting c2
42x4

84 + ..., therefore c2 = −1
6 .

(85)

Substitute c2 = −1
6 in Eq.(84) we get

u(x) = 1− x2

6
. (86)

Suppose the solution of Eq.(80) be

u(x) = c0 + c1x+ c2x
2 + c3x

3 = 1− x2

6 + c3x
3. (87)

Substitute Eq.(87) in Eq.(80) we get

1− x2

6 + c3x
3 = 1−

x∫
0

t(1− t
x)(1−

t2

6 + c3t
3)5dt.

By integrating and solving we get

c3x
3 − (−x2

6 + x4

24 − c3
x5

6 + ...) = 0, by neglecting (−x2

6 + x4

24 − c3
x5

6 + ...), therefore c3 = 0.
(88)

Substitute c3 = 0 in Eq.(87) we get

u(x) = 1− x2

6
. (89)

Continue by this way we will get series of the form u(x) = 1 − x2

6 + x4

24 − 5x6

432 + ..., the approximate
solution is a series form, which is the same as the result obtained by ADM in [13].
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Example 8: Consider the following Volterra integral forms for the Lane-Emden equation when k =
2,m = 2 :

u(x) = 1−
x∫

0

t(1− t

x
)u(t)2dt (90)

c0 = u(0) = f(0) = 1 as the initial condition,

Suppose the solution of Eq.(90) be as

u(x) = c0 + c1x = 1 + c1x. (91)

Substitute Eq.(91) in Eq.(90) we get

1 + c1x = 1−
x∫
0

t(1− t
x)(1 + c1t)

2dt.

By integrating and solving we get

c1x− (−x2

6 − c1
x3

6 − c21
x4

20 ) = 0, by neglecting (−x2

6 − c1
x3

6 − c21
x4

20 ), therefore c1 = 0.

(92)

Substitute c1 = 0 in Eq.(91) we get

u(x) = 1. (93)

Suppose the solution of Eq.(90) be

u(x) = c0 + c1x+ c2x
2 = 1 + c2x

2. (94)

Substitute Eq.(94) in Eq.(90) we get

1 + c2x
2 = 1−

x∫
0

t(1− t
x)(1 + c2t

2)2dt.

By integrating and solving we get

(c2 +
1
6)x

2 − (−x2

6 − c2
x4

10 − c22
x6

42 ) = 0, by neglecting − x2

6 − c2
x4

10 − c22
x6

42 , therefore c2 = −1
6 .

(95)
Substitute c2 = −1

6 in Eq.(94) we get

u(x) = 1− x2

6
. (96)

Suppose the solution of Eq.(90) be

u(x) = c0 + c1x+ c2x
2 + c3x

3 = 1− x2

6 + c3x
3. (97)

Substitute Eq.(97) in Eq.(90) we get
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1− x2

6 + c3x
3 = 1−

x∫
0

t(1− t
x)(1−

t2

6 + c3t
3)2dt.

By integrating and solving we get

c3x
3 − (−x2

6 + x4

60 − c3
x5

15 + ...) = 0. By neglecting (−x2

6 + x4

60 − c3
x5

15 + ...), therefore c3 = 0.

(98)

Substitute c3 = 0 in Eq.(97) we get

u(x) = 1− x2

6
. (99)

Continue by this way we will get series of the form u(x) = 1 − x2

6 + x4

60 − 11x6

7560 + ..., the approximate
solution is a series form which is the same as the result obtained by ADM in [13].

5.4 Solving Volterra integro-differential forms of the Lane-Emden equations

In this section we will discuss Volterra integro-differential forms of the Lane-Emden equations of first
and second order given in Eq.(55) and Eq. (56), respectively and will be solved by PSM.

5.4.1 Solving Volterra integro-differential forms of the Lane-Emden equations of first order

We will solve the Volterra integro-differential forms of the Lane-Emden equations given in Eq.(55) by
PSM, let us consider the following integro-differential equation of first order.

u′(x) = −
x∫

0

(
tk

xk
)um(t)dt, u(0) = α (100)

By integrating both sides of Eq.(100) and using the initial conditions, we get

x∫
0

u′(x)dx = −
x∫

0

x∫
0

(
tk

xk
)um(t))dtdx (101)

u(x) = α−
x∫

0

x∫
0

(
tk

xk
)um(t)dtdx (102)

The algorithm of power series method is given by the same procedure as in section 2. The PSM will
be applied to the following example:

Example 9: Consider the following nonlinear Volterra integro-differential forms for the Lane-Emden
equation of the first order when m = 1, k = 2:

u′(x) = −
x∫

0

t2

x2
u(t)dt, u(0) = 1. (103)

By integrating both sides of Eq.(103), we get

x∫
0

u′(x)dx =
x∫
0

x∫
0

t2

x2u(t)dtdx,
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u(x) = 1−
x∫
0

x∫
0

t2

x2u(t)dtdx. (104)

c0 = u(0) = f(0) = 1 as the initial condition,

Suppose the solution of Eq.(104) be as

u(x) = c0 + c1x = 1 + c1x. (105)

Substitute Eq.(105) in Eq.(104) we get

1 + c1x = 1−
x∫
0

x∫
0

t2

x2 (1 + c1t)dtdx.

By integrating and solving we get

c1x+ (x
2

6 + c1
x3

12 ) = 0, by neglecting x2

6 + c1
x3

12 , therefore c1 = 0.

(106)

Substitute c1 = 0 in Eq.(105) we get

u(x) = 1. (107)

Suppose the solution of Eq.(104) be as

u(x) = c0 + c1x+ c2x
2 = 1 + c2x

2. (108)

Substitute Eq.(108) in Eq.(104) we get

1 + c2x
2 = 1−

x∫
0

x∫
0

t2

x2 (1 + c2t
2)dtdx.

By integrating and solving we get

(c2 − 1
6)x

2 + c2x4

20 = 0, by neglecting c2x4

20 , therefore c2 = −1
6 .

(109)

Substitute c2 = −1
6 in Eq.(108) we get

u(x) = 1− 1

6
x2. (110)

Suppose the solution of Eq.(104) be as

u(x) = c0 + c1x+ c2x
2 + c3x

3 = 1− 1
6x

2 + c3x
3. (111)

Substitute Eq.(111) in Eq.(104) we get

1− 1
4x

2 + c3x
3 = 1−

x∫
0

x∫
0

t2

x2 (1− 1
4 t

2 + c3t
3)dtdx.

By integrating and solving we get

c3x
3 + (x

2

6 − x4

120 + c3
x5

30 ) = 0, by neglecting x2

6 − x4

120 + c3
x5

30 , therefore c3 = 0.

(112)
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Substitute c3 = 0 in Eq.(111) we get

u(x) = 1− 1

6
x2. (113)

Continue by this way we will get series of the form u(x) = 1− 1
6x

2+ 1
120x

4− ... , so the exact solution
is sinx

x , which is the same result when we solved the Volterra integral equation in example 6.

5.4.2 Solving Volterra integro-differential forms of the Lane-Emden equations of second order

We will solve Volterra integro-differential forms of the Lane-Emden equations of second order given
in (56) by PSM.

u′′(x) = −f(u(x)) +

x∫
0

k(
tk

xk+1
)f(u(t))dt, u(0) = α, u′(0) = 0 (114)

By integrating both sides of Eq.(114) twice and using the initial conditions, we get

x∫
0

u′(x)dx = −
x∫

0

f(u(x))dx+

x∫
0

x∫
0

k(
tk

x(k+1)
)u(t)dtdx, (115)

u(x) = α−
x∫

0

x∫
0

f(u(x))dxdx+

x∫
0

x∫
0

x∫
0

k(
tk

xk+1
)f(u(t))dt (116)

The algorithm of power series method is given by the same procedure as in section 2. The PSM will
be applied to the following example:

Example 10: Consider the following nonlinear Volterra integro-differential forms for the Lane-Emden
equation of the second order where m = 1, k = 2:

u′′(x) = −f(u(x) +

x∫
0

2
t2

x3
u(t)dt, u(0) = 1, u′(0) = 0. (117)

By integrating both sides of Eq.(117) twice, we get

u(x) = 1−
x∫
0

x∫
0

f(u(x))dxdx+
x∫
0

x∫
0

x∫
0

2( t
2

x3 )u(t)dtdxdx. (118)

c0 = u(0) = f(0) = 1 as the initial condition,

u(x) = c0 + c1x = 1 + c1x. (119)

Substitute Eq.(119) in Eq.(118) we get

1 + c1x = 1−
x∫
0

x∫
0

f(u(x))dxdx+
x∫
0

x∫
0

x∫
0

2( t
2

x3 )1 + c1tdtdxdx.

By integrating and solving we get

c1x+ (x
2

6 + c1
x3

12 ) = 0, by neglecting x2

6 − c1
x3

12 , therefore c1 = 0.

(120)

Substitute c1 = 0 in Eq.(119) we get
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u(x) = 1. (121)

u(x) = c0 + c1x+ c2x
2 = 1 + c2x

2. (122)

Substitute Eq.(122) in Eq.(118) we get

1 + c2x
2 = 1−

x∫
0

x∫
0

f(u(x))dxdx+
x∫
0

x∫
0

x∫
0

2( t
2

x3 )(1 + c2t
2)dtdxdx.

By integrating and solving we get

(c2 − 1
6)x

2 + c2x4

20 = 0, by neglecting c2x4

20 , therefore c2 = −1
6 .

(123)

Substitute c2 = −1
6 in Eq.(122) we get

u(x) = 1− 1

6
x2. (124)

u(x) = c0 + c1x+ c2x
2 + c3x

3 = 1− 1
6x

2 + c3x
3. (125)

Substitute Eq.(125) in Eq.(118) we get

1 + c3x
3 = 1−

x∫
0

x∫
0

f(u(x))dxdx+
x∫
0

x∫
0

x∫
0

2( t
2

x3 )(1 + c3t
3)dtdxdx.

By integrating and solving we get

c3x
3 + (x

2

6 − x4

120 + c3
x5

30 ) = 0, by neglecting x2

6 − x4

120 + c3
x5

30 , therefore c3 = 0.

(126)

Substitute c3 = 0 in Eq.(125) we get

u(x) = 1− 1

6
x2. (127)

Continue by this way we will get series of the form u(x) = 1− 1
6x

2+ 1
120x

4− ... , so the exact solution
is sinx

x , which is the same result when we solved the Volterra integral equation in example 6.
It can also be clearly seen that from examples 6, 9 and 10 the solutions of the Volterra integral

equation Eq.(62) and integro-differential equations Eqs.(59)-(60) forms of the Lane-Emden equations
are equivalent.

6 Conclusion

In this paper, we implement the power series method (PSM) to obtain an analytical approximate
solutions for solving linear and nonlinear Volterra integral or integro-differential equations. Then the
applications of PSM for solving Volterra integral or integro-differential forms of Lane-Emden equations
also given. The proposed Volterra integral or integro-differential forms facilitates the computational
work and overcomes the difficulty of the singular behavior at x = 0 of the original initial value
problem of the Lane-Emden equations. Moreover, the results obtained in current paper are in a
complete agreement with the results by ADM [13] and VIM [14]. Furthermore, the PSM is simple
to understand and easy to implement and does not require any restrictive assumptions for nonlinear
terms as required by some existing techniques. Also, this method reproduces the analytical solution
when the exact solutions are polynomial. It is economical in terms of computer power/memory and
does not involve tedious calculations. It is worth to mention here, by solving some examples, it is
seems that the PSM appears to be very accurate to employ with reliable results.
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