
Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

120

Modification of Some Solution Techniques of Combinatorial

Optimization Problems to Analyze the Transposition Cipher

Tariq S. Abdul-Razaq
*
 and Faez H. Ali

Math. Dept, College of Sciences, University of Al-Mustansiriya, Baghdad, Iraq.

*dr.tariqsalih@yahoo.com

Abstract

In this paper we attempt to use a new direction in cryptanalysis of classical crypto systems. The new direction represented

by considering some of classical crypto systems, like transposition cipher problem (TCP), as a combinatorial optimization

problem (COP), then using the known solving methods of COP, with some modification, to cryptanalysis the TCP. In this

work we investigate to use Branch and Bound (BAB) and one of swarm algorithms as a local search method.

The main aim of the research presented in this paper is to investigate the use of some optimization methods in

the fields of cryptanalysis and cryptographic function generation. These techniques were found to provide a

successful method of automated cryptanalysis of a variety of the classical ciphers.

Keywords: cryptography, cryptanalysis, Classical Ciphers, Transposition Cipher, Branch and Bound, Swarm

Intelligence, Bees Algorithm.

1. Introduction

In 1993, an attack on the transposition cipher (TC) was proposed by Matthews (Matthews 1993) using a genetic

algorithm. Clark in his Ph.D. thesis investigates the use of various optimization heuristics (simulated annealing,

the genetic algorithm and the tabu search) in the fields of automated cryptanalysis. These techniques were found

to provide a successful method of automated cryptanalysis of a variety of the classical ciphers (substitution and

transposition type ciphers) (Clark 1998). Russell et al. investigated the use of Ant colony optimization for

breaking TC (Russell et al. 2003). Ali, in his Ph.D. thesis, introduces a set of modifications to enhance the

effective of particle swarm optimization to cryptanalyze the TC (Ali 2009). Ahmed et al. presented an improved

cuckoo search algorithm for automatic cryptanalysis of TC's (Ahmed et al. 2014).

Cryptography studies the design of algorithms and protocols for information security. The ideal situation would

be to develop algorithms which are provably secure, but this is only possible in very limited cases. The whole

point of cryptography is to keep the plaintext (or the key, or both) secret from eavesdroppers. Cryptanalysis is

the science of recovering the plaintext (PT) or the key. An attempted cryptanalysis is called an attack. Successful

cryptanalysts may recover the PT or the key. They also may find weaknesses in a cryptosystem that eventually

leads to the previous results (Mao 2004).

Swarm Intelligence (SI) is an Artificial Intelligence (AI) technique that focuses on studying the collective

behavior of a decentralized system made up by a population of simple agents interacting locally with each other

and with the environment (Xiaodong 2004).

The most fundamental criterion for the design of a cipher is that the key space (i.e., the total number of possible

keys) be large enough to prevent it being searched exhaustively (Clark 1998).

The main goal of this paper is to exploit the more common method of COP, which is Branch and Bound (BAB)

method, as an exact method, to solve the TCP. Next we will explore and illustrate the abilities of SI especially

the usage of the Bees algorithm (BA), as an approximate method, for developing intelligent optimization tool

colonies for the purpose of providing a "good" solution of TCP. Also, the work presented here studies and

utilizes the use of mentioned cryptanalysis methods (BAB and BA) with help of successive rules to solve this

problem within acceptable amount of time with a faster convergence and time reduction.

The paper is organized as follows: combinatorial optimization is described and given is section (2). In section (3)

the TCP is given in details. The BA and its parameters are illustrated in section (4). The classical and the

proposed cryptanalysis tools are shown in sections (5) and (6) respectively. In section (7) the implementation of

exact methods (complete enumeration CE and BAB) and classical BA (CBA) to solve TCP are discussed and

show the modification of CBA. Section (8) introduces the concept and the generating of subsequences from

successive rules (SR). Lastly, in section (9) the exploitation of successive rules in solving TCP using CEM, BAB

and modified BA methods is introduced.

http://www.iiste.org/
mailto:dr.tariqsalih@yahoo.com

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

121

2. Combinatorial Optimization (CO)

The aim of combinatorial optimization is to provide efficient techniques for solving mathematical and

engineering related problems. Many problems arising in practical applications have a special discrete and finite

nature, for examples to find the minimal value of COP: Shortest Path, Scheduling, Travelling Salesman Problem

and many more. These problems are predominantly from the set of NP-complete problems. Solving such

problems requires effort (eg., time and/or memory requirement) which increases dramatically with the size of the

problem. Thus, for sufficiently large problems, finding the best (or optimal) solution with certainty is often

infeasible. In practice, however, it usually suffices to find a “good” solution (the optimality of which is less

certain) to the problem being solved.

Provided a problem has a finite number of solutions, it is possible, in theory, to find the optimal solution by

trying every possible solution. An algorithm which tries every solution to a problem in order to find the best is

known as a brute force algorithm (BF). Cryptographic algorithms are almost always designed to make a BF

attack of their solution space (or key space) infeasible. CO techniques attempt to solve problems using

techniques other than BF since many problems contain variables which may be unbounded, leading to an infinite

number of possible solutions.

Algorithms for solving problems from the field of CO fall into two broad groups- exact algorithms and

approximate algorithms. An exact algorithm guarantees that the optimal solution to the problem will be found.

The most basic exact algorithm is a BF or what we called complete enumeration. Other examples are branch

and bound, and the simplex method. The algorithms used in this paper are from the group of approximate

algorithms. Approximate algorithms attempt to find a “good” solution to the problem. A “good” solution can be

defined as one which satisfies a predefined list of expectations. For example, consider a cryptanalytic attack. If

enough PT is recovered to make the message readable, then the attack could be construed as being successful

and the solution assumed to be “good”. Often it is impractical to use exact algorithms because of their

prohibitive complexity (time or memory requirements). In such cases approximate algorithms are employed in

an attempt to find an adequate solution to the problem. Examples of approximate algorithms (or, more generally,

heuristics) are simulated annealing, the genetic algorithm and the tabu search (Clark 1998).

3. Transposition Cipher Problem (TCP)

Classical ciphers were first used hundreds of years ago. As far as security is concerned, they are no match for

today’s ciphers; however, this does not mean that they are any less important to the field of cryptology. Their

importance stems from the fact that most of the ciphers in common use today, and utilize the operations of the

classical ciphers as their building blocks (Mao 2004).

A TC is an encryption in which the letters of the message are rearranged. With a TC the goal is diffusion,

spreading the information from the message or the key out widely across the ciphertext (CT). TC tries to break

established patterns. Because a TC is a rearrangement of the symbols of a message, it is also known as a

permutation.

A TC works by breaking a message into fixed size blocks, and then permuting the characters within each block

according to a fixed permutation, say . The key to the TC is simply the permutation .

Let E and D=E
-1

 be encryption and decryption of two variables functions of TCP respectively. Let M be the PT

which want to be encrypted using E function, then the CT Cm of TCP, where 1mn!, using arbitrary encryption

key EKm ( of n-sequence) with length n is:

Cm = E(M,EKm) (E)

Let DKm ( of n-sequence) be the decryption key corresponding to the EKm for CT Cm of TCP and Mm be the

decrypted text using DKm, is:

M=Mm=D(Cm,DKm) (D)

Its clear that Cm (and Mm) consists of n columns.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

122

Example (1): Lets have the following PT message (showed in uppercase letters):

1 2 3 4

T H E Q

U I C K

B R O W

N F O X

J U M P

S O V E

R T H E

L A Z Y

D O G X

The size of the permutation is known as the period. For this example a TC with a period of 4 is used. Let

=(3,1,4,2) be encryption key. Then the message is broken into blocks of 4 characters. Upon encryption the 3
rd

character in the block will be moved to position 1, the 1
st
 to position 2, the 4

th
 to position 3 and the 2

nd
 to position

4.

K 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

P : T H E Q U I C K B R O W N F O X J U M P

C : e t q h C u k i o b w R o n x f m j p u

K : 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

P : S O V E R T H E L A Z Y D O G X X X X X

C : v s e o H r e t z l y A g d x o x x x x

The resulting CT (in lowercase letters) would then be read off as:

etqhc ukiob wronx fmjpu vseoh retzl yagdx o

Notice also that decryption can be achieved by following the same process as encryption using the “inverse” of

the encryption permutation. In this case the decryption key (DK),  -1
= is equal to (2,4,1,3).

4. Classical Bees Algorithm (CBA)

The artificial intelligence is used to explore distributed problem solving without having a centralized control

structure. This is seen to be a better alternative to centralized, rigid and preprogrammed control. Real life SI can

be observed in ant colonies, beehives, bird flocks and animal herds.

The most common examples of SI systems: Ant Colony Optimization, Particle Swarm Optimization and

Marriage in Honey Bees Optimization.

MBO is a new development which is based on the haploid-diploid genetic breeding of honeybees and is used for

a special group of propositional satisfiability problems. The main processes in MBO are: the mating flight of the

queen bee with drones, the creation of new broods by the queen bee, the improvement of the broods' fitness by

workers, the adaptation of the workers' fitness, and the replacement of the least fit queen with the fittest brood

(Ashraf et al. 2006).

The challenge is to adapt the self-organization behavior of the colony for solving the problems. The Bees

Algorithm (BA) is an optimization algorithm inspired by the natural foraging behavior of honey bees to find the

optimal solution.

The algorithm requires a number of parameters to be set, namely:

n : Number of scout bees (n).

m : Number of sites selected out of n visited sites (m).

e : Number of best sites out of m selected sites (e).

nep : Number of bees recruited for best e sites (nep).

nsp : Number of bees recruited for the other (m-e) selected sites (nsp).

ngh : Initial size of patches (ngh) which includes site and its neighborhood and stopping criterion.

The pseudo code for the BA is shown below in its simplest form (Pham et al. 2006).

Bees Algorithm

INPUT: n, m, e, nep, nsp, Maximum of iterations.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

123

Step1. Initialize population with random solutions.

Step2. Evaluate fitness of the population.

Step3. REPEAT

Step4. Select sites for neighborhood search.

Step5. Recruit bees for selected sites (more bees for best e sites) and evaluate fitness’s.

Step6. Select the fittest bee from each patch.

Step7. Assign remaining bees to search randomly and evaluate their fitness’s.

Step8. UNTIL stopping criterion is met.

OUTPUT: Optimal or near optimal solutions.

END.

The advantages of Bees algorithm (Ashraf et al. 2006):

 BA is more efficient when finding and collecting food that is it takes less number of steps.

 BA is more scalable, it requires less computation time to complete the task.

5. Classical Cryptanalytic Tools for TCP

Before we discuss the TC cryptanalysis we have to know something about Diagram (DG) and Trigram (TG).

Just as there are characteristic letter frequencies, there are also characteristic patterns of pairs of adjacent letters,

called DG. Letter pairs such as "RE", "TH", "EN", and "ED" appear very frequently. Table 1 lists the (46) most

common DG and TG (groups of three letters) in English.

The frequency of appearance of letter groups can be used to match up PT letters that have been separated in a

CT. These counts and relative frequencies were obtained from a representative sample of English, not counting

DG that consist of the last letter of one word and the first letter of the next word (Pfleeger 1998).

Table 1. Most common DGs and TGs (Pfleeger 1998).

 1 2 3 4 5 6 7 8 9 10

DG

AN AR AS AT EA EN ER ES ET HA

HE HI IN IS IT ND NG NT OF OR

OU RE SE ST TE TF TH TI TO 29

TG
THI NTH THE ENT AND HER ETH DTH WAS TIO

ONE ION THA OUR FOR IVE ING 17

6. Proposed Cryptanalysis Studies on TCP

6.1 Proposed Cryptanalysis Tools

In general, the literatures assign that, in almost situations, there is no direct solution (decryption) for TCP when

using any classical or modern cryptanalysis tools. As usual in cryptanalysis the TCP, the final obtained key, as a

result from the cryptanalysis process, will be used to decrypt the CT, if the PT is not really correct we will still

swapping between some wrong positions of the key until we gain good readable text, then we can say that we

obtain the actual decipher key (ADK).

In this paper, we suggest our own cryptanalysis tools in order to analyze the TCP from a sense of COP or in

another word; we treat the TCP as a COP. In this manner, we introduce a new study about the DG, TG and

quadgram (QG) (4 contagious letters) frequency of PT letters with length L=10000 letters, we called these

frequencies as desired frequencies. We take in consideration the most frequent samples in PT, so we use the

following notations:
d
iD : Desired Frequency of DG (d-gram) of letter i.

d
iO : Observed Frequency of DG (d-gram) of letter i.

t
iD : Desired Frequency of TG (t-gram) of letter i.

t
iO : Observed Frequency of TG (t-gram) of letter i.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

124

q
iD : Desired Frequency of QG (q-gram) of letter i.

q
iO : Observed Frequency of QG (q-gram) of letter i.

Where i='a','b',…,'z'.

Remark (1): Its important to mentioned that all frequencies for the three samples are calculated with overlap and

not calculated for the beginnings and ends of the words.

In general let P(j
iX) be the probability of X (=D or =O) desired or observed frequency of j-gram (j=d, t and q),

for the letter i s.t.

 j

j
ij

i
L

X
XP )((1)

j

z

ai

j
i

j

L

X

X




''

'' (2)

where L
j
=L-j+1, j=d,t,q,

j
X is the arithmetic mean of j

iX frequency.

The results of frequency and ration of the three mentioned samples of our study for the English language are

illustrated in tables (2), (3) and (4).

Table 2. Desired frequency of the most common DG (80 DGs).

 Samples

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
G

S. AB AC AL AN AR AS AT BE CA CE CH CO DE DI EA EC
t
iD 49 41 83 152 67 64 136 47 51 61 46 78 40 46 95 58

S. ED EE EI EL EM EN EO ER ES ET FT HA HE HI HO IC
t
iD 88 44 44 49 58 114 62 160 136 100 41 88 252 44 49 64

S. IL IN IO IS IT LE LI LL LY MA ME NE NG NI NE NG
t
iD 54 210 58 83 113 72 68 54 64 67 66 49 64 41 49 64

S. NI NS NT OA OF OM ON OR OT OU PE PR RA RE RM RO
t
iD 41 48 128 46 105 66 136 82 52 77 42 78 53 147 60 99

S. SA SE SI SO SS ST TA TE TH TI TO TT US UT VE WE
t
iD 63 96 62 67 54 134 69 85 312 161 101 46 50 46 63 60

d

zz

aai

d
i

d

L

D

D




''

'' (3)

From table 2, dD =0.6471 for L=10000 PT letters and for the most 80 DG frequency, these 80 DG filtered when

)(d
iFP TD, where TD is a threshold DG chosen by experiences (in this paper we chose TD=0.004).

Table 3. Desired frequency of the most common TGs (52 TGs).

 Samples

 1 2 3 4 5 6 7 8 9 10 11 12 13

T
G

S. ABI ALL AND ARE ATI BAB BIL COM CON ECO EDI EIN EMA
t
iD 31 27 66 28 62 31 31 29 23 23 23 22 23

S. ENT ERE ERS EST ETH FTH HAT HEM HER ILI ING INT ION
t
iD 50 32 28 23 38 35 37 28 44 31 45 42 52

S. IST ITI ITY LIT MAT NCE NTH OBA OFT OME OTH OUT PRO
t
iD 35 28 28 35 29 35 41 31 34 25 27 24 53

S. REA ROB SOF STA STH STO THA THE THI TIC TIO TIS TTH
t
iD 24 37 34 22 33 25 38 219 23 23 45 22 27

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

125

t

zzz

aaai

t
i

t

L

D

D




''

'' (4)

From table 3,
tD = 0.1901 for L=10000 PT letters and for the most 52 TG frequency, these 52 filtered when

)D(P t

i
TT, where TT is a threshold TG chosen by experiences (in this paper we chose TT=0.0022).

Table 4. Desired frequency of the most common QGs (21 QGs).

Samples

1 2 3 4 5 6 7 8 9 10 11

Q
G

S. ABIL ATIO BABI BILI ETHE FTHE ILIT INTH LITY NTHE OBAB
q
iD 31 26 31 31 28 33 31 22 24 27 31

S. OFTH OTHE PROB ROBA STHE THAT THEM THEO THER TION
q
iD 30 22 37 31 23 29 28 20 34 45

q

zzzz

aaaai

q
i

q

L

D

D




''

'' (5)

From table 4, qD = 0.0614 for the L=10000 PT letters and for the most 21 QG frequency, these 21 filtered when

P(q
iD)TQ, where TQ is a threshold QG chosen by experiences (in this paper we chose TQ=0.002).

6.2 Proposed Cryptanalysis Objective Functions

From equations (3-5), the sum of the most high frequency (SMHF) for PT and CT are calculated in equation

(6) and (7) respectively.

SMHF(P) = dD + tD + qD (6)

for dD  0.004, tD  0.0022 and qD  0.002

SMHF(C) = dO + tO + qO (7)

The jO of letters of CT are the corresponding to the letters of PT frequency jD mentioned in equation (6),

where j=d, t, q.

It's clear that for L=10000 PT letters the SMHF(P)=0.6471+0.1901 +0.0614=0.8986.

For the CT of TCP with n=4 (n is the key length), the frequencies of the DG, TG and QG are really different, and

that is the weak point we exploited to differentiate between PT and CT.

Of course we are interest in SMHF for PT and CT. Table 5 shows the values of SMHF for PT and CT for text

with length L=(1,(1),10) 10
3
 letters.

Table 5. The values of SMHF(P) and SMHF(C) for text with different L.

SMHF
Text 1000 letters

Av.
1 2 3 4 5 6 7 8 9 10

SMHF(P) 1.375 0.979 0.929 0.894 0.868 0.862 0.887 0.923 0.930 0.899 0.955

SMHF(C) 0.848 0.587 0.549 0.527 0.512 0.498 0.476 0.485 0.488 0.491 0.546

From the above table, especially in Av. column, the SMHF(P) is always greater than SMHF(C), so in order to

obtain real PT from decrypted CT, using specific key, we look for the maximum SMHF. Notes that the worst

case for SMHF(P) function is 0.862 at L=6000 and best case for SMHF(C) function is 0.8482 at L=1000 (shaded

cells). Figure 1 shows the behavior of SMHF function for different L of PT and CT.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

126

Figure 1. The behavior of SMHF function for different L of PT and CT.

Now we have another measure to diagnose the TC which is called the coincidence of desired frequency (CDF)

for PT. This value can be calculated as follows:

CDF= 



''

''

''

''

''

''

zzzz

aaaai

q
i

q
i

zzz

aaai

t
i

t
i

zz

aai

d
i

d
i ODODOD (8)

The frequency in equation (8), are for all combinations of two, three and four letters sample in PT or CT. Table 6

shows the CDF values for different L for PT and CT.

Table 6. The CDF values for different L for PT and CT.

CDF
Text 1000 letters

Av.
1 2 3 4 5 6 7 8 9 10

CDF(P) 0.352 0.225 0.206 0.176 0.159 0.117 0.080 0.044 0.030 0.000 0.139

CDF(C) 0.627 0.593 0.600 0.590 0.593 0.594 0.594 0.597 0.597 0.598 0.598

Note that the CDF(P) values, for different text lengths, is in continuous decreasing, while the CDF(C) values are

in stable context. Notes that the worst case for CDF(P) function is 0.3523 for L=1000 and best case for CDF(C)

function is 0.5899 for L=4000 (shaded cells). Figure 2 shows the behavior of CDF function for different L of PT

and CT.

Figure 2. The behavior of CDF function for L=(1,(1),10)10

3
 letters of PT and CT.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

127

In figure 3 the behavior of SHMF and CDF functions for different L of PT is shown.

Figure 3. The behavior of SMHF and CDF functions for different L of PT only.

6.3 TCP Formulation

The cryptanalysis of TCP can be treated as a COP with two objective functions (TOF). Suppose that the EK

treated as a sequence =(1,2,…,n), where n is the length of the EK (or DK), s.t.

TOF ()={Max SMHF, Min CDF} (9)

The bicriteria approach enables constraints of different nature, expressed in different ways, to be treated

simultaneously. The two objectives aggregated into one composite (single) objective function (SOF). Since

0CDF1 and Min{CDF} Max{1-CDF}, hence the TCP can be written as follows:

SOF()= Max {SMHF+1CDF}

s. t.

SMHF(C)  dO + tO + qO





''

''

''

''

''

''

zzzz

aaaai

q
i

q
i

zzz

aaai

t
i

t
i

zz

aai

d
i

d
i ODODODCDF (P)

dD , tD , qD , dO , tO , qO  0

7. Solving TCP using Exact and BA Methods

In this section, for TCP, we will apply the exact methods which represented by complete enumeration and

branch and bound methods, and a local search (LS) method represented by the classical BA. These methods are

chosen to solve the TCP using the proposed cryptanalysis tools.

7.1 Solving TCP using Complete Enumeration Method (CEM)

As known, to pass all the states of any permutation with length n, we use the Complete Enumeration Method

(CEM) with n! states. The CEM results for n=3 (6 states) with L=3000 letters viewed in table 7 for the TOF and

SOF.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

128

Table 7. The CEM results for n=3 with L=3000 letters.

state
Applying CEM results

Decrypted 20 letters text =DK TOF() SOF()

1 HTESUENITIHSUPBILCTA (3,2,1) (0.6092,0.6076) 1.0016

2 HETSEUNTIISHUBPICLTI (3,1,2) (0.5762,0.4679) 1.1083

3 THEUSEINTHISPUBLICAT (2,3,1) (0.9288,0.2059) 1.7229

4 TEHUESITNHSIPBULCIAI (2,1,3) (0.6342,0.6142) 1.0200

5 ETHEUSTINSHIBPUCLIIA (1,2,3) (0.5685,0.4755) 1.0930

6 EHTESUTNISIHBUPCILIT (1,3,2) (0.6469,0.5926) 1.0543

The shaded cell represents the PT obtained from decrypting the CT using the ADK. Table 8 shows the SOF

values showed for different L and also shows the difference between the correct and incorrect decrypted texts for

n=4 using CEM.

Table 8. SOF(), n=4, different L, the correct and incorrect decrypted texts by CEM.

L10
3

Incorrect decrypted text Correct decrypted text

Text SOF() Text SOF()

1 AKMRSRSEIEVCAKM 1.1391 MARKSSERVICEMAR 1.7194

2 IISMATLRRSEMVNE 1.3163 SIMILARTERMSEVE 1.6999

3 YREANTEODNIEIIT 1.2649 EYARENOTIDENTIF 1.6919

6 UHSCSOINTBTOTKE 1.2392 SUCHISNOTTOBETA 1.7215

8 NXAERSPEINSOFPO 1.2774 ANEXPRESSIONOFO 1.8145

10 ATNSWEOHHRTEROO 1.2838 NASTOWHETHERORN 1.8372

In table 9 we will discuss the required times (RT) to solve the CT for different L with n=3,…,10 for RT2750

sec. (45 minutes) using CEM.

Table 9. The RT for different L with n=3,…,10 using CEM.

n n!

L letters

L=1000 L=5000 L=9000

SOF() RT SOF() RT SOF() RT

3 6

1.7194

0.016

1.6886

0.03

1.8395

0.03

4 24 0.04 0.07 0.08

5 120 0.15 0.36 0.38

6 720 0.84 1.52 2.10

7 5040 4.62 9.56 14.8

8 40320 29.1 54.8 88.3

9 362880 257 510 788

10 3628800 2719 2707* 4113*

The RT signed with * is the expected time which is interpolated by using Lagrange interpolation. We conclude

that the applying of CEM when 3n9 will be suitable for reasonable time.

7.2 Solving TCP using Branch and Bound (BAB) Method

Branch and Bound (BAB) considered as the most common method to solve problems classified as COP,

especially when CEM will be no more efficient in finding optimal solutions for large n.

In this paper, we will see how the BAB method is efficient in solving the TCP? First, since we want to maximize

SOF() for TCP so we have to find a suitable lower bound (LB), where LB= SOF(). In order to obtain a

suitable LB we suggest to make this LB as a dynamic LB, in another words, the proposed LB changes its value

in each level of BAB method.

The BAB procedure is usually described by means of search tree with nodes that corresponding to subsets of

feasible solutions. To maximize an objective function (SOF) for a particular TCP, the BAB method successively

partitions subsets using a branching procedure and computes an upper bound (UB) using upper bounding

procedure and by these procedures excludes the nodes which are found not to include any optimal solution and

this eventually leads to at least one optimal solution.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

129

For each of the subsets (nodes) of solutions one computes UB to the maximum value of the objective function

(SOF) attained by solutions belong to the subsets. If the UB calculated for a particular node is less than or equal

to the LB (this LB is defined as the maximum of the values of all feasible solutions currently found), this node is

ignored since any node with value greater than LB can only exist in the remaining nodes. One of these nodes

with maximum UB is chosen, from which to branch. When the branching ends at a complete sequence of n

letters, this sequence is evaluated and if its value greater than the current LB, this LB is reset to take that value.

The procedure is repeated until all node have been considered (i.e., upper bounds of all nodes in the scheduling

tree are less than or equal to the LB), a feasible solution with this LB is an optimal solution.

Now we suggest a new BAB method with new technique. The new technique depends first on assign LB to 1.0

after that calculate the UB for each node in each level, then searching for the best UB which is corresponding to

the best sequence . Then improve the value of LB in each level by make it equal to the mean of the set of good

UB's (UB'sLB) in that level. The best UB (1.7) is the fitness of ADK to solve TCP. The new BAB is called

modified BAB (MBAB) method. The MBAB algorithm is shown below.

MBAB algorithm

STEP(1): INPUT CT, L, n;

 LB=1.0, l=0, s=(1,2,…,n), ND=n, [FOR k=1,…,n SEQ(k)=k];

STEP(2): l= l+1, m=0;

 FOR k=1,…,ND

 Branching from node last digit l in SEQ;

 UNSEQ = s without SEQ;

  = concatenate(SEQ,UNSEQ);

 Calculate UBk= SOF() {in level –l }

 IF UBk  LB THEN

 m = m + 1,

 LIST(m , :) = ; SUB(m) = UBk;

 END;

 END;

STEP(3): LB=mean {SUB};

 BestFit = }{max
1

SUB
mi

, BestDK= LIST(i);

 SEQ=cut from LIST first l digits, LIST=, SUB=; ND=m;

 IF l=n-1 STOP ELSE GOTO STEP(2);

 IF BestFit  1.68 STOP;

STEP(4): OUTPUT BestFit, BestDK;

In table 10 we will discuss the required CPU times and number of nodes to decrypt the CT for different L for

n=5,…,12 using MBAB method compared with CEM, RT  2400 sec. (=40 minutes).

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

130

Table 10. RT and ND for different L for n=5,…,12 using MBAB compared with CEM.

n

L1000 letters

L=1, SOF()=1.7194 L=5, SOF()=1.6886 L=9, SOF()=1.8395

CEM BAB CEM BAB CEM BAB

RT RT ND RT RT ND RT RT ND

5 0.15 0.15 2 0.36 0.6 15 0.38 0.43 20

6 0.84 0.33 14 1.52 0.5 20 2.10 0.67 34

7 4.62 1.3 98 9.56 2.7 150 14.8 4.1 146

8 29.1 1.4 30 54.8 4 270 88.3 4.8 196

9 257 9 640 510 10.6 645 788 27 1341

10 2719* 23 1558 ----- ----- ----- ----- ----- -----

11 10991* 71 2456 ----- ----- ----- ----- ----- -----

12 34638* 311 17421 ----- ----- ----- ----- ----- -----

Where RT cells assign with * is the expected RT when using CEM calculated by using Lagrange interpolation.

We conclude that the applying of MBAB when 5n12 will be suitable for reasonable time for L=1000 only.

Notice from table 10 the big difference between the RT for CEM and MBAB.

7.3 Solving TCP using Classical BA (CBA)

7.3.1 Classical BA Description

The attack of the TCP is to find the permutation of the n-key integers (ADK). In this paper we will try to apply

BA in such as optimization of a function. This TCP was chosen according to different factors such as

representation of the problem can be applied more efficiently. Furthermore, this problem chosen since its own a

high complexity (the size and the shape of the search space), which its, cannot be solved using traditional known

searches, like exhaustive search method.

First, we should address an important question connected with BA representation, we should leave a bee to be

an integer vector, or permutation of (1,...,n) integers.

For the initial population, the cryptanalysis process begins with a random set of n bees consisting of

permutations of the integers 1…n, then it applies such key to the CT, and assesses the “fitness” of each bee by

determining the extent to which the attempted decryption matches certain characteristics of plain English.

The fitness rating helps the cryptanalysis algorithm for TCP achieve attacking by awarding scores according to

the number of times. Two, three and four letter combinations (DG, TG and QG) commonly found in English

actually occurs in the decrypted text.

The correlation between fitness and the correctness of a bee is not perfect, nor can it ever be. It is always

possible that BA can award relatively high fitness to bees that chance produces relatively high numbers of DG,

TG and QG.

Nevertheless, the fitness rating of BA does correlate well with the correctness of a bee. To show this we applied

the following steps:

1. A target bee was used to encrypt a text.

2. A sample of random bees used for decryption.

3. Each of these bees was then rated for its similarity to the target, as measured by their BA allotted fitness.

4. These ratings were then compared to the actual similarity of the target, as measured manually by awarding

points, an integer, making up the bee.

In this manner, the fitness function of BA algorithm for TCP is the SOF mentioned in problem (P) s.t. Fitness

(SOF) = SMHF+1CDF.

For parameters selection, as the goal of this study is to verify the impact of the choice of social topologies in

the behavior of the algorithm, the tuning parameters are fixed. They are set to the values that are widely used by

the community and that are deemed the most appropriate ones. Table 11 shows the different parameters which

are used in cryptanalysis TCP.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

131

Table 11. Parameters selection of cryptanalysis TCP.

Parameters Symbol Value

Length of key n  5

Length of text L  500

Population size (Number of Bees) NB 10 – 20

Number of selected sites m 3 – 5

Number of elite sites out of m selected sites e 2

Number of bees for elite sites nep 5

Number of bees other selected points nsp 3

Number of Generations NG  100

Here we demonstrate some related subalgorithms in order to implement BA on TCP:

1. Subalgorithm Initialization (Start) {Initialize population with random solutions}

FOR i=Start : NB

Keyi = RANDOM(1..n)

END;

2. Subalgorithm CAL-Fitness {Calculate fitness function for each solution Keyi}

FOR i=1: NB

 Fiti= (SMHF+1-CDF)(Keyi)

END;

3. Subalgorithm Improve-Keys(np,me) {Improve each solution Keyi for m sites}

FOR i=1: me

 FOR j=1: np

 r=RANDOM(n-1);

 New_Keyi=SWAP(r,r+1);

 New_Fiti = (SMHF+1-CDF)(Keyi)

 IF New_Fiti > Fiti THEN

 Fiti = New_Fiti;

 Keyi = New_Keyi;

 END;

 END;

END;

The description of the Classical BA (CBA) which is be used to attack the TCP is shown below.

Algorithm CBA

Step (1): READ cipher text with length (L),

READ n, NB, m, e, nep, nsp, NG. {BA parameters}

Step (2): CALL Initialization (1). (keys of TC) {population of Bees}

Step (3): REPEAT

Step (4): CALL CAL-Fitness.

Step (5): CHOOSE Best m fitness Keys.

Step (6): CALL Improve-Keys (nep,e); CALL Improve-Keys (nsp,m-e).

Step (7): CALL Initialization (m+1).

 UNTIL (Reach NG) OR (Fiti=Fitness of Plain).

Step (8): OUTPUT: Best Keyi.

7.3.2 Experimental Results of Solving TCP using CBA

In this section, a number of experimental results are presented which outline the effectiveness of CBA attack

described above. Firstly, the best way to illustrate the BA in operation is to look at the development of the

population over time. We apply CBA for any chosen n, we have population of NB random  n-sequence, in

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

132

chosen iterations, we choose a sequence (DK) with best fitness in the population. Table 12 shows the growth of

fitness value till approach the fitness (1.7234) of ADK using NG=200, NB=20 for n=8 and L=1000 for one run.

Table 12. The growth of fitness value for n=8 and L=1000.

Iter. Best DK in iter. Fitness Time/sec

1 5 4 8 1 7 3 2 6 1.2234 0.07

2 2 3 5 6 1 8 7 4 1.3019 0.16

4 3 5 7 6 4 1 2 8 1.3388 0.29

11 4 8 6 2 3 5 7 1 1.4091 0.71

29 5 4 8 2 3 7 6 1 1.4162 1.72

72 8 4 1 2 3 5 7 6 1.4198 4.64

91 4 8 3 2 5 7 6 1 1.4655 5.69

135 7 6 1 4 8 2 3 5 1.5101 9.30

151 4 8 2 3 5 7 6 1 1.7234 12.78

The shaded cell means this key is the ADK.

Remark (2): From the above table:

1. The key #8 (7,6,1,4,8,2,3,5) is only a left-shifting by 3 to ADK (4,8,2,3,5,7,6,1).

2. Notice that the key # 7 (4,8,3,2,5,7,6,1) has high similarity (6 positions in sequence from 8) to the ADK (key

9) (4,8,2,3,5,7,6,1). For fixed NG the ratio of similarity will be decrease as n increase.

We want to exploit these two notes to improve the performance of BA. The good performance for any LS means

less number of iterations, less time and good convergence to the actual solution.

For n=5,…,10, the implementation of CBA to solve TCP has very reasonable time (0.09RT25.0 sec) and good

AE (0AE0.0397) using NG=1500 for (NEx=5) examples with L = 1000.

In table 13, we will show the Best and average results of the implementation of CBA to solve TCP. We used

NG=1500, NB=20 for n=11,12.

Table 13. Solving TCP using CBA for n=11,12 and NEx=5.

n function Fit. Iter.
Time/sec.

AE
BT RT

11
Best 1.7112 164 2.83 5.61 0.0000

Av. 1.5917 642.80 27.85 41.85 0.1195

12
Best 1.5705 227 7.44 53.79 0.1482

Av. 1.5043 686.40 35.22 69.73 0.2144

Where Av. is the average value of finesses of (5) examples and AE is the absolute error for Best and Av. fitness's

compared with plain fitness and BT is the best time.

7.4 Solving TCP using Shifted Key BA

From note (1) in remark (2), to enhance the performance of CBA we suggest some modifications. These

modifications summarized by applying shifting (by 1,…,n) to the generated keys which are generated randomly

in subalgorithm Initialization, then pick the best fitness from n-shifted initial keys in order to start with good

initial. We called the modified BA with the shifting initial keys Shifted Key BA (SKBA).

The following is a subalgorithm description of Shift-Key which is called by subalgorithm Shift-Key (Keyi):

Subalgorithm Shift-Key (Keyi)

FOR j=1 : n

 SHIFT(Keyi) by j;

 CALL CAL-Fitness.

 IF MAX (Fiti) THEN

TmpKey=Keyi; TmpFit=Fiti;

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

133

 END;

END;

Keyi=TmpKey; Fiti=TmpFit;

Subalgorithm Sh_Initialization (Start) = Initialization (Start,Sh=1)

and

Algorithm Sh_Improve-Keys(np,me)= Improve-Keys(np,me,Sh=1)

Where CALL Shift-Key can be inserted after (Keyi = RANDOM(1..n)) statement in subalgorithm Initialization

and Improve-Keys(np,me)

So algorithm SKBA is:

Algorithm SKBA=CBA(Sh=1)

Table 14 shows the growth of fitness value till approach the fitness (1.7234) of ADK using NG=200, NB=20 for

n=8 and L=1000 in algorithm SKBA.

Table 14. The growth of fitness value for n=8 and L=1000 in SKBA.

Iter. Best DK in iter. SOF(DK) RT

1 6 5 1 2 4 3 8 7 1.2234 0.04
2 1 5 2 4 3 6 8 7 1.4655 0.48
25 1 5 2 4 3 6 8 7 1.4822 6.95
27 2 5 3 1 4 6 8 7 1.4907 7.43
45 2 5 1 4 3 6 8 7 1.7234 12.01

In figure 4, the growth of fitness value of BA and SKBA is shown, it's clear that the performance of SKBA is

better than CBA.

Figure 4. The growth of fitness value of BA and SKBA.

Table 15 shows the comparison results between the Best and Av. (some) results of table 13 and implementation

of SKBA for fitness, iteration, BT, RT and AE for n=9,...,12.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

134

Table 15. The comparison results between CBA and SKBA for n=9,...,12.

n Fun. Alg. Fit. Iter.
Time/sec.

AE
BT RT

9

Best
CBA 1.7202 23 0.07 3.07 0.0000

SKBA 1.7202 9 3.15 3.15 0.0000

Av.
CBA 1.6823 131.6 4.65 6.82 0.0379

SKBA 1.7202 85.20 15.81 18.91 0.0000

10

Best
CBA 1.7234 159 2.89 2.89 0.0000

SKBA 1.7234 123 17.02 20.23 0.0000

Av.
CBA 1.6550 413.60 21.50 25.40 0.0684

SKBA 1.7234 358.40 106.63 176.63 0.0000

11

Best
CBA 1.7112 64 2.83 5.61 0.0000

SKBA 1.7112 113 44.54 58.02 0.0000

Av.
CBA 1.5917 642.80 27.85 41.85 0.1195

SKBA 1.6137 538.40 203.58 372.42 0.0975

12

Best
CBA 1.5705 227 7.44 53.79 0.1482

SKBA 1.5593 155 53.52 526.00 0.1593

Av.
CBA 1.5043 686.40 35.22 69.73 0.2144

SKBA 1.5364 588.00 308.85 539.15 0.1822

 From above table, notice that the SKBA makes little differences in obtaining good results but it takes more time

than CBA.

8. Successive Rules

8.1 Successive Rule Concept

Let P(i,j) be the probability of digit i successes digit j in the key DKm (denoted by ij) (or we say column i

successes column j in the text Mm using key DKm), where 1mn!, and a threshold (T1) for the acceptance of

P(i,j) s.t.

P(i,j)  T1, where 0<T11, (12)

In another word, if P(i,j) satisfies condition (12) then its called accepted probability AP(i,j).

Definition (1): In TCP, if digit i successes digit j in the key DKm to decrypt the text Mm with good accepted

probability AP(i,j) then we say that DKm (or Mm of TCP) is submitted to successive rule (SR).

In another words, we can define the SR's by the rules which are enforcing the obtained sequence (DK) to be

arranged in some specific order.

We believe that the calculation of P(i,j) is relevant to some iterative solving methods of TCP which we can

generate the DK in somehow. The BAB and LS methods can be considered as kinds of these iterative solving

methods. In this paper we are focus in generating DK which is submit to a good SR (SR with AP(i,j)) using BAB

and LS (like BA).

Let's suppose that some SR's are explored, now how we can exploit these SR's to increase the performance of

solving techniques of TCP?

Example (2): Let  be a 5-sequence digits with the following SR: 24 and 31, s.t. the number of SR

(NSR)=2, then  will have the following arrangements: (2,4,5,3,1), (2,4,3,1,5), (3,1,5,2,4),…,etc. While if 

enforced by the following SR: 24, 45 (2-4-5) and 31 (3-1), s.t. NSR=3 then  will have the following

arrangements: (2,4,5,3,1) and (3,1,2,4,5) only.

8.2 Generating Subsequences from SR

Let  be an n-sequence digits (DK), s.t. =(1,2,…,n), if  has NSR of SR's, if the digits ij and jl, then we

can obtain a subsequence Sk=(i-j-l) with length 3. In general, we can generate Nn number of strings

(subsequences) Sk each with length SLk, s.t. 1kN, then the initial N-sequence is =(S1,S2,…,SN) obtained from

 of n-sequence after applying SR.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

135

For example (2), =(1,2,3,4,5), NSR=3, S1=(2,4,5) and S2=(3,1) with SL1=3 and SL2=2 respectively, then N=2,

s.t. =(S1,S2)=(2-4-5,3-1). In general, notice 



N

k

kSLn
1

and)1(
2






kSL

kSLNSR .

Table 16 shows the SR subsequences (Sk), with lengths (SLk) for n=11,...,20.

Table 16. The SR subsequences (Sk), with lengths (SLk) for n=11,...,20.

n NSR N SLk =(Sk), k=1,…,N

11 8 3 3,7,1 (6-3-8),(2-11-7-9-4-1-10),(5)

12 8 4 4,6,1,1 (3-8-4-11),(12-7-9-5-1-10),(6),(2)

13 8 5 3,5,3,1,1 (7-10-5),(3-9-4-12-8),(1-11-6),(2),(13)

14 8 6 4,3,2,3,1,1 (4-13-9-6),(2-14-8),(3-10),(11-5-1),(7),(12)

15 8 7 3,2,5,2,1,1,1 (9-11-6),(8-4),(10-5-14-12-2),(1-13),(3),(15),(7)

16 8 8 2,4,2,2,3,1,1,1 (12-6),(11-5-15-13),(3-16),(2-7),(14-8-4),(10),(1),(9)

17 8 9 2,3,3,4,1,1,1,1,1 (17-9),(5-16-14),(8-4-11),(13-6-1-15),(2),(7),(3),(10),(12)

18 8 10 2,2,2,3,2,3,1,1,1,1 (4-13),(16-12),(5-1),(2-11-8),(3-14),(10-7-6),(9),(15),(18),(17)

19 8 11 3,2,2,2,2,2,2,1,1,1,1 (14-17-13),(6-1),(2-12),(9-4),(15-11),(8-7),(10-16),(19),(18),(3),(5)

20 9 12 2,3,2,2,2,2,2,1,1,1,1,1 (5-15),(18-14-6),(1-2),(13-9),(16-12),(8-7),(10-17),(20),(19),(3),(11),(4)

9. Applying Exact and SKBA Methods with SR to Solve TCP

9.1 Applying CEM with SR to Solve TCP

Notice from table 16 that if N9 we can apply CEM to solve TCP with n=11,…,17, to obtain exact solution in

reasonable time. To find ADK for each n mentioned in table 16 we have to apply CEM for N9. The CEM

applied for  of n-sequences consists of N-subsequence to obtain  of N-sequences where some subsequence is

multi digits, then we called it multi digits CEM (MDCEM). Now we can propose a subalgorithm MDCEM:

Subalgorithm MDCEM

READ n, N, k=1,…,N, (SLk,Sk).

MDCEM=CEM(N,SLk,Sk).

Table 17 shows the results of applying MDCEM with SR using table 16 for n=11,…,17, RT(N) and ERT(N) the

required and expected required time.

Table 17. The results of applying MDCEM with SR for n=11,…,17.

n N N! ADK, SOF(ADK)1.72
MDCEM

RT(N) ERT(n)

11 3 6 (2-11-7-9, 4-1-10 ,6-3-8-5) 0.02 109913h

12 4 24 (2-12-7, 9-5, 1-10-6, 3-8-4-11) 0.04 3463810h

13 5 120 (2-13, 7-10-5-1, 11-6-3, 9-4-12, 8) 0.16 9194025h

14 6 720 (2-14-8, 11-5, 1-12, 7, 3-10-4, 13-9-6) 1.41 21522860h

15 7 5040 (3-15, 9, 11-6, 1-13-8, 4-10, 5-14, 12-2-7) 9.69 ------

16 8 40320 (3, 16-9-12, 6-1, 14-8, 4, 11-5-15, 13-2, 7-10) 76.09 ------

17 9 362880 (3-17-9, 13, 6-1,15-8, 4-11-5, 16, 14-2, 7,10-12) 658.8 ------

9.2 Applying New BAB with SR to Solve TCP

As well known, each arc in classical search tree of BAB method represents by single digit of n-sequence, and

then branching from a node. We can exploit the SR to decrease the number of levels in BAB's search tree and

solve a TCP with N-1 levels instead of n-1 levels by obtaining sequences  of N-sequence. To make this happen

we have to consider each arc as a string Sk of digits with length SLk.

Now we want to exploit the SR to construct a new style of BAB search tree. Each arc of BAB search tree may

represents a subsequence of the main sequence. In section 7.2 we propose a new BAB method we called it

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

136

MBAB, this method will be applied to find sequences  of N-sequence with elements Sk. We call the new BAB

method by multiple digits BAB (MDBAB) method. The MDBAB algorithm is shown below.

MBAB algorithm

STEP(1): INPUT CT, L, N;

 LB=1.0, l=0, s=(S1,S2,…,SN), ND=N, [FOR k=1,…,N SEQ(k)=k];

STEP(2): l= l+1, m=0;

 FOR k=1,…,ND

 Branching from node last string l in SEQ;

 UNSEQ= s without SEQ;

  = concatenate(SEQ,UNSEQ);

 Calculate UBk= SOF() {in level –l }

 IF UBk  LB THEN

 m = m + 1;

 LIST(m , :) = ; SUB(m) = UBk;

 END;

 END;

STEP(3): LB=mean {SUB};

 BestFit = }{max
1

SUB
mi

, BestDK= LIST(i);

 SEQ=cut from LIST first l strings, LIST=, SUB=; ND=m;

 IF l=N-1 STOP ELSE GOTO STEP(2);

 IF BestFit  1.68 STOP;

STEP(4): OUTPUT BestFit, BestDK;

Example (3): Let n=6, with  of 6-sequence has SR with the following subsequencs: S1=(1), S2=(4), S3=(3,5),

S4=(6,2), with lengths 1,1,2,2 respectively this mean N=4 and =(S1,S2,S3,S4)=(1,4,3-5,6-2). First, set initial LB

(ILB)=1.0.

For level 1: UB{1}((1,4,3-5,6-2))=1.3513 (ILB), UB{4}((4,1,3-5,6-2))=1.2717, UB{3-5} ((3-5,1,4,6-2))=1.2281,

UB{6-2}((6-2,1,4,3-5))=1.3302, so we branch from the nodes with good UB's, the new

LB1=mean(UB{1})=UB{1}=1.3513.

For level 2: from node with UB{1}, UB{4}((1,4,3-5,6-2))=1.3513 (LB1), UB{3-5} ((1,3-5,4,6-2))=1.2312, UB{6-

2}((1,6-2,4,3-5))=1.7187 (LB1), so we branch from the nodes with UB{4}=1.3513 and UB{6-2}=1.7178, the new

LB2=mean(UB{1},UB{6-2})=1.5350.

For level 3: from the node with UB{4}, UB{3-5}((1,4,3-5,6-2))=1.3513 and UB{6-2}((1,4,6-2,3-5))=1.3251. From

node with UB{6-2}, UB{4}((1,6-2,4,3-5))=1.7187 (LB2) and UB{3-5}((1,6-2,3-5,4))=1.3547 so the only UBLB2 is

the node with UB{4} to obtain the best fitness = 1.7187 hence the sequence =(1,6-2,4,3-5) is the ADK (see

figure 5).

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

137

Figure 5. Applying of MDBAB for n=6.

From figure 5, the optimal solution is =(1,6,2,4,3,5), with SOF()=1.7187. Since N=4, then the MDBAB

search tree has 3 levels. The shaded node is the optimal solution.

Remark (3): For N9, if the value of the upper bound UBk()1.7 (which is the fitness of text using ADK) is

obtained in any level kN when applying MDBAB we can stop the process and no need for more branching.

We recall table 16 again, we will apply MDBAB to solve TCP with key size n=16,…,20, to obtain exact solution

in reasonable time. Table 18 shows the results of applying MDBAB with SR using table 16 for n=16,…,20.

Table 18. The results of MDBAB with SR for n=16,…,20.

n N N! =ADK, SOF()1.72
MDCEM MDBAB

RT(N) RT(N)

16 8 40320 (3,16,9,12,6,1,14,8,4,11,5,15,13,2,7,10) 76.09 0.35

17 9 362880 (3,17,9,13,6,1,15,8,4,11,5,16,14,2,7,10,12) 658.8 0.52

18 10 3628800 (4,13,16,12,5,1,2,11,8,3,14,10,7,6,9,15,18,17) 3306* 1.25

19 11 39916800 (5,14,17,13,6,1,2,12,9,4,15,11,8,7,10,16,19,18,3) 11659* 23.0

20 12 479001600 (5,15,18,14,6,1,2,13,9,4,16,12,8,7,10,17,20,19,3,11) 32774* 35.5

The RT(N) signed with * is the expected time which is interpolated by using Lagrange interpolation. Now we

can propose a subalgorithm MDBAB:

Subalgorithm MDBAB

READ n,N,SLk,Sk, k=1,…,N.

MDBAB=MBAB(N,SLk,Sk)

9.3 Applying SKBA with SR to Solve TCP

Before we discuss the implementation of CBA using SR to Solve TCP, we have to focus more light about how

we can generate the SR's? lets start with this example.

Example (4): First, let's apply CBA for n=10, we have population of NB=20 random  10-sequence, in chosen

iterations, we choose a sequence (DK) with best fitness in the population. Table 19 shows the SR using NG=200,

for n=10 and L=1000.

ILB=1.0

1.2717 1.3302

1.3513 1.2281

1.3513

1.7187

1.2312

1.3547 1.7187

1.3251

1.3513

1,4,35,62

4,1,35,62

1,4,35,62

1,4,35,62

1,4,35,62

62,1,4,35

35,1,4,62

1,62,4,35

1,62,4,35

1.2281

1,62,4,35

1,62,35,4

1,35,4,62

1,4,62,35

4

1 35

62

4

4

35

35
35

62

62

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

138

Table 19. The growth of fitness value for n=10 and L=1000.

Key# Iter. =DK Fitness N RT

1 1 8 3 2 1 4 5 6 10 7 9 1.2234 9 0.04

2 2 5 7 6 4 8 1 9 2 10 3 1.2679 8 0.11

3 3 2 10 5 3 4 1 9 7 6 8 1.3876 6 0.17

4 6 7 6 4 1 9 3 8 2 5 10 1.3955 9 0.32

5 8 2 10 5 3 4 1 9 7 6 8 1.4056 6 0.42

6 10 7 1 10 3 9 8 4 6 2 5 1.4487 6 0.52

7 23 7 6 4 1 9 3 8 2 5 10 1.4623 9 1.15

8 112 1 9 3 4 8 6 2 10 5 7 1.5752 5 6.48

9 151 3 4 6 2 7 1 9 10 5 8 1.6132 4 13.51

ADK 7 1 9 8 3 4 6 2 10 5 1.7234 1

where the underline subsequence represents the SR's.

Notice that as fitness increase (and iteration) the number of similarity digits with DK, the number and the length

of strings Sk and the number of correct position-digits are increased.

From note (2) in remark (2), another improvement of CBA was suggested. These improvements represented by

other modifications. These modifications summarized by applying shifting (by 1,…,n) and using some SR

explored by implementation of CBA first, then we use these SR to generate keys in subalgorithm Initialization

which are approximate the ADK with best fitness in order to start with good initial and to increase the probability

to obtain the ADK in less iterations and time. We called the new modified BA with the SR keys BA (SRKBA).

The proposed algorithm SRKBA included the SKBA. Now let:

N(i,j): the number of frequency for i successes j in m sites.

Then the probability for i successes j in m sites for the total number of generations is:

NGm

jiN
jiP

*

),(
),( (11)

Table 20 shows the SR using NG=500, for n=10 and L=1000 and T1=0.25.

Table 20. The SR using NG=500, for n=10 and L=1000.

SR 1
st
 (i) 2

nd
 (j) N(i,j) P(i,j) SR with N=4

1 1 9 690 0.276*
k SLk Sk 2 2 10 290 0.116#

3 3 4 1380 0.552*
1 4 3,4,6,2

4 4 1 312 0.125

5 4 6 903 0.361*
2 3 7,1,9

6 6 2 903 0.361*

7 6 8 90 0.036
3 2 10,5

8 7 1 903 0.361*

9 7 6 21 0.008
4 1 8

10 10 5 1476 0.590*

Then the SR with accepted probability (signed with *) are: S1=3,4,6,2, S2=7,1,9 and S3=10,5, S4=8 so the

accepted number of SR (ASR) is N=4. The SR signed with (#) is correct but because that P(2,10)<T1 it has been

ignored.

Note that every obtained DK consists of number of subsequences Sk each has length SLi, i=1,..,N, where N is the

number of accepted subsequences for Sk, e.g. from table 20, the last DK has 4 subsequences each with length

4,3,2 and 1 respectively.

To obtain good or certain probability we can apply CBA with many runs (say w), each time Pk(i,j), k=1,…,w

may has new value, each Pk(i,j) appear wij times wij{1,…,w}, i,j (if wij=1 it will be ignored unless Pk(i,j)0.5),

then the arithmetic mean of probabilities:





ijw

k

k
ij

jiP
w

jiT
1

),(
1

),((13)

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

139

When T(i,j)threshold (T2) or wij>2 then the SR will be accepted. Table 21 shows the calculation of T(i,j) for

NG=2000, L=1000 and with 5 runs (w=5) for CBA.

Table 21. The calculation of T(i,j) for NG=2000, n=10, L=1000 and w=5.

SR, ADK=(2,10,6,8,4,1,9,5,3,7)

1-9 2-10 3-7

Pk(1,9) w1,9 T(1,9) Pk(2,10) w2,10 T(2,10) Pk(3,7) w3,7 T(3,7)

0.261

0.278

0.603

0.009

4 0.288

0.769

0.052

0.598

0.781

0.586

5 0.557

0.350

0.575

0.534

0.003

4 0.366

4-1 4-9 5-3

Pk(4,1) w4,1 T(4,1) Pk(4,9) w4,9 T(4,9) Pk(5,3) w5,3 T(5,3)

0.736

0.296

0.609

0.269

4 0.478
0.062

0.014
2 0.038

0.388

0.296

0.726

0.623

0.046

5 0.416

6-8 8-4 8-6

Pk(6,8) w6,8 T(6,8) Pk(8,4) w8,4 T(8,4) Pk(8,6) w8,6 T(8,6)

0.431

0.306

0.295

0.502

4 0.384

0.227

0.697

0.074

3 0.332
0.001

0.164
2 0.083

9-5 10-6 Good SR

Pk(9,5) w9,5 T(9,5) Pk(10,6) w10,6 T(10,6) NSR=9

1-9,2-10,3-7, 4-1,5-3,6-8,

8-4,9-5,10-6

0.420

0.776

0.601

0.723

4 0.630

0.570

0.254

0.145

0.269

0.016

5 0.251 N=1

The shaded cells are SR with accepted probability but they ignored because there exists better than them (e.g. 8-

6 is ignored because 8-4 better).

Now to apply MDCEM, we check if N less or equal to a reasonable number can be manipulated by MDCEM

(N8). While if (8<N12) we can applied MDBAB. From example (4), for key#9, N=4, so TCP can be solved by

MDCEM in 4! (=24) states. Otherwise for (N>13), we reapplied SRKBA to solve TCP or to obtain more new

ASR. These procedures are repeated until the TCP is solved.

We introduce subalgorithm FIND_SR to obtain the SR when applying CBA.

Subalgorithm FIND_SR

FOR i=1 : m

 FOR j=1:n-1

 n1=Keyi,j; n2=Keyi,j+1; N(n1,n2)+1;

END {i,j};

Calculate P(n1,n2)= N(n1,n2)/(m*NG);

IF P(n1,n2)  T1 THEN FIND (N,Sk), k=1,…,N;

The proposed SRKBA is as shown below.

Algorithm SRKBA

Step (1): READ cipher text with length (L),

 READ n, NB, m, e, nep, nsp, NG. {CBA parameters}

Step (2): CALL Sh_Initialization (1). (keys of TC) {population of Bees}

Step (3): REPEAT

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

140

Step (4): CALL CAL-Fitness.

Step (5): CHOOSE Best m fitness Keys.

Step (6): CALL Improve-Keys (nep,e); CALL Improve-Keys (nsp,m-e).

Step (7): CALL FIND_SR.

Step (8) IF N  8 THEN CALL MDCEM(N) GOTO Step (10).

Step (8) IF 8 < N  12 THEN CALL MDBAB(N) GOTO Step (10).

Step (9): CALL Initialization (m+1,Sk).

 UNTIL (Reach NG) OR (Fiti=Fitness of Plain).

Step (10): OUTPUT: Best Keyi.

Remark (4): As well as using high NG when applying CBA or SRKBA this means obtain high number of SR

(this decrease N) and that will helpful in obtaining the ADK in less number of iterations and time when applying

SRKBA. Table 22 illustrates the implementation of SKBA to solve TCP for n=13,…,20 using NG=3000 and

L=1000 in number of solving stages.

Table 22. Using SRKBA to solve TCP for n=13,…,20, NG=3000 and L=1000.

n Ex.
Solving Stages

n Ex.
Solving Stages

1 2 1 2 3 4

13

1 AS CEM(5)

17

1 AS BAB(12) ----- -----

2 AS CEM(5) 2 AS AS CEM(5) -----

3 AS CEM(6) 3 AS BAB(12) ----- -----

4 AS BAB(9) 4 AS AS CEM(5) -----

5 AS CEM(7) 5 AS BAB(11) ----- -----

14

1 AS CEM(6)

18

1 AS AS CEM(5) -----

2 AS BAB(8) 2 AS AS CEM(2) -----

3 AS CEM(4) 3 AS AS CEM(6) -----

4 AS CEM(6) 4 AS AS CEM(6) -----

5 AS BAB(9) 5 AS AS CEM(7) -----

15

1 AS CEM(7)

19

1 AS AS BAB(9) -----

2 AS BAB(8) 2 AS AS AS BAB(10)

3 AS BAB(8) 3 AS AS CEM(5) -----

4 AS BAB(9) 4 AS AS BAB(8) -----

5 AS BAB(10) 5 AS AS BAB(8) -----

16

1 AS BAB(8)

20

1 AS AS AS CEM(4)

2 AS CEM(7) 2 AS AS AS CEM(5)

3 AS BAB(12) 3 AS AS AS BAB(8)

4 AS BAB(10) 4 AS AS AS CEM(2)

5 AS BAB(8) 5 AS AS AS BAB(8)

Where AS is an approximation solution. The CEM(N) and BAB(N) mean applied CEM and BAB for N

respectively. Notice that as n increases we need more solving stages in order to obtain ADK.

Remark (5): We may increase the performance of SRKBA, and decreasing the solving stages to find ADK to

TCP by running SRKBA for w times and obtain the good probabilities to pick the good SR. Table 23 shows the

results of applying SRKBA for w=5, to solve TCP for n=13,…,20, NG=3000 and L=1000.

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.4, No.9, 2014

141

Table 23. Using SRKBA to solve TCP for n=13,…,20, NG=3000, L=1000, for w=5.

n
Solving Stages

n
Solving Stages

1 1 2

13 CEM(2) 17 CEM(6) -----

14 CEM(5) 18 BAB(9) -----

15 CEM(5) 19 BAB(10) -----

16 CEM(6) 20 AS CEM(4)

Compare the results of number of solving stages of solving TCP of table 23 with results of table 22.

10. Conclusions

1. We don’t takes in the consideration in this study the space character "-" between words, which is

considered a good weak point can be exploited by cryptanalyst, therefore the designers exclude it and that

is the actual status.

2. Although the BA is an approximate algorithm, in this paper we are interest in using BA to find exact

solution for TCP more than finding an approximation solution.

3. We notice the role of SR in solving the TCP, in general we convince that this role will be extended to all

COP.

4. There are two sources to obtain SR, first is the BAB and the second is the LS.

5. As the number of generations in applying BA is increased then the number of obtained SR will be increased

this implies that (N) the number of strings (subsequences) Sk is decreased this means the ADK will be

obtained in less possible time.

6. In order to solve TCP in less possible time, we must find as high as possible number of SR, this implies that

the number of subsequence (N) will be decreased with SLk approach n.

7. A study can be made to show the role of changing the parameters of BA in solving TCP in order to tune

these parameters in suitable form.

8. As future work, we suggest using another LS with SR to solve TCP or any COP.

9. According to what we discuss, we may suggest using a general solving system to solve any COP under the

condition that the COP submits to "good" SR's which can be used to approach the actual solution in

reasonable time.

References

Ahmed T., Laith A., and Hashim K. (2014), “Attacking Transposition Cipher Using Improved Cuckoo Search”,

Journal of Advanced Computer Science and Technology Research, Vol.4 No.1, pp.22-32.

Ali I. K. (2009), “Intelligent Cryptanalysis Tools Using Particle Swarm Optimization”, Ph. D., Dept. of

Computer Science, University of Technology.

Ashraf A., Michael P. and Marco C. (2009), “Bees Algorithm”, Manufacturing Engineering Center, Cardiff

University, Wales,UK.

Clark A. J., “Optimization Heuristics for Cryptology”, Ph.D. Thesis, Information Security Research Centre,

Faculty of Information Technology, Queensland University of Technology, 1998.

Mao W. (2004), “Modern Cryptography: Theory & Practice”, Upper Saddle River, NJ: Prentice Hall PTR.

Matthews R. A. J., “The Use of Genetic Algorithms in Cryptanalysis”, Cryptologia, 17(2):187–201, April 1993.

Pfleeger C. P. (1998), “Security in Computing Algorithms”, Abroad Book.

Pham D. T., Ghanbarzadeh A., Koc E., Otri S., and Zaidi M. (2006), “The Bee's Algorithm – a Novel Tool for

Complex Optimization Problems”. In: Pham D.T., Eldukhri E., Soroka A. J. ed(s) 2nd Virtual International

Conference on Intelligence Production Machines and Systems (IPROMS 2006). Elsevier, Oxford, 2006, pp 454-

459.

Russell M. D., Clark J.A., and Stepney S. (2003), “Making the Most of Two Heuristics: Breaking Transposition

Ciphers with Ants”, The Congress on Evolutionary Computation CEC 03, Vol. 4, pp.2653-2658.

Xiaodong L., Gao L. and Gao H. (2003), “Swarm Intelligence and its Applications”, Congress on Evolutionary

Computation, Canberra, Australia, 8
th

- 12
th

 December.

http://www.iiste.org/

The IISTE is a pioneer in the Open-Access hosting service and academic event

management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting

platform.

Prospective authors of journals can find the submission instruction on the

following page: http://www.iiste.org/journals/ All the journals articles are available

online to the readers all over the world without financial, legal, or technical barriers

other than those inseparable from gaining access to the internet itself. Paper version

of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/

