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Abstract 

Traffic delay model was developed under a basis of deterministic and stochastic delay components. The latter 

component was put under D/D/1 framework and therein mean and its variance derived. While the stochastic 

component was put under the M/G/1 framework, mean and variance derived. Extension on stochastic component 

and M/G/1 framework was discussed with the usage of compressed queueing processes. Harmonization of the 

moments of deterministic and stochastic components to obtain the overall central moments of traffic delay has 

been discussed. Simulation was performed using Matlab for traffic intensities ranging from 0.1 to 1.9. The 

simulated results indicate that both deterministic and stochastic components are incompatible as the traffic 

intensity approaches capacity. Furthermore the results indicated that oversaturated conditions and random delay 

renders the stochastic component in traffic delay models unrealistic. Also, with the ability to estimate the 

variance of overall traffic delay, it is feasible to integrate the concept of reliability into design and analysis of a 

signalized intersection. 

Keywords: D/D/1 model, M/G/1 model, compressed queueing processes, simulation.  

 

1.0 Introduction 

Traffic delays and queues are principal measures of performance that determine the level of service (LoS) at 

signalized intersections. They also evaluate the adequacy of the lane lengths and the estimation of fuel 

consumption and emissions. Quantifying these delays accurately at an intersection is critical for planning, design 

and analysis of traffic lights. Signalized intersection referred herein, is a road junction controlled by a traffic 

light. Traffic lights were implemented for the purpose of reducing or eliminating congestions at intersections. 

These congestions exist because an intersection is an area shared among multiple traffic streams, and the role of 

the traffic light is to manage the shared usage of the area. Traffic models in an intersection are always subjected 

to both uniform and random properties of traffic flows. As a result of these properties, vehicle travel times in an 

urban traffic environment are highly time dependant.  

Models that incorporate both deterministic and stochastic components of traffic performance are very appealing 

in the signalized intersection since they are applied in a wide range of traffic intensities as well as to various 

types of traffic lights. They simplify theoretical models with delay terms that are numerically inconsequential. Of 

the various queueing models, D/D/1 and M+Δ/G+Δ /1 were used in this study. The D/D/1 model assumed that the 

arrivals and departures were uniform and one service channel (traffic light) existed. This model is quite intuitive 

and easily solvable. Using this form of queueing with an arrival rate, denoted by   and a service rate, denoted 

by  , certain useful values regarding the consequences of queues were computed. The M+Δ/G+Δ /1 model used 

implied that the vehicles arrived at an intersection in a Poisson process with rate   and were treated in the order 

of arrival with inter arrival times following exponential distribution with parameter  . The service times were 

treated as independent identically distributed with an arbitrary distribution. Similarly, one service channel (traffic 

light) was considered in this model.  

 

2.0 Traffic Problem 

The main traffic problem here is to develop overall traffic delay model using D/D/1 and compressed M+Δ/G+Δ /1 

queueing systems. With D/D/1 system, the inter-arrivals and service times are deterministic while in M+Δ/G+Δ /1 

system, the Markovian arrivals and iid service times follow a general distribution. A single service channel 
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(traffic light) was used. The model will be used for estimating the mean of the time delay and its variance at a 

signalized intersection. 

 

3.0 Compressed M+Δ/G+Δ/1 Queueing System 

The service times in the stochastic delay component can be analyzed effectively using the compressed 

M+Δ/G+Δ/1 queueing system because of its distribution. The system is drawn from compressed queueing 

processes theory so as to estimate statistical measures of traffic delay in case of large variations of service times. 

In this model, M+Δ represents the exponential shifted distribution for the inter arrival times, G+Δ represents the 

general shifted distribution of service times and 1 implies a single service channel (traffic light). The level of 

service in this model is basically described by the mean and variance of the service time spent by a vehicle in the 

queue. The compressed queueing processes used in this study are based on two assumptions: 

i) The service time rate for a compressed model, denoted by 

 

and given by 

1





 

 
.                                                                                         (1) 

ii) The arrival rate for the compressed model, denoted by   and given by 

1





 

 
.                                                                                           (2) 

 

4.0 Problem Formulation 

Consider a cumulative arrival and departure of vehicles in a signalized intersection for the time interval  0,T . 

The time taken by a vehicle in the queue herein referred to as overall traffic delay is denoted by tD . Here, tD
 

comprises of deterministic and stochastic delay components and can be broken as follows: 

1 2t t tD D D  ,                                                                                      (3) 

where 
1t

D
 
is the deterministic delay component representing a delay that is incurred by a vehicle with uniform 

arrival times and departures within the time interval , yt t c    while 
2t

D is the stochastic delay component 

representing the delay that is caused by random queues resulting from the random nature of arrivals.  

To solve the stochastic Equation (3), we make the following assumptions:   

a) The intersection consists of only a single lane controlled by a fixed-time signal 

and unlimited space for queueing; 

b) The vehicles’ arrival at the intersection is either uniform or random variable 

following a Poisson process and no initial queue is present at the time when a 

prediction is performed; 

c) The vehicle time prediction horizon is assumed to be equal to the signal cycle 

time.  

 

4.1 Deterministic Delay Component   

Deterministic delay component as described in (3) is denoted by 
1t

D . In this section, we shall be interested in 

the computation of the mean and variance of 
1t

D . The mean and variance of the deterministic delay component 

is estimated by deterministic queueing model D/D/1, In Figure (1) below, we present a diagrammatic description 

of deterministic delay process.  
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Figure 1: Deterministic component of overall traffic delay. 

From the Figure, D(t) and A(t) represents the cumulative departures and arrivals, respectively. The area under 

cross-sectional area covered by triangle ABC represents the total deterministic delay at the intersection. We can 

determine the statistical measures: mean and variance. 

4.1.1 Mean  

To compute the mean, we assume that vehicle arrivals and departures are uniformly distributed with rates λ and 

µ, respectively.  The figure shows a typical cumulative arrival/departure graph against time for uniform arrival 

rate approach to an intersection. The slope of the cumulative arrival line is the uniform arrival rate in vehicles 

per unit time, denoted by λ. The slope of the cumulative departure line is sometimes zero (when the light is red) 

and sometimes ρ (when the light is green); where ρ is the traffic intensity obtained as ρ=λ/µ. Upon utilizing 

D/D/1 queueing system and the theory behind it, we compute the mean. Notice that the duration of 
yc  at the 

signalized intersection is given by 

y ec r g  ,                                                                                            (4) 

From Figure (1), we note that og
 
denotes the time necessary for the queue to dissipate. Here, the queue must 

dissipate before the end of eg . But if the queue doesn’t dissipate before the end of eg , the queue would escalate 

indefinitely. From this statement, we deduce that 

o eg g .                                                                                                  (5) 

Condition (5) is satisfied if the total number of vehicle arrivals during 
yc

 
is less than or equal to the total 

number of vehicle departures during eg . That is, 

e

y

g

c




 .                                                                                                 (6) 

Also from Figure (1), we can deduce that vehicles arrive during time period  0r g
 
and depart during the time 

period .
y

o

e

c
g

g
. Since the total number of vehicle arrivals equals the total number of vehicle departures, we have 

that 

    

y

o

e

c
g r

g
  
 

  
 

.                                                                            (7)                                                                                                         

The time period og
 
required for queue to dissipate is 
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.
o

y

e

r
g

c

g






 

 
 

.                                                                                   (8) 

From the figure, it can be seen that 
1t

D is given by 

 
1

1

n

t

i

D d i


 , 

where d(i) is the shaded cross-sectional area in Figure (1). Assuming that n is large enough so that the discrete 

sum of d(i) is equal to the area of the cross-sectional area covered by triangle ABC in the figure the following can 

be written:  

 
1

1

2
yt eh cD g   .                                                                                                                  

And here, h  can be easily determined by noting that  

 oh r g  .  

Hence, 

1

2

2 1

t

e

y

r
D

g

c






 
  

 

.                                                                              (9) 

To obtain the expected deterministic delay, we divide 
1t

D by the total number of vehicles in a cycle, that is, 
yc  

to give 

1

2

1

2 1

e
y

y

t

e

y

g
c

c
E D

g

c


 
  

      
  

 

                                                                    (10) 

as the mean of the deterministic component, 
1t

D .  

 

4.1.2 Variance  

The conventional way of computing the 
1t

Var D 
   is  

 
1 1 1

2
2

t t tVar D E D E D            .                                                (11) 

Since (10) provides us with 
1t

E D 
  , we compute for 

1

2

tE D 
  . To begin with, we compute 

1

2

tD . Again, we 

assume n large enough so that the discrete sum of d(i)
2
 is equal to the volume of the cross-sectional area covered 

by triangle ABC in the figure, that is 

 
1

22

1

n

t

i

D d i


      

 
1

2
2 1

3
t y eD h c g  .                                                                                

Upon substituting for h , we get  
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 
1

2
2

3
t o

r
D r g


  .       

Thus,                                                       

1

3

2

1

3 1

e
y

y

t

e

y

g
c

c
D

g

c





 
  

 
 
  

 

.  

To obtain 
1

2

tE D 
  we divide the above result by the total number of vehicles,

yc    

1

3

2

2

1

3 1

e
y

y

t

e

y

g
c

c
E D

g

c


 
  

      
  

   .                                                                (12) 

Equation (12) is the second moment of the deterministic delay component. Thus, utilizing (10) and (12), we have  

1

3

2

2

1 1 3 4

12 1

e e e
y

y y y

t

e

y

g g g
c

c c c
Var D

g

c





   
        

      
 
  

 

,                           (13) 

as the variance of the deterministic component, 
1t

D .  

 

4.2 Stochastic Delay Component  

The component is established through a coordinate transformation technique based on the queueing system 

M+∆/G+∆/1 with the usage of compressed queueing processes. Under this system, the vehicles arrive at the 

intersection in a Poisson process. The inter-arrival times follow a shifted exponential distribution given by 

  tetA   1
.                                                                   

The service times are iid random variables following a general distribution characterized by its Probability 

density function determined by  Xf x or  XF x .  Suppose Nt vehicles are on the queue at time t and, Rt being 

the residual service time of vehicle j. Residual service time herein, is the time until the vehicle found by vehicle j 

being served by the traffic light completes the service. Then for us to describe the state of the queueing system at 

time t, we need to compute the value of Nt, the probability that j vehicles are on the queue by 

 r t jP N j   .                                                                                (14) 

We shall use the generating function technique to compute (14) as follows 

   
0

j

r t

j

s s P N j


   ,                                                      

where  s
 
is the transform of the system size distribution. 

 
 

0 0

j

i ij

i j

s P s
 

                                                           

 

where 

0

j ij i

i

 


   for 0j  and ijP  is a transition probability 
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Note that the transition 0 j  occurs if and only if j  arrivals occur in the service time following an idle 

period, whereas the transition i j  (with i > 0) occurs if and only if 1j i   arrivals occur during a service 

time. If 
jq
 
is the probability of j  arrivals in a service time and  Q s

 
is the generating function of  jq , we 

have 

 
  

 
0

1Q s s
P s

Q s s






.                                                                   (15) 

The matrix of (15) takes the form 

 

0 1 2

0 1

0

...

0 ...

0 0 ...

q q q

q q
s

q

 
 
  
 
 
 

 .                                                  

To compute 
jq , first note that tN  follow a Poisson distribution with parameter t  at time t . Thus,  

 
 

0 !

j

t

j X
t

t
q e f t dt

j





  ,                                                  

where  Xf t  is the service time distribution. The generating function of 
jq  herein denoted by  Q s

 
is given 

by 

 
0

j

j

i

Q s q s


 .                                                                   

Thus, 

     1

0
0

t s

X
t

j

Q s e f t dt


  




  .                                                      (16) 

Notice that in (16), the Laplace transform of the service time distribution is  

   1Q s X s  ,                                                                          (17) 

by definition, X 

 
in (17) is referred to as the service time transform. Equation (17) is also referred to as the 

Laplace-Stieltjes transform (LST) or Pollaczek-Khintchine (P-K) transform of the service time distribution with 

first and second moments denoted by  E X  and 
2E X   , respectively.  

Next, we compute 0  in (17) by employing L’Hospital’s rule with the assumption that    1 1 1P Q    

   '
d

P s
ds

    

 
    

 
0

1
'

1

Q s s Q s
P s

Q s


   
     

. 

Upon taking the limit 1s  , we get 

1s
Lim


    
1s

P s Lim


    

 
 

0

1 ' 1 1s
Lim P s

Q






 


.                                                         

Applying Little’s theorem, defined by ρ=λE[X], we have 
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0 1   .                                                                            

Thus,  

 
    

 

1 1 1

1

X s s
s

X s s

 







  
 

 
.                                                 (18) 

4.2.1 Mean 

First, we break 
2t

D  of (3) into tW  and tX , where tW  is the waiting time for vehicle j  and tX  is the service 

time for vehicle j . Therefore, 
2t

D  is given by  

2t t tD W X  . 

Thus expectation of 
2t

D  is 

   
2t t tE D E W E X     .                                                    

To obtain 
2t

E D 
  , first we compute  tE W . Assuming First Come First Served (FCFS) discipline, we have 

 1 2 .....
tt t t t t QW R X X X         

1

tQ

t t t i

i

W R X 



                                                                 

where tW ,  , tR , tX  and tQ  are as provided in the list of symbols. Therefore  tE W  is 

   
1

tQ

t t t i

i

E W E R E X 



 
   

 
 .  

The tQ  as defined in the list of symbols is a random variable hence, 

   t t t tE W E R EE X Q     . 

Since tX  is independent of tQ , we have 

       t t t tE W E R E X E Q   . 

Upon taking the limit t  , we get 

        t t t t
t t

Limit E W Limit E R E X E Q
 

   . 

Hence,  

       E W E R E X E Q  .                                                      (19) 

The expectations  E R  and  E Q  in (19) are those observed by arriving vehicle at the intersection. From 

Poisson Arrivals See Time Averages (PASTA) property, the statistical measures (mean, variance and 

distribution) of the number of vehicles in the queueing system observed by an arrival is the same as those 

observed by an independent Poisson inspector. If we assume that vehicles arrive at the intersection in a Poisson 

process, then the expected number of vehicles in the queue excluding the one being served is given by 

   E Q E W ,  

utilizing this relation in (19), we get  

  
 

1

E R
E W







,                                                                               (20) 
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where, ρ is the traffic intensity defined by ρ=λE[X] (Little’s law). To compute  E R  in (20), consider Figure 

(2) below.  

 

Figure 2: Diagram representing long-term residual service time. 

 

In Figure (2), we present a diagrammatic description of a long-term expected residual time.  

To compute the (unconditional) mean residual service time  E R , consider the process   , 0R t t   where 

 R t  is the residual service time of the vehicle in service at time t . And consider a very long time interval 

 0,T . Then 

   
0

1 T

E R R t
T

   d t .                                                          

Let  X T  be the number of service completions by time T  and iX  the 
thi  service time. Notice that the 

function  R t  takes the value zero when there is no vehicle in service and jumps to the value of iX  at the time 

the 
thi  service time commences. During a service time it linearly decreases with rate of one and reaches zero at 

the end of a service time. Therefore,  E R t    is equal to the sum of the areas of  X T  isosceles right 

triangles where the side of the 
thi  triangle is iX . For large T , we can ignore the last possibly incomplete 

triangle to obtain 

 
 

2

1

1 1

2

X T

i

i

E R X
T 

   

 
 

 

 
2

1

1 1

2

X T

i

i

X T
E R X

T X T 

    . 

Letting T  approach infinity and employing the law of large numbers, the latter gives 

  21

2
E R E X     ,                                                                          (21) 

where 
2E X    is the second moment of the service time. 

Utilizing (21) in (20), we obtain 

 
 

2

2 1
E W E X





   

.                                                           (22) 

Thus, we establish the expected time a vehicle spends in the queue, 
2t

E D 
   as 

T
0
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 
 

2

2

2 1
tE D E X E X





       

.                                         (23) 

Upon employing the compressed queueing processes, Equation (23) reduces to 

  
 

2

2

2 1 1
t

E X
E D E X



 

         
.                                           (24) 

4.2.2 Variance  

In this section, we are interested in the computation of 
2t

Var D 
  . First note that  

2t t tD W X  .  

Therefore, 

     
2

2t t t t tVar D Var W Var X Cov W X       , 

but we know that tW  and tX  are independent random variables, thus 

   
2t t tVar D Var W Var X     .                                                   (25) 

Note that 
2t

D  is a sum of two independent random variables, that is, tW  and tX . If the generating function of 

tX  is  tX s
 and that of tW  is  tW s

, the joint transformed probability generating function of 
2t

D  is 

     t t tP s W s X s    , 

where  P s
 and  X s

 are P-K transforms of the queueing system size and service time distributions 

respectively. Taking limits as t  , we have 

        t t t
t t
Lim P s Lim W s X s  

 
  . 

Thus, 

     P s W s X s    .                                                     

Since the transform of the sum of two independent random variables is equivalent to the product of their 

transforms for instance see Ivo and Jacques, 2002, Section 2.3, then 

     P s W s X s    .   

Upon utilizing (17) and (18),  W s
 is given by 

 
 

 

1 s
W s

X s s



 








 
 .                                                   

Applying Little’s law,  E X  , we have 

 
 

1

1
W s

R s













.                                                                       (26) 

Equation (26) is the P-K transform of waiting time distribution, hence to get the first and second moments of 

waiting time, we differentiate with respect to s  and set 0s   to get  

   
0s

d
W s

ds





   . 
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Hence, 

 
 

1

E R
E W







,                                                                                (27) 

Again, differentiating (26) twice with respect to s  and set 0s  , we get 

   
2

2

0s

d
W s

ds





  
. 

Hence,  

  
2

22 2
1

E R
E W E W





       
.                                                 (28) 

To compute 
2E R    again, we consider Figure (2) and deduce that 

  2

2 0

1 T

E R R t
T

     dt ,  

which simplifies to 

3

2

3

E X
E R

       .                                                             

Hence, 

 
 

2

2 1

E X
E W





  


                                                                          (29) 

and  

 

2
2 3

2

1 3 1

E X E X
E W  

 

                  
  

.                              (30) 

Therefore, 
2

2

tE D 
   and  

2

2

tE D 
   are obtained as 

 2

2
2 3

2 2

1 3 1
t

E X E X
E D E X 

 

                       
  

           (31) 

and 

 
 

 
2

2
2

2

2 1
t

E X
E D E X





          
 

,                                          (32) 

respectively. Having obtained (31) and (32), the variance becomes 

 

 
  

2

2
2 3

223
1

4 1 3 1 1
t

E X E X E X
Var D E X E X

  

  

                            

.        (33) 

Employing the use of compressed queueing processes, (33) becomes 
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       

 
   

  
2

2
2 3

223
1

4 1 1 3 1 1 1 1
t

E X E X E X
Var D E X E X

  

     

                                      

.   (34) 

  

4.3 The Moments of Overall Traffic Delay   

Notice from (3) that tD  can be split into two independent components, that is, 
1t

D  and 
2t

D . In the previous 

sections, we have confined ourselves in the computation of mean and variance of 
1t

D and
2t

D . In this section, 

we amalgamate the two sections to obtain  tE D  and  tVar D . To obtain  tE D , we have 

 
1 2t t tE D E D E D        .           

Hence,                                         

 
  

 

2

2
1

2 1 1
2 1

e
y

y

t

e

y

g
c

E Xc
E D E X

g

c



 


 
         

   
  

 

.                (35) 

Similarly,  tVar D  is given by 

   
1 2 1 2

2 .t t t t tVar D Var D Var D Cov D D         ,               

and since 
1t

D and 
2t

D are independent components, we get  tVar D  as 

 
       

3

2
2 3

2

1 1 3 4
3

4 1 1 3 1 1
12 1

e e e
y

y y y

t

e

y

g g g
c

E X E Xc c c
Var D

g

c


 

   


   
                       

           
  

 

    

   
 

   
  

221
1 1

E X
E X E X



 

 
           

.                                                       (36)                         

 

5.0 Results and Discussion 

In this section, we apply the developed overall traffic delay model on real traffic data collected at Kenyatta 

Avenue-Kimathi Street signalized intersection between 20
th

 and 22
nd

 February, 2013. The intermediate results 

from the data are given and simulation on the developed models using MATLAB software is performed for 

traffic intensities ranging from 0.1 to 1.9.  

 

5.1 Computation of Parameters  

For the simplicity of sampling and measurement, we assumed that the data collected on 20
th

, 21
st
 and 22

nd
 

February, 2013 from 5:13 PM to 6:10 PM daily represented the traffic data on general weekdays. Considering a 

single lane controlled by a fixed-time traffic signal, we recorded the duration of the green lights that allow the 

vehicles to go through Kenyatta Avenue-Kimathi Street intersection and the number of vehicles passing during 

the effective green lights after every cycle time of 180 seconds. The data collected is provided in Tables 1 – 3.  

To compute  , we also recorded the speed of vehicles on the queue and the distance between them on Friday, 

22
nd

 February, 2013, from 5:13 PM – 6:10 PM. The data is given in Table 4. Assuming this data to be a 
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representative for all weekdays, we compute the average weekday speed of vehicles in the queue and distance in 

between them.  

The average effective green time is  

1 1396 1356 1342

3 20 20 20
eg

 
    

 
   

68.23 sec.                                                                      

Average service time during the green light is  

1 1396 1356 1342

3 1405 1383 1302egx
 

    
 

  

1.002  sec.                                                                     

Average effective red time is  

1 2204 2240 2256

3 20 20 20egx
 

    
 

  

111.67  sec.                                                                   

In our model, we assume that the traffic light is always running. Thus, service time of the first vehicle passing 

through the intersection when a green light turns on is considered to be equal to the red light duration. We denote 

the average service time for that vehicle as rx  given by 

111.67r rx t   sec. 

For each green light during 5:13 PM – 6:10 PM, there is only one vehicle which has the service time rx . All the 

other vehicles have the service time 
egx  . The green lights turn on 20 times, so the number of vehicles with 

service time rx  is equal to 20. The probability that a vehicle has a service time rx  is given by 

1 20 20 20
Pr

3 1405 1383 1302
rX x

          
  

0.015 .                                                             

And the probability that a vehicle has service time 
egx  is 

Pr 1 Pr
eg rX x X x            

0.985 .                                                            

Thus, the average service time becomes 

Pr . Pr .
e eg g r rx X x x X x x            

2.66  sec. 

The average service rate is 

1
0.38

2.66
  

 

sec.                                                              

Based on the data (Table 4), we can get the average speed of a vehicle in the queue during the time period (5:13 

PM - 6:10 PM) as 

256
12.8

20
  Km/h.                                                        

Converting the above result to M/s, we have 
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1000
12.8 3.56

3600
 

 

M/s.                                                        

 

The average distance between the vehicles in the queue is  

25.7
1.285

20
d   M.                                                               

Hence,   is obtained as 

1.285

3.56
 

 

0.36 sec.                                                                         

5.2 Simulation of  t
E D   

Using Equation (35) and the collected data, we split  tE D  into 
1t

E D 
   and 

2t
E D 
   as described in Figure 

(3) by MATLAB software when we assumed that service times follow Exponential distribution with parameter 
1
 . 

 

Figure 3:  
1 2t t tE D , E D  and E D  versus    

      using Exponential distribution of service times. 

From Figure (3), it is clear to note that the stochastic delay model is only applicable to undersaturated conditions 

( 1  ) and estimate infinite delay when arrival flow approaches capacity. However, when arrival flow exceeds 

capacity oversaturated queues exist and continuous delay occurs. It is also evident that the deterministic delay 

model estimates continuous delay, but it does not completely deals with the effect of randomness when the 

arrival flows are close to capacity, and also fail when the traffic intensity is between 1.0 and 1.1. The figure 

shows that both components of our overall traffic delay model are incompatible when the traffic intensity is 

equal to 1.0. Therefore, our overall traffic delay model is used to fill the gap between the two models and also 

give more realistic results in the estimation of delay at signalized intersections. It predicts the delay for both 

undersaturated and oversaturated traffic conditions without having any discontinuity at the traffic intensity of 
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1.0. Similarly, with the assumption of service times following Gamma distribution, we obtained Figure (4) 

below by MATLAB. 

 

Figure 4:  
1 2t t tE D , E D  and E D  versus    

      using Gamma distribution of service times. 

We depict that under this assumption,  tE D  increases rapidly with   than in the Exponential assumption 

under oversaturated traffic conditions ( 1.15  ), although the general behaviour is similar to the Exponential 

assumption. From the figure, 
1t

E D 
   remains the same as that of exponential distribution of service times. 

Comparing Figure (3) and Figure (4), Figure (3) estimates a lower value of  tE D  than Figure (4), that is, 

Figure (4) estimates  tE D  to be 43.12 seconds while Figure (3) estimates  tE D  to be 30.93 seconds. Also, 

Figure (4) estimates higher values of  tE D  as 1.5  . This is contrary to what  tE D  with exponential 

distribution of service times estimates. Therefore, exponential distribution of service times is far much preferred 

since we are interested in a reduced mean of overall traffic delay at the intersection. 

 

5.3 Simulation of  t
Var D     

To investigate the major contributor to  tVar D  by 
1t

D  and 
2t

D , we plot the graphs of  tVar D , 

1t
Var D 

   and 
2t

Var D 
   versus   as shown in Figure (5) below. 
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Figure 5:  
1 2t t tVar D , Var D  and Var D  versus    

      using Exponential distribution of service 

times. 

From Figure (5), the deterministic model shows no variation because of its constant service times while 

stochastic model provides a reasonable estimate of variance only under light traffic conditions ( 1.0  ), that 

is, the variance is time-independent and infinite variance is estimated as   approaches 1.0. Therefore, the 

contributing factor in the estimation of  tVar D  is 
2t

D  since 
1t

Var D 
   is zero. A similar scenario is 

depicted when we assume Gamma distribution for service times as shown in Figure (6) below.   
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Figure 7:  
1 2t t tVar D , Var D  and Var D  versus    

      using Gamma distribution of service times. 

Again, 
2t

D  remains constant as that of exponential distribution of service times due to its deterministic nature of 

arrivals and service. The stochastic delay component estimates infinite variance when 0.7 0.9   contrary 

to its assumption of steady-state (Hurdle, 1984). This disregards our assumption that 
2t

D is a steady-state model. 

Also, Figure (7) estimates higher values of  tVar D as compared to Figure (6), that is, Figure (7) estimates 

36.74 seconds while Figure (6) estimates 7.731 seconds as the lowest values of  tVar D . Therefore, 

exponential distribution of service times is far much preferred since a lower variance results to a reduced overall 

traffic delay at the intersection. 

 

5.4 Application of  t
Var D  

Variability of Level of Service 

The possible use of delay variability in quantifying level of service for a signalized intersection is illustrated in 

this section. In this study, the level of service at the intersection was defined in terms of expected overall traffic 

delay. With the ability to estimate the variance of overall traffic delay, it is feasible to integrate the concept of 

reliability into design and analysis of a signalized intersection. For example, delay of a certain percentile, instead 

of expected value, can be used to define the level of service. A 95th-percentile delay means that 95 percent of the 

vehicles would encounter a traffic delay less than or equal to this delay. The percentile value can be 

approximately estimated using    t tE D z Var D  where, z  is a statistic for the normal distribution and 

can be determined on the basis of the pre-specified reliability level. Figure (8) below shows expected overall 

traffic delay and 90
th

-percentile delay (with 1.3z  ) under different traffic intensities. It is assumed that the 

ranges of traffic delay values used in defining each level of service in the HCM are also applicable to vehicles, as 

shown in Figure (8). It can be observed that for the given case with a traffic intensity of 0.9, the expected overall 

traffic delay is 85.6 seconds, which would yield LoS C (point a). However, if the 90
th

 percentile delay is used, 

the LoS would be D (point b). On the other hand, in order to guarantee that 90 percent of the vehicles going 
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through the intersection encounter LoS C or higher, the traffic intensity needs to be reduced to 0.7 (point c) by 

either increasing the capacity or reducing the number of arrivals per unit time. 

 

Figure 8:  t
E D and 90

th
 – percentile delay (with αz 1.3 ) versus  . 

 

6.0 Conclusion and Recommendation 

6.1 Conclusion 

Considering the uniform and random properties of traffic flows, the models for estimating deterministic and 

stochastic delay components of traffic delay were successfully developed in this study. With the application of 

compressed queueing processes in order to better describe the variation in traffic flows, the developed models 

indeed estimate the mean and variance of traffic delay at the signalized intersection. 

From the developed moments of the deterministic and stochastic delay components of traffic delay, the central 

moments of the overall traffic delay model were developed. These moments estimate the mean and variance of 

the overall traffic delay at the signalized intersection. 

To validate the developed model, the model was applied to real traffic data collected at Kenyatta Avenue - 

Kimathi Street intersection and a simulation was performed for traffic intensities ranging from 0.1 to 1.9 using 

MATLAB software. The simulation results confirmed the result that exists in literature that oversaturated 

conditions and random delay renders the stochastic model unrealistic. Furthermore, the results preferred 

exponential distribution of service times to gamma distribution since it resulted to a lower variance hence led to 

a reduced overall traffic delay.  

 

6.2 Recommendation 

In the study presented herein, the overall traffic delay model was developed for a fixed-time traffic light, and 

further studies should be conducted for vehicle-actuated type of traffic lights.  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20

40

60

80

100

120

140

Traffic intensity

M
e
a
n
 o

f 
o
v
e
ra

ll 
tr

a
ff

ic
 d

e
la

y

 

 

E[D
t
]

90th Percentile

D

C

B

A

c

a

b

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.9, 2014 

 

48 

 

REFERENCES 

Akcelik, R. (1988). The Highway Capacity Manual Delay Formula for Signalized Intersections. ITE Journal, 58, 

3, 23–27. 

Beckmann, M. J., McGuire, C. B. and Winsten C. B. (1956). Studies in the Economics in Transportation. New 

Haven, Yale University Press. 

Clayton, A. (1941). Road Traffic Calculations. J. Inst. Civil. Engrs, 16, 7, 247-284  

Darroch, J. N. (1964). On the Traffic-Light Queue. Ann. Math. Statist., 35, 380-388 

Gazis, D. C. (1974). Traffic Science. A Wiley-Intersection Publication, 148-151, USA. 

Grzegorz, S. and Janusz, W. (2007). Proposition of Delay Model for Signalized Intersections. ITE Journal  

Hurdle, V. F. (1984). Signalized Intersection Delay Models - A Primer for the uninitiated. Transportation 

Research Record 971, TRB, National Research Council, Washington, D.C., pp. 96–105. 

Ivo, A. and Jacques, R. (2002). Queueing Theory, Section 2.3 on Laplace-Stieltjes transforms, Pg. 12.  

Kimber, R. and Hollis, E. (1979). Traffic Queues and Delays at Road Junctions. TRRL Laboratory Report, 909, 

U.K. 

Liping, F. and Bruce, H. (1999). Delay Variability at Signalized Intersection. Transportation Research Record 

1710, Paper No. 00-0810. 

Little, J. D. C. (1961). Approximate Expected Delays for Several Maneuvers by Driver in Poisson Traffic. 

Operations Research, 9, 39-52. 

Liu, Y. and Lee, K. (2009). Modeling signalized intersection using queueing theory. Department of Electronic 

and Computer Eng., University of Florida Gainesville, FL, USA. 

MATLAB Version 7.5.0.342 (R2007b). The language of technical computing (1984-2007). The MathWorks 

inc., www.mathworks.com, March, 15–17 2013. 

McNeil, D. R. (1968).  A Solution to the Fixed-Cycle Traffic Light Problem for Compound Poisson Arrivals. J. 

Appl. Prob. 5, 624-635. 

Newell, G. F. (1965). Approximation Methods for Queues with Application to the Fixed-Cycle Traffic Light. 

SIAM Review, 7. 

Rouphail, M. N., and Dutt ,N. (1995). Estimating Travel Time Distribution for Signalized Links: Model 

Development and Potential IVHS Applications. Proc., Annual Meeting of ITS America, 1, March, 15–17 2013. 

Sierpiński, G. and Woch, J. (2007). Proposition of delay model for signalized intersections with queueing theory 

analytical models usage. Silesian University of Technology, Department of Traffic Engineering. 

Tarko, A., Rouphail, N. and Akçelik, R. (1993b). Overflow Delay at a Signalized Intersection Approach 

Influenced by an Upstream Signal: An Analytical Investigation. Transportation Research Record, No. 1398, pp. 

82-89. 

Teply, S., Allingham, D. I., Richardson, D. B. and Stephenson, B. W. (1995). Canadian Capacity Guide for 

Signalized Intersections, 2nd ed. (S. Teply,ed.), Institute of Transportation Engineering, District 7, Canada. 

Webster, F. V. (1958). Traffic Signal Settings. Road Research Laboratory Technical Paper No. 39, HMSO, 

London. 

Wilfred, N. (2011). “Solution to the traffic jam: Report on Thika Road Superhighway.” The Standard Newspaper 

7
th

 Nov. 2011. 

Woch J. (1998). Compresses queueing processes for single traffic flows with Queueing Theory Analytical 

Models Usage. The Archives of Transport, Polish Academy of Sciences 10, Warsaw.  

Zukerman, M. (2012). Introduction to Queueing Theory and Stochastic Teletraffic Models, 94-95. 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.9, 2014 

 

49 

TABLES 

Table 1: Traffic data collected on Wednesday, 20
th

 February, 2013 

Time 

(PM) 

t (sec) R (sec) AR (sec) G
(sec) 

Y
(sec) 

1l

(sec) 

2l

(sec) 

eg (sec) r
(sec) 

No. of 

vehicles 

passed 

5:13 3600 103 10 52 15 3 4 70 110 73 

5:16 3600 104 10 51 15 3 3 70 110 71 

5:19 3600 102 10 53 15 4 2 72 108 72 

5:22 3600 103 10 52 15 3 4 70 110 75 

5:25 3600 101 10 54 15 2 3 74 106 76 

5:28 3600 104 10 51 15 3 3 70 110 70 

5:31 3600 106 10 49 15 3 4 67 113 70 

5:34 3600 107 10 48 15 3 3 67 113 69 

5:37 3600 102 10 53 15 4 3 71 109 73 

5:40 3600 104 10 51 15 3 4 69 111 71 

5:43 3600 97 10 52 15 3 3 77 103 73 

5:46 3600 103 10 52 15 3 3 71 109 73 

5:49 3600 104 10 51 15 3 3 70 110 70 

5:52 3600 103 10 52 15 4 3 70 110 68 

5:55 3600 105 10 50 15 3 4 68 112 67 

5:58 3600 106 10 49 15 3 2 69 111 69 

6:01 3600 106 10 49 15 3 3 68 112 65 

6:04 3600 108 10 47 15 2 3 67 113 69 

6:07 3600 105 10 50 15 3 4 68 112 66 

6:10 3600 107 10 48 15 2 3 68 112 65 

 Total 1396 2204 1405 

 

  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.9, 2014 

 

50 

 

Table 2: Traffic data collected on Thursday, 21
st
 February, 2013 

Time 

(PM) 

t (sec) R (sec) AR (sec) G
(sec) 

Y
(sec) 

1l

(sec) 

2l

(sec) 

eg (sec) r
(sec) 

No. of 

vehicles 

passed 

5:13 3600 105 10 50 15 3 4 68 112 71 

5:16 3600 106 10 49 15 3 3 68 112 69 

5:19 3600 104 10 51 15 4 2 70 110 70 

5:22 3600 105 10 49 15 3 4 68 112 73 

5:25 3600 101 10 52 15 2 3 72 106 74 

5:28 3600 104 10 49 15 3 3 68 110 68 

5:31 3600 108 10 47 15 3 4 65 115 68 

5:34 3600 109 10 46 15 3 3 65 115 67 

5:37 3600 104 10 51 15 4 3 69 111 72 

5:40 3600 106 10 49 15 3 4 67 113 69 

5:43 3600 106 10 49 15 3 3 68 112 71 

5:46 3600 105 10 50 15 3 3 69 111 71 

5:49 3600 106 10 49 15 3 3 68 112 69 

5:52 3600 105 10 50 15 4 3 68 112 71 

5:55 3600 107 10 48 15 3 4 66 114 70 

5:58 3600 108 10 47 15 3 2 67 113 67 

6:01 3600 106 10 47 15 3 3 66 114 68 

6:04 3600 110 10 45 15 2 3 65 115 65 

6:07 3600 107 10 48 15 3 4 66 114 66 

6:10 3600 109 10 46 15 2 3 66 114 64 

 Total 1356 2240 1383 
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Table 3: Traffic data collected on Friday, 22
nd

 February, 2013 

Time 

(PM) 

t (sec) R (sec) AR (sec) G
(sec) 

Y
(sec) 

1l

(sec) 

2l

(sec) 

eg (sec) r
(sec) 

No. of 

vehicles 

passed 

5:13 3600 106 10 49 15 3 4 67 113 65 

5:16 3600 105 10 50 15 3 3 69 111 67 

5:19 3600 104 10 51 15 4 2 70 110 67 

5:22 3600 107 10 48 15 3 4 66 114 64 

5:25 3600 104 10 51 15 2 3 71 109 68 

5:28 3600 104 10 49 15 3 3 68 110 67 

5:31 3600 106 10 48 15 3 4 67 113 65 

5:34 3600 109 10 46 15 3 3 65 115 64 

5:37 3600 105 10 50 15 4 3 68 112 64 

5:40 3600 107 10 48 15 3 4 66 114 64 

5:43 3600 107 10 48 15 3 3 67 113 65 

5:46 3600 104 10 51 15 3 3 70 110 67 

5:49 3600 107 10 48 15 3 3 67 113 65 

5:52 3600 106 10 49 15 4 3 67 113 65 

5:55 3600 107 10 47 15 3 4 66 114 64 

5:58 3600 108 10 47 15 3 2 67 113 65 

6:01 3600 109 10 46 15 3 3 65 115 64 

6:04 3600 110 10 45 15 2 3 65 115 64 

6:07 3600 109 10 46 15 3 4 64 116 63 

6:10 3600 108 10 47 15 2 3 67 113 65 

 Total 1342 2256 1302 
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Table 4: Average speed per vehicle and distance between the vehicles on the queue 

Time (PM) No. of vehicles passed Average speed per vehicle 

(Km/h) 

Distance between the vehicles 

on the queue (Meters) 

5:13 65 13 1.2 

5:16 67 14 1.4 

5:19 67 14 1.3 

5:22 64 12 1.3 

5:25 68 15 1.2 

5:28 67 14 1.4 

5:31 65 13 1.3 

5:34 64 12 1.4 

5:37 64 12 1.4 

5:40 64 12 1.3 

5:43 65 13 1.2 

5:46 67 14 1.2 

5:49 65 13 1.1 

5:52 65 13 1.3 

5:55 64 12 1.3 

5:58 65 13 1.3 

6:01 64 12 1.4 

6:04 64 12 1.4 

6:07 63 10 1.1 

6:10 65 13 1.2 

Total 1302 256 25.7 
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