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Abstract 

This paper describes the Maximum Likelihood Estimator and the Bayesian using gamma prior Estimator of the 

Weibull distribution based on interval censored data. The Bayesian estimates of the survival and hazard functions 

we can’t solve it analytical for that Gauss Quadrature method is used to estimate the survival and hazard 

functions. Also Lindley’s approximation is used. The two methods are compared to maximum likelihood 

counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to 

determine the best for estimating of the survival and hazard function.    
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1. Introduction 

One of the most appealing classical statistical techniques used for fitting statistical models to data as well as 

providing estimates for the parameters of a model are the Bayesian approach and maximum likelihood 

estimation (MLE) methods. (Sinha 1986) discussed a variety of situations where Weibull distribution has been 

used to analyze other types of survival data. The maximum likelihood method is the usual frequentist approach 

in the estimation of parameters for parametric survival data. Bayesian was employed to estimate the survival 

function and hazard rate of Weibull distribution using Lindley’s approximation method.( Smith 1987) developed 

the maximum likelihood and Bayesian estimators and compared them using the three-parameter Weibull 

distribution. The application of the Weibull distribution in modeling and analyzing survival data has also been 

described extensively by (Mudholkar et al. 1996). (Hossain and Zimmer 2003) estimated the scale and shape 

parameters of Weibull distribution using complete and censored samples by maximum likelihood estimator and 

least squares method. (Nassar & Eissa 2005) used the Bayesian approach for type II censored data to estimate the 

two shape parameters and the reliability function of the Exponentiated Weibull distribution with Lindely 

approximations. In numerical analysis, the Gauss quadrature method is very useful in solving Bayesian 

parameter and survival and hazard functions. (Singh et al. 2002) estimated the Exponentiated Weibull shape 

parameters by maximum likelihood estimators and Bayesian estimator whereby in the Bayes estimation 

approach they solved it numerically by the use of 16 points Gauss-Legendre quadrature formula to estimate the 

parameters.  (Singh et al. 2005) obtained Bayesian and Maximum likelihood estimation for the two-parameter 

Exponentiated Weibull distribution when sample was available from type-II censoring scheme. They first 

obtained the estimates under maximum likelihood by making use of the Newton-Raphson method. Secondly, the 

Bayesian estimator could not also be obtained in close form. For this they proposed and used the 16-point 

Gaussian quadrature formulas. For more detail in Gauss Quadrature Method see (Richard & Douglas 1989).  

The objective of this paper is to estimate the survival and hazard functions of the Weibull distribution based 

interval censored data by using Bayesian approach with help of the Gauss Quadrature Method and Lindley’s 

approximation and compared to maximum likelihood estimator by using mean square error (MSE) and absolute 

bias to determine the best estimator under several conditions. 

2. Maximum Likelihood Estimation  

 

Let 1 2( , , , )nt t t  be the set of n random lifetimes from Weibull distribution with parameters and   . 

The probability density function (pdf) of Weibull distribution is  
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The cumulative distribution function (cdf) of the Weibull distribution is given as 

( ; , ) 1 exp
x

F x


 


 
    

 
 

The likelihood function based on interval censored data as given in Flygare et al., (1985) is 
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The logarithm of the likelihood function  
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To obtain the equations for the unknown scale and shape parameters, we differentiate Eq. (2) partially with 

respect to the parameters and    and equal it to zero. The resulting equations are given respectively as, 
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The Equations 3 and 4 cannot be solved analytically, and for that we employed Newton Raphson method to find 

the numerical solution.  

The estimate of the survival function and hazard function of Weibull distribution are   
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Where ˆ
M is the scale parameter estimated by maximum likelihood estimator and the ˆ

M is the shape 

parameter of Weibull distribution 

 

3. Bayesian approach   

We consider the both the scale and shape parameters are unknown, and we compute the Bayesian estimates of 

the scale and shape parameters. It is assumed that    and    each have independent gamma (a, b), and 

gamma(c, d) priors respectively 
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The posterior is given as  
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The Bayesian estimates for the survival and hazard functions under squared error loss function are given as: 
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The Equations 9 and 10 we can’t solve it analytical for that we used Gaussian quadrature method and Lindley’s 

approximation to solve the problem. 

 

3.1 Gaussian Quadrature Formulas 

Following Richard L. Burden & J. Douglas Faires (1989) 

The Gauss quadrature rule are used to solve our problems for each estimators are a mention in this paper, where 

the double integrations as follow 

I 

1 2

1 2

1 2 1 2( , )

A

B B

A

f x x dx dx   

The Gauss Legendre quadrature rules for single integration is  
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This is the n-point Gauss quadrature rule, where the iC  is the coefficients and ix  are called the function 

arguments  

Now to solve the double integration be the Gauss quadrature rule the follow step are needs: 
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iC  are the weighting factors and iz  are the function arguments  

To apply the Gauss quadrature rule for the second integration as follows 
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The techniques can be applied for estimated the survival and hazard functions (see for example Rathod et al, 

2007)    

 

3.2 Lindley’s Approximation  

As shown the integrals involved in (9) and (10) cannot be solved analytically and for that we obtained Lindley’s 

Expansion to solve the parameters approximation. 

According to Al Omari (2012), Lindley proposed a ratio of integral of the form 

   ( )exp ( ) / ( )exp ( )w L d L d         

Where ( )L   is the log-likelihood and ( ), ( )w     are arbitrary functions of  In applying this procedure, it is 

assumed that ( )   is the prior distribution for   and ( ) ( ). ( )w u    with ( )u  being some function of 

interest. 

The posterior expectation according to Sinha (1986) is 

   ( ( ) | ) ( )exp ( ) ( ) / exp ( ) ( )E u t L d L d               

 where  log ( )    

Lindley expansion is therefore approximated asymptotically by 

2 2
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 where L is the log-likelihood equation in (2). Taking the survival function estimation, where 
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For the Hazard function, set 
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4. Simulation Study 

In this section, we compare the Maximum likelihood estimation and Bayesian using gamma prior with help of 

the Gaussian Quadrature method and Lindley’s Approximation, The mean squared errors (MSE) and absolute 

bias for each method were calculated using 10,000 replications for sample size n=25, 50 and 100 of Weibull 

distribution based on interval censored data for different value of parameters were the scale parameter  = 2 and 

shape parameter     = 0.5, 1.5 and 3. The results are presented in Tables for different selections of the 

parameters. 

 

Table 1: Estimated of the survival function and (MSE, absolute bias) of Weibull distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size Estimators     MLE
 

BL
 

BG                
 

25 0.5     0.0891 

(0.1231, 0.1945) 

0.0889 

(0.1134, 0.1722) 

 0.0890 

(0.1035, 0.1642) 

1.5     0.1102 

(0.0612, 0.0699) 

 0.1119 

(0.0522, 0.0654) 

0.1241 

(0.0501, 0.0631) 

3     0.2211 

(0.0519, 0.0711) 

0.2155 

(0.0535, 0.0832) 

0.2302 

(0.0481, 0.0679) 

50 0.5    0.0893 

(0.0963, 0.1342) 

0.0892 

(0.1040, 0.1466) 

0.0895 

(0.0935, 0.1278) 

1.5    0.1135 

(0.0502, 0.0628) 

0.1034 

(0.0514, 0.0644) 

0.1271 

(0.0481, 0.0589) 

3    0.2225 

(0.0419, 0.0611) 

0.2135 

(0.0505, 0.0708) 

0.2301 

(0.0412, 0.0573) 

100 0.5    0.0897 

(0.0531,0.1052) 

0.0891 

(0.0540, 0.1172) 

0.0907 

(0.0489, 0.0934) 

1.5    0.1150 

(0.0491, 0.0576) 

0.1031 

(0.0498, 0.0591) 

0.1241 

(0.0421, 0.0522) 

3    0.2345 

(0.0369, 0.0519) 

0.2157 

(0.0412, 0.0580) 

0.2338 

(0.0371, 0.527 ) 
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Table 2: Estimated of the hazard function and (MSE, absolute bias) of Weibull distribution 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Discussion. 

 

In Table 1, when we compare the mean squared error (MSE) and absolute bias of the survival function of 

Weibull distribution based on interval censored data by maximum likelihood (MLE), Bayesian using Lindley’s 

approximation (BL) Bayesian using Gaussian Quadrature (BM), we found that Bayesian using Gaussian 

Quadrature is better compare to the others for all cases except when the n=100 with 3  . Moreover, maximum 

likelihood is better than Bayesian using Lindley’s approximation for all cases except when the n= 25 

with 0.5 and 1.5  .  

 

In Table 2, when we compared the mean squared error (MSE) and absolute bias of the hazard function of Weibull 

distribution with interval censored data by maximum likelihood (MLE), Bayesian using Lindley’s approximation 

(BL) and Bayesian using Gaussian Quadrature (BG), we found that Bayesian using Gaussian Quadrature is 

better compare to the others for all cases except when the n=100 with 3  . Moreover, maximum likelihood is 

better than Bayesian using Lindley’s approximation for all cases except when the n= 25 with 0.5 and 1.5  . 

 

 

5. Conclusion 

In this paper we have considered Bayesian using Lindley’s approximation (BL) and Bayesian using Gaussian 

Quadrature problems of the Weibull distribution based on interval censored data to estimate survival and hazard 

functions.  Comparisons are made between the Bayesian and maximum likelihood estimators based on 

simulation study and we observed that, the Weibull survival and hazard functions are better estimated by 

Bayesian using Gaussian Quadrature. 

Size Estimators        MLE
 

BL
 

      BG                
 

25 0.5     1.8123 

(1.0311, 0.9345) 

1.8288 

(0.9146, 0.8766) 

 1.8910 

(0.8935, 0.8621) 

1.5     0.4512 

(0.9612, 0.8994) 

 0.4602 

(0.9532, 0.8854) 

0.4218 

(0.9401, 0.8631) 

3     0.1719 

(0.8713, 0.8211) 

0.1655 

(0.8835, 0.8732) 

0.1022 

(0.8381, 0.7869) 

50 0.5    1.8452 

(0.9041, 0.8592) 

1.8392 

(0.9090, 0.8616) 

1.8955 

(0.8735, 0.8128) 

1.5    0.4815 

(0.8952, 0.8681) 

0.4794 

(0.9054, 0.8764) 

0.4315 

(0.8681, 0.8566) 

3    0.2125 

(0.8549, 0.7901) 

0.2035 

(0.8755, 0.8068) 

0.2301 

(0.8242, 0.7557) 

100 0.5    1.8685 

(0.8991,0.8412) 

1.8499 

(0.9014, 0.8602) 

1.9011 

(0.8649, 0.8034) 

1.5    0.5100 

(0.8649, 0.8361) 

0.5001 

(0.8798, 0.8651) 

0.5421 

(0.8421, 0.8402) 

3    0.2315 

(0.8061, 0.7419) 

0.2157 

(0.8412, 0.7810) 

0.2311 

(0.8097, 0.7471 ) 
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