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Abstract 

       In this paper we introduce a new class of sets called generalized *i-closed sets in 

topological spaces (briefly g*i-closed set). Also we study some of its basic properties and 

investigate the relations between the associated topology.  
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  1-Introduction 

          In 1970 Levine [6], first considered the concept of generalized closed (briefly, g-closed) 

sets were defined and investigated. Arya and Nour [1], defined generalized semi open sets 

[briefly, gs-open] using semi open sets. Maki Devi and Balachandram [2, 3]. On generalized 

α-closed maps and semi-generalized homeorphisems. Dontchev and Maki, in 1999 [4, 5], 

introduced the concept of (δ-generalized, θ-generalized) respectively. Mohammed and 

Askander [7], in 2011, introduced the concept of i-open sets. Mohammed and Jardo [8], in 

2012, introduced the concept of generalized i-closed sets. 

We introduced a new class of sets called g*i-closed sets and study some properties.   

2- Preliminaries 

    Throughout this paper (X, τ) or simply X represent nonempty topological spaces on which 

no separation axioms are assumed, unless otherwise mentioned. For a subset A of (X, τ), cl(A) 

and int(A), represent the closure of A and the interior of A respectively. A subset A of a space 

(X, τ) is called semi-open [2] (resp; α-open[11], b- open[9]), if A  cl(int(A)); (resp, A  

int(cl(int(A))), A  cl(int(A))  int(cl(A)) ). The family of all semi-open (resp; α- open, b-

open) sets of (X, τ) denoted by SO(X) (resp; αO(X), BO(X)). The complement of a semi-open 

(resp; α-open, b-open) set is said to be semi-closed (resp; α-closed, b-closed). The semi 

closure, α-closure, b-closure of A are similarly defined and are denoted by Cls(A), Clα(A), 

Clb(A). And a subset A of (X, τ) is called( δ-open, θ-open) set [10], if A=clδ(A) where clδ(A) 

= {x    X : int(cl(U))∩ A ≠ Ø,U    τ and x   U}, A=clθ(A) where clθ(A) = {x    X : 
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int(cl(U))∩ A ≠ Ø, U    τ and x   U} respectively, and the family of all ( δ-open, θ-open) sets 

of (X, τ) denoted by δO(X), θO(X) respectively, and the complement of (δ-open, θ-open) sets  

is called ( δ-closed, θ-closed) sets the family of all (δ-closed, θ-closed) sets of (X, τ) is 

denoted by δC(X), θC(X) respectively. And a subset A of (X, τ) is called an i-open set [7], if A 

  cl(A∩G), if there exists an open set G whenever (G≠X,Ø), and the complement of  i-open 

sets is called i-closed sets. The family of all i-closed sets of (X, τ) is denoted by IC(X), and the 

family of all i-open sets of (X, τ) is denoted by IO(X). If A is a subset of a space (X, τ), then 

the i-closure of A, denoted by cli(A) is the smallest an i-closed set containing A. The i-interior 

of A denoted by inti(A) is the larges an i- open set contained in A. 

 Some definitions used throughout this paper. 

Definition 2.1: 

For any subset A of topological spaces (X, τ) we have  

1- Generalized closed (briefly g-closed) [6], if cl(A)    U whenever A   U and U is open 

in X, the complement of g-closed is called g-open. 

2- Generalized α –closed (briefly gα-closed) [2], if clα(A)    U whenever A    U and U 

is α-open in(X, τ), the complement of gα -closed is called gα-open. 

3- α -Generalized closed (briefly αg-closed) [2], if clα(A)    U whenever A    U and U is 

open in(X, τ), the complement of αg -closed is called αg-open. 

4- Generalized b-closed (briefly gb-closed) [9], if clb(A)    U whenever A   U and U is 

open in (X, τ), the complement of gb -closed is called gb-open.  

5- Generalized i-closed (briefly gi-closed) [8], if cli(A)    U whenever A   U and U is 

open in (X, τ), the complement of gi -closed is called gi-open. 

6- Generalized semi -closed (briefly gs-closed) [1], if cls(A)    U whenever A    U and 

U is open in (X, τ), the complement of gs -closed is called gs-open. 

7- Generalized θ-closed (briefly gθ-closed) [5], if clθ(A)    U whenever A    U and U is 

open in(X, τ), the complement of gθ -closed is called gθ-open. 

8- Generalized δ-closed (briefly gδ-closed) [4], if clδ(A)    U whenever A    U and U is 

open in(X, τ), the complement of gδ -closed is called gδ-open. 

9-  Generalized g*closed (briefly g*-closed) [11], if cl(A)    U whenever A    U and U 

is g-open in (X, τ), the complement of g* -closed is called g*-open. 

Theorem 2.3[6]: Every open set is g-open set. 

Theorem 2.4[6]: Every closed set is g-closed set. 

Theorem 2.5[3]: Every semi-closed set is gs-closed set. 

 

3- properties of g*i-closed sets in topological spaces 

       In this section, we introduce a new class of closed set called g*i-closed set and study 

some of their properties. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.9, 2014 

 

65 

Definition 3.1: A subset A of topological spaces (X, τ) is called a g*i-closed set if cli(A)   U 

whenever A   U, U is g-open in (X ,τ), and (G≠X,Ø), the set of all family g*i-closed denoted 

by g*i C(X). 

Theorem 3.2: Every closed set in a space X is g*i-closed, but converse need not be true in 

general. 

Proof: Let A be a closed set in ( X ,τ) such that  A U , where U is g-open .Since A is closed 

,that is cl(A) =A , since cli (A)     cl(A) = A , and A    U therefore cli (A)     U . Hence A is 

g*i-closed set in (X, τ). 

The converse of the above theorem is not true in general as shown from the following 

example. 

Example 3.3: Consider the topological spaces X= {a, b, c} with the topology  

  τ = {Ø, {a}, {a, b}, X} 

C(X) = {Ø, {b, c}, {c}, X} 

GC(X) = {Ø, {c}, {b, c}, {a, c}, X} 

GO(X) = {Ø, {a}, {b}, {a, b}, X} 

IO(X) = {Ø, {a}, {b}, {a, c}, {a, b}, {a, c}, {b, c}, X} 

IC(X) = {Ø, {a}, {b}, {c}, {a, c}, {b, c}, X} 

g*iC(X) = {Ø, {a}, {b}, {c}, {a, c}, {b, c}, X} 

Let A = {a, c}, here A is a g*i-closed set but not a closed set.  

Theorem 3.4: Every i-closed in X is g*i-closed set 

 Proof: Let A be i-closed in X such that A    U, where U is g-open. Since A is an i-closed set, 

then cli(A) =A ,and A    U, therefore cli(A)    U . Hence A is g*i-closed set in X. 

The converse of the above theorem is not true in general as shown in the following example. 

Example 3.5: Let X = {a, b, c}, with the topology τ = {Ø, {b}, {a, b}, {b, c}, X} 

C(X) = {Ø, {a}, {c}, {a, c}, X} 

GC(X) = {Ø, {a}, {c}, {a, c}, X} 

GO(X) = {Ø, {a, b}, {b, c}, {b}, X} 

IO(X) = {Ø, {a}, {b}, {c}, {a, b}, {b, c}, X} 

IC(X) = {Ø, {a}, {c}, {a, b}, {a, c}, {b, c}, X} 
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g*iC(X) = {Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X} 

Let A = {b}. So A is g*i-closed set but not i-closed in (X, τ) 

Theorem 3.6: Every g*i-closed set in topological spaces (X, τ) is gi-closed set. 

Proof: let A be a g*i-closed set in X such that A    U, where U is open. Since every open set is 

g-open by Theorem (2.3), and A is g*i-closed, cli(A)    U . Hence A is gi-closed. 

The converse of the above theorem is not true in general as shown from the following 

example. 

Example 3.7: let X = {a, b, c}, τ = {Ø, {a}, X} 

C(X) = {Ø, {b, c}, X}.  

IO(X) = {Ø, {a}, {a, b}, {a, c}, X} 

IC(X) = {Ø, {b}, {c}, {b, c}, X} 

GC(X) = {Ø, {b}, {c}, {a, b}, {a, c}, {b, c}, X} 

GO(X) = {Ø, {a}, {c}, {b}, {a, b}, {a, c}, X} 

g*iC(X) = {Ø, {b}, {c}, {b, c}, X} 

giC(X) = {Ø, {b}, {c}, {a, c}, {b, c}, {a, b}, X} 

Let A = {a, b}, then A is gi-closed set but not g*i-closed set. 

Theorem 3.8: Every semi-closed set in topological spaces (X, τ) is g*i-closed set. 

Proof: let A be semi-closed set in (X, τ) , such that A    U, where U is g-open. Since A is 

semi-closed and by Theorem (2.2), then cli(A)    cls(A)     U 

, therefore cli(A)    U and U is g-open . Hence A is g*i-closed set. 

The converse of the above theorem is not true in general as shown from the following 

example. 

Example 3.9: let X = {a, b, c} and τ = {Ø, {c}, {a, c}, {b, c}, X}, then 

C(X) = {Ø, {a}, {b}, {a, b}, X}, and 

IO(X) = {Ø, {a}, {b}, {c}, {a, c}, {b, c}, X} 

IC(X) = {Ø, {a}, {b}, {a, b}, {a, c}, {b, c}, X} 

SO(X) = {Ø, {c}, {a, c}, {b, c}, X} 

SC(X) = {Ø, {a}, {b}, {a, b}, X} 

GC(X) = {Ø, {a}, {b}, {a, b}, X} 
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GO(X) = {Ø, {c}, {a, c}, {b, c}, X} 

g*iC(X) = {Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X} 

Let A ={c}. Then A is g*i-closed set but not semi-closed set.  

Theorem 3.10: Every g*-closed set in topological spaces (X, τ) is g*i-closed set.  

Proof: let A be a g*-closed set in (X, τ) such that A    U, where U is g-open .Since A is g*-

closed and by Theorem (2.2), then cli(A)    cl(A)    U. Hence A is a g*i-closed set in (X, τ). 

The converse of the above theorem is not true in general as shown from the following 

example. 

Example 3.11: Let X = {a, b, c}, τ = {Ø, {b}, {a, b}, {b, c}, X} 

C(X) = {Ø, {a}, {c}, {a, c}, X} 

IO(X) = {Ø, {a}, {b}, {c}, {a, b}, {b, c}, X} 

IC(X) = {Ø, {a}, {c}, {a, b}, {a, c}, {b, c}, X} 

GC(X) = {Ø, {a}, {c}, {a, c}, X} 

GO(X) = {Ø, {b}, {a, b}, {b, c}, X} 

g*iC(X) = {Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X} 

g*C(X) = {Ø, {a}, {c}, {a, c}, X} 

Let A = {b}, so A is a g*i-closed set but not g*-closed set of (X, τ) 

Corollary 3.12: Every g-closed set in (X,  ) is g*i-closed.  

Proof: By Theorem (2.4), and Theorem (3.2). 

Corollary 3.13: Every gs-closed set in (X,  ) is g*i-closed. 

Proof: By Theorem (2.5), and by Theorem (3.8). 

Theorem 3.14: Every δg-closed set in topological spaces(X, τ) is g*i-closed set.  

Proof: Let A be a δg-closed set in (X, τ) such that A    U where U is g-open. Since A is δg-

closed and by Theorem (2.2), then cli(A)    clδ(A)    U , so we get cli(A)    U . Hence A is 

g*i-closed set. 

The converse of the above theorem is not true in general as shown from the following 

example. 

Example 3.15: let X = {a, b, c}, τ = {Ø, {a}, {b}, {a, b}, X} 
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C(X) = {Ø, {c}, {a, c}, {b, c}, X} 

IO(X) = {Ø, {a}, {b}, {a, b}, {a, c}, {b, c}, X} 

IC(X) = {Ø, {a}, {b}, {c}, {a, c}, {b, c}, X} 

GC(X) = {Ø, {c}, {a, c}, {b, c}, X} 

GO(X) = {Ø, {a}, {b}, {a, b}, X} 

δO(X) = {Ø, {a}, {b}, {a, b}, X} 

δ C(X) = {Ø, {c}, {a, c}, {b, c}, X} 

δ GC(X) = {Ø, {c}, {b, c}, {a, c}, X} 

g*iC(X) = {Ø, {a}, {b}, {c}, {a, c}, {b, c}, X} 

Let A = {a}, so A is g*i-closed set in (X, τ), but not δg-closed set. 

Theorem 3.16: Every θg-closed set in topological spaces (X, τ) is g*i-closed set.  

Proof: Let A be θg-closed set in (X, τ), such that A    U where U is g-open. Since A is θg-

closed and by Theorem (2.2), then cli(A)    clθ(A)    U, so we have cli(A)    U. Hence A is a 

g*i-closed set. 

The converse of the above theorem is not true in general as shown from the following 

example. 

Example 3.17: Let X = {a, b, c}, and τ = {Ø, {b}, {a, b}, {b, c}, X}, then C(X) = {Ø, {a}, {c}, 

{a, c}, X}, θO(X) = {Ø, X}, and θC(X) = {Ø, X} 

IO(X) = {Ø, {a}, {b}, {c}, {a, b}, {b, c}, X} 

IC(X) = {Ø, {a}, {c}, {a, b}, {a, c}, {b, c}, X} 

GC(X) = {Ø, {a}, {c}, {a, c}, X} 

GO(X) = {Ø, {b}, {a, b}, {b, c}, X} 

g*iC(X ) = {Ø, {a}, {b} ,{c}, {a, b}, {a, c}, {b, c}, X} 

θGC(X) = {Ø, {a, c}, X} 

Let A = {a, b}. So A is g*i-closed set in (X, τ)  but not θg-closed set. 

Remark 3.18: By the above results we have the following diagram. 
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Theorem 3.19: A set A is g*i-closed if and only if 

cli(A)\ A  contains no non-empty g-closed set . 

Proof : Necessity let F be a g-closed set in (X, τ) such that F    cli(A)\ A  then cli(A)    X \ F . 

This implies F   X \ cli(A), so F   (X \ cli(A)) ∩ (cli(A)\ A)    (X \ cli(A)) ∩ cli(A)=Ø . 

Therefore F = Ø.  

Sufficiency: Assume that cli(A)\ A  contains no non –empty  g-closed set. And let A   U, U is 

g-open. Suppose that cli(A) is not contained in U, cli(A) ∩ U is a non-empty g-closed set of 

cli(A)\ A which is a contradiction. Therefore cli(A)    U , Hence A is g*i-closed . 

Theorem 3.20: A g*i-closed set A is an i-closed set if and only if  cli(A)\ A is an i-closed set. 

Proof: If A is an i-closed set, then cli(A)\ A=Ø. Conversely, suppose cli(A)\ A is an i-closed set 

in X. Since A is g*i-closed. Then cli(A)\ A contain no non-empty g-closed set in X. Then 

cli(A)\ A =Ø . Hence A is an i-closed set. 

Theorem 3.21: If A and B are two g*i-closed, then A∩B is g*i-closed. 

Proof: Let A and B be two g*i-closed sets in X. And let A ∩ B    U,  

U is g-open set in X. Since A is g*i-closed, then cli(A)     U , whenever 

A    U, and U is g-open in X. Since B is g*i-closed, then cli(B)    U whenever B    U, and U  

is g-open in X. Now cli(A)∩ cli(B)    U, therefore A∩B is g*i-closed. 

gi-

closed 

δg-closed 

g-closed 

g*-closed 

Closed 
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Corollary 3.22: The intersection of  g*i-closed set and  closed set is g*i-closed set . 

Proof:  By Theorem (3.2) and Theorem (3.21) we get the result.   

Note.  If A and B are g*i-closed then their union need not be g*i-closed as shown in the 

following example. 

Example 3.23:  let X = {a, b, c}, Ʈ = {Ø, {a}, {b}, {a, b}, X} 

g*iC(X) = {Ø, {a}, {b}, {c}, {a, c}, {b, c}, X} 

Let A = {a} and B = {b} are g*i-closed but A  B= {a, b} is not g*i-closed. 

Theorem 3.24: If A is both g-open and g*i-closed set of X, then A is an i-closed set. 

Proof: Since A is g-open and g*i-closed in X, then cli(A)     U , U is g-open.  

Since A    U and A is g-open then cli(A)  A. but always A    cli(A), therefore A = cli(A). 

Hence A is an i-closed set. 

Theorem 3.25: For x   X, the set X \ {x} is g*i-closed or g-open. 

Proof: Suppose X \ {x} is not g-open. Then X is the only g-open set containing X \ {x}. This 

implies cli(X \ {x}) is g*i-closed. Then X \ {x} is g*i-closed. 

Theorem 3.26:  If A is g*i-closed and A    B    cli (A), then B is g*i-closed. 

Proof: Let U be g-open set of X such that B    U. Then A   U. Since A is g*i-closed. Then 

cli(A)    U, now cli(B)    cli (cli(A)) = cli(A)  U. Therefore B is g*i-closed. 

Theorem 3.27: Let A   Y   X, and suppose that A is g*i-closed in X, then A is g*i-closed 

relative to Y  

Proof: Given that A    Y    X and A is g*i-closed in X. To show that A is g*i-closed relatives 

Y. Let A    Y ∩ U, where U is g-open in X. Since A is g*i-closed A    U, implies cli(A)    U. 

It follows that Y ∩ cli(A)    Y ∩ U. Thus A is g*i-closed relative to Y.     

Proposition 3.28: If a set X is finite and a topology   on X is T1 – space, then gi-closed = g*i-

closed 

Proof: Let X be a finite set and T1 – space, let A    gi-closed. If A = Ø, then A     g*i – closed. 

If A ≠ Ø, then let A  X and for each x   A. {x} is closed therefore A =  x    A {x}, then A is 

closed. By Theorem (3.2), A   g*i-closed. Hence gi-closed   g*i-closed but by Theorem 

(3.6), g*i-closed   gi-closed therefore gi-closed = g*i-closed. 

Corollary 3.29: If a topological    on X is discrete topology, then  

gi-closed = g*i-closed. 

Proof: Obvious 
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Proposition 3.30: For a subset A of a topological space (X,  ) the following statements are 

true.  

1- If A is gi-closed then cl (A)   g*i-closed. 

2- If A is g*i-closed then gi-int (A)    g*i-closed. 

3- If A is g*i-closed then gi-cl (A)    g*i-closed. 

Proof: Obvious.  

Definition 3.31:  A subset A of a space X is called g*i-open if X \ A is g*i-closed. The family 

of all g*i-open subset of a topological space (X, ) is denoted by g*iO(X,   or g*iO(X).  

 All of the following results are true by using complement. 

Proposition 3.32: The following statements are true: 

1- Every open is g*i-open. 

2- Every g*i-open is gi-open. 

3- Every i-open is g*i-open. 

4- Every  -open is g*i-open. 

Proof: By using the complement of the definition of g*i-closed.  

Proposition 3.33: Let A be subset of a topological space (X, ). If A is g*i-open, then for each 

x   A there exists g*i-open set be such that x   B   A. 

Proof: Let A be g*i-open set in a topological space (X, ) then for each x   A, put A = B is g*i-

open containing x such that x   B    A. 

         4. Some properties of g*i-open and g*i-closed sets in a topological space  

Definition 4.1: Let (X, ) be a topological space and x   X. A subset N of X is said to be g*i-

neighborhood of x if there exists g*i-open set Y in X such that x   Y   N. 

Definition 4.2: Let A be subset of a topological space (X,  ), a point x   X is called g*i-

interior point of A, if there exist g*i-open set U such that x   U   A. The set of all g*i-interior 

points of A is called g*i-interior of A and is denoted by g*i-int(A). 

Proposition 4.3: For any subsets A and B of a space X, the following statements hold:  

1. g*i-int(Ø) = Ø and g*i-int(X) = X. 

2. g*i-int (A) is the union of all g*i-open sets which are contained in A. 

3. g*i-int(A) is g*i-open set in X. 

4. g*i-int (A)   A. 

5. If A   B, then g*i-int(A)   g*i-int (B). 

6. If  A   B = Ø, then g*i-int(A)   g*i-int(B) = Ø. 

7. g*i-int (( g*i-int(A)) = g*i-int(A)  

8. A is g*i-open if and only if A = g*i-int (A). 
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9. g*i-int(A)   g*i-int(B)    g*i-int(A   B ). 

10. g*i-int(A   B)   g*i-int(A)   g*i-int(B). 

Proof : The prove of (1), (2), (3), (4), (5), (6), (7) and (8) is  Obvious, only to prove (9) and 

(10) 

Proof (9): Let A and B be subset of X, since A   A   B and B   A   B. Then by Proposition 

(4.3) (5), we have g*i-int(A)   g*i-int (A   B) and g*i-int(B)  g*i-int(A   B). Hence g*i-

int(A)   g*i-int(B)   g*i-int(A   B) 

Proof (10): Since A   B   A and A   B   B then by Proposition (4.3) (5), we have g*i-int(A 

  B)   g*i-int(A) and g*i-int(A   B)   g*i-int(B). Hence g*i-int(A   B)   g*i-int(A)   g*i-

int(B). 

     In general the equalities of (9) and (10) and the converse of (5) does not hold, as shown in 

the following example. 

Example 4.4: From Example (3.7)   

g*iO(X) = {  ,X, {a}, {a, b}, {a, c}} 

Let A = {a} and B = {b}, then g*i-int({a}) = {a} and g*i-int({b})= Ø. 

g*i-int({a})   g*i-int({b}) = {a}   Ø = {a}  

g*i-int ({a}   {b}) = g*i-int ({a , b }) = { a , b} 

g*i-int (A   B )   g*i-int (A)   g*i-int (B)  

Example 4.5: From Example (3.3) 

g*iO(X) = { , X {a}, {a, b}, {b}, {a, c},{b, c}}   

Let A = {a, c} , B = {b, c}  

g*i-int (A   B ) = g*i-int ({a, c}   {b, c}) = g*i-int{c} = Ø. 

g*i-int (A)   g*i-int (B) = {a, c}   {b, c} = {c}. 

g*i-int (A)   g*i-int (B)   g*i-int (A   B ). 

Example 4.6: From Example (3.7)   

g*iO(X) = { , X, {a}, {a, b}, {a, c}}  

Let A = {b, c},and B = {a, c} 

g*i-int (A) =   and g*i-int (B) = {a, c}  

g*i-int(A)   g*i-int (B), but A   B. 
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Proposition 4.7: For any subset A of X, g*i-int (A)   gi-int (A) 

Proof: Let A be a subset of a space X and let x   g*i-int(A), then x     {G : G is g*i-open, G 

  A }. Then there exists a g*i-open set G such that x    G   A. Since every g*i-open set is gi-

open then there exists a gi-open set G such that x   G   A, this implies that x    gi-int(A). 

Hence g*i-int(A)   gi-int(A). 

The converse of the above proposition is not true in general as shown from the following 

example. 

Example 4.8: From Example (3.7)   

g*iO(X)= { , X, {a}, {a, b} ,{a, c}}, let A={b}  

g*i-int{b}=Ø, gi-int{b}={b}, this implies  gi-int(A)   g*i-int(A). 

Definition 4.9: Let A be a subset of a space X. A point x   X is called to be g*i-limit point of 

A if for each g*i-open set U containing x, U   (A \ {x}) ≠ Ø  

The set of all g*i-limit points of A is called the g*i-derived set of A and is denoted by g*i-

D(A). 

Proposition 4.10:  Let A and B be subsets of a space X, then we have the following  

properties: 

1- g*i-D (Ø) = Ø. 

2- If  x   g*i-D(A), then x   g*i-D(A \ {x}). 

3- If A   B, Then g*i-D(A)   g*i-D(B). 

4- g*i-D(A)   g*i-D(B)   g*i-D(A   B). 

5- g*i-D(A   B) = g*i-D(A)   g*i-D(B). 

6- g*i-D(g*i-D(A)) \ A   g*i-D(A). 

7- g*i-D(A   g*i-D(A)   A    g*i-D(A). 

Proof: We only prove (6) and (7) since the other part can be proved obviously. 

6- If  x   g*i-D(g*i-D(A)) \ A, then x   g*i-D(g*i-D(A) and x  A ,and U is g*i-open set 

containing x. Then U   (g*i-D(A) \ {x} ≠ Ø . Let y   U   (g*i-D(A) \ {x}. Since y   U and 

y   g*i-D(A). U    (A \ {y}) ≠ Ø, Let z   U   (A \ {y}), Then z ≠ x for z   A, and x    A , 

U   (A \ {x}) ≠ Ø, Therefore x   g*i-D(A). 

7- Let x   g*i-D(A   g*i-D(A)). If x   A the result is obvious. Let x   A, and 

x   g*i-D(A    g*i-D(A)) \ A then for any g*i-open set U containing x,  

U    (A   g*i-D(A)) \ {x} ≠ Ø. It following similarly from (6). Thus U   (g*i-D(A)) \ 

{x} ≠ Ø. Then ( U   A) \ {x} ≠ Ø. Hence x    g*i-D(A). Therefore g*i-D( A   g*i-

D(A))   A   g*i-D(A). 
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The converse of above proposition (3) and (4) is not true in general as shown the following 

example. 

Example 4.11: From example (3.7)   

g*iO(X) = { , X, {a}, {a, b}, {a, c}} 

Let A = {b, c} and B = {a, c} 

g*i-D(A) = Ø, g*i-D(B) = {b, c} , then g*i-D(A)  g*i-D(B), but A   B 

Example 4.12: From example (3.3)   

g*iO(X) = { , X, {a}, {a, b}, {b}, {a, c}, {b, c}   

Let A = {a} and B = {b} 

g*i-D(A) = Ø and g*i-D(B) = Ø, then g*i-D(A   B) = {c} 

g*i-D(A)   g*i-D(B)   g*i-D(A   B), but g*i-D(A  B)   g*i-D(A)  g*i-D(B). 

Proposition 4.13: If X a topological space and A is subset of  X, then gi-D(A)   g*i-D(A). 

Proof: Let x   g*i-D(A). This implies that there exists g*i-open set U containing x such that U 

  (A \ {x})= Ø, U is g*i-open. Since every g*i-open is gi-open. Then U is gi-open set 

containing x and U    (A \ {x}) = Ø, then x   g*i-D(A). Hence gi-D(A)   g*i-D(A) 

The converse of above  proposition is not true in general as shown the following example . 

Example 4.14:  Let X = {a, b, c} ,   = {Ø, {c}, X } 

Let A = {c}, gi-D(A) = Ø and g*i-D(A) = {a, b} 

gi-D(A)   g*i-D(A) but g*i-D(A)   gi-D(A) . 

Definition 4.15:  For any subset A in space X, the g*i-closure of A, denoted by g*i-cl(A), and 

defined by the intersection of all g*i-closed sets containing A. 

 Proposition 4.16:  Let X be a topological space . If A and B are subsets of space X, then 

1. The g*i-closure of A is the intersection of all g*i-closed sets containing A  

2. g*i-cl(X) =X and g*i-cl( ) =  . 

3. A   g*i-cl(A). 

4. g*i-cl(A) is g*i-closed set in X.  

5. if  g*i-cl(A)   g*i-cl(B) = Ø , then A   B = Ø.  

6. If B is any g*i-closed set containing A. Then g*i-cl(A) B. 

7. If A  B then g*i-cl(A)  g*i-cl(B). 

8. g*i-cl(g*i-cl(A) = g*i-cl(A). 

9. A is g*i-closed if and only if g*i-Cl(A)=A. 
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Proof: It is obvious 

Proposition 4.17: If A and B are subset of a spare X then  

1- g*i-cl(A)   g*i-cl(B)   g*i-cl(A   B). 

2- g*i-cl (A   B )   g*i-cl(A)   g*i-cl(B). 

Proof: Let A and B be subsets of space X  

1- Since A   A   B and B   A   B. Then by Proposition (4.16)(7), the g*i-cl(A)   g*i-

cl( A   B ) and g*i-cl(B)   g*i-cl(A  B). Hence g*i-cl(A)   g*i-cl(B)   g*i-cl(A B). 

2- Since A   B    A and A   B    B. Then by Proposition (4.16)(7). The g*i-cl(A   B) 

  g*i-cl(A) and g*i-cl (A   B)   g*i-cl(B). Hence g*i-cl(A   B)   g*i-cl(A)   g*i-

cl(B). 

The converse of the above Proposition  is not  true in general as shown the following 

example. 

Example 4.18: From example (3.3)   

g*iO(X) = { , X, {a}, {a, b}, {b}, {a, c}, {b, c}}   

     g*I = { , {a}, {b}, {c}, {a, c}, {b, c}, X } 

     g*i-cl({a}) = {a}, g*i-cl({b}) = {b} 

     g*i-cl( A   B) = g*i-cl({a, b}) =X 

     g*i-cl(A)   g*i-cl(B) = {a}  {b} = {a, b} 

     g*i-cl(A   B) = X   {a, b} 

1- Let A = {a, b}, and B = {c}, then A   B = {a, b}   {c} =  , therefore g*i-cl(A   B) = 

 , but g*i-cl(A)=X and g*i-cl (B) = {c}.Therefore g*i-cl(A)   g*i-cl (B) = X   {c} = 

{c}, but g*i-cl(A   B ) =  , implies that g*i-cl(A)   g*i-cl (B)   g*i-cl(A  B). 

Proposition 4.19: If A is subset of a space X. Then gi-cl(A)   g*i-cl(A) 

Proof: Let A be a subset of a space X. By Definition of g*i-closed. 

g*i-cl(A) =   { F : A   F is g*i-closed}, since A   F   g*i-closed . Then by Theorem (3.6), 

A   F   gi-closed and by Proposition (4.16),(7), gi-cl(A)   F, therefore gi-cl(A)     {F : A   

F   g*i-closed } = g*i-cl(A). Hence gi-cl(A)   g*i-cl(A). 

Proposition 4.20: A subset A of a topological space is g*i-closed if and only if it contains the 

set of all g*i-limit points. 

Proof : Assume that A is g*i-closed we will prove that  A it contains the set of its g*i-limit 

points. And assume that if possible that x is g*i-limit points of A which be longs to X \ A. 
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Then X \ A is g*i-open set containing the g*i-limit point of A. Therefore by definition of g*i-

limit points  A   X \ A ≠ Ø which is contradiction.  

Conversely, assume that A contains that set of its g*i-limit points. For each x   X \ A, there 

exists g*i-open set U containing x such that A   U = Ø. That is x   U   X \ A, by Proposition 

( 3.33),  X \ A is g*i-open set. Hence A is g*i-closed. 

   Proposition4.21: Let A be subset of space X, then g*i- cl(A) = A   g*i- D(A) 

Proof: Since A   g*i-Cl(A) and g*i-D(A)   g*i-Cl(A), then (A   g*i-D(A)   g*i-cl(A). To 

prove that g*i-cl(A)   A   g*i-D(A), but g*i-Cl(A) is the smallest g*i-closed containing A, so 

we prove that A   g*i-D(A) is g*i-closed, let x   A  g*i-D(A). This implies that x   A and 

x   g*i-D(A). Since  x   g*i-D(A), there exists g*i-open set Gx of  x which contains no point 

of A other than x but x  A. So Gx Contains no point of A. Then Gx       agin Gxis an g*i-

open set of each of its points but as Gx does  not contain any point of A no point of Gx can be 

g*i-limit points of A, this implies that Gx   X \ g*i-D(A), hence x   Gx        Cl(A)   A   

X\ g*i-D(A)   X\ (A g*i-D(A)). Therefore A   g*i-D(A) is g*i-closed. Hence g*i-cl(A)  

   g*i-D(A). Thus g*i-cl(A)=A   g*i-D(A) . 

 Proposition 4.22: Let A be subset of  a topological space (X,    .And for any  x   X , then  

x   g*i-Cl(A) if and only if A   U ≠   for every g*i-open set U containing x. 

Proof : Let x   X and x   g*i-cl(A).We will prove A   U    for every g*i-open set U 

containing x, we will proved  by contradiction, suppose that there exists g*i-open set U 

containing x such that A      Then A   X \ U and X\A is g*i-closed. g*i-cl(A)     , 

then x   g*i-cl(A). which is contradiction. Hence A       

Conversely, let A       For every g*i-open set U containing x, we will proved by 

contradiction. Suppose x   g*i-cl(A). Then there exists a g*i-closed set F containing A such 

that x   F, hence x   X \F and  X \F is g*i-open set, then  A   X \F =  which is contradiction. 

Proposition 4.23: For any subset A of  a topological space X, the following statements are 

true:  

1- X \ g*i-cl(A) = g*i-int (X \A). 

2- X \ g*i-int(A) = g*i-cl(X \A ). 

3- g*i-cl(A) = X \ g*i-int(X \A). 

4- g*i-int(A) = X \ g*i-cl(X \A). 

Proof: 

1- For any x   X, then x   X \ g*i-cl(A) implies that x   g*i-cl(A), then there exists g*i-

open set G containing x such that A G = Ø, then x   G   X \A. Thus x   g*i-int(X\A). 

conversely, by reversing the above steps, we can prove this part. 

2- Let x   X \g*i-int(A), then x   g*i-int(A), so for any g*i-open set B containing x 
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 B  A. This implies that every g*i-open set B containing x ,B X\A   . This means x 

  g*i-cl(X \A). Hence (X\g*i-int(A))   g*i-cl(X\A). Conversely, by reversing the above 

steps, we can prove this part 

Proposition 4.24: Let A be subset of a space X. If  A is both g*i-open and g*i-closed, then A= 

g*i-int(g*i-cl(A)) 

Proof: If A is both g*i-open and g*i-closed, then g*i-int(g*i-cl(A))= g*i-int(A)=A. 
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