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Abstract 

A stock market is a place where investors trade certificates that indicate partial ownership in businesses for a set 

price. Different countries in the world have stock markets where other countries started their stock markets long 

time ago like the USA  and they have investigated the trend of their market if it is normally distributed or not. 

Also they have strong models that assist them in making predictions and also help the investors on the choice of 

the stocks to invest so as to gain the profit in the future. On the other hand other countries just started few years 

ago. Tanzania is among the countries where stock markets has just started recently and hence there is a need to 

study the nature of the stocks distribution and see whether the Dar-Es-Salaam Stock of Exchange (DSE) market 

do follow the theoretical conclusions or not. Thus in this study we adapt the Markowitz modern portfolio theory 

(MPT) and using the mean variance analysis theory together with the DSE data to investigate if the DSE stock 

market follows a normal distribution or not. The analysis shows that the DSE stocks log returns are reasonably 

normally distributed and its prices do change according to the change in other factors like the inflation rate, 

consumers (investors) interest, the policy of the country, and other exogenous factors.  

Keywords: portfolio, stock market, volatility (risk), expected return, covariance matrix. 

1. Introduction 

Financial status of any company or institution is not static. It changes over time due to a number of factors that 

can affect its financial flow. Among the factors that affects the financial flow includes inflation, decrease in 

human consumption rate caused by inflation, increase in investments, price fluctuation and others of the like. 

Due to this factor we can easily see that financial and insurance markets always operate under various types of 

uncertainties that can affect financial positions of companies and individuals. In   financial and insurance 

theories these uncertainties are usually referred to as risks. And in stock markets where certificates of partial 

ownership of business are traded so as to raise the initial capital of the company for operation aspects, the stock 

market remains the major means of investment and can be used as an indicator of overall economic health. Due 

to this reason different countries have their own stock markets where prices are determined by the forces of 

demand and supply. Given certain states of the market, and the economy in general, one can talk about risk 

exposure. Any economic activities of individuals, companies and public establishments aiming for wealth 

accumulation assume studying risk exposure is of great important, Melnikov and Alexander, (2004). 

Governments do own companies or have shares on different companies that acts as the financial security in case 

of financial crisis. The shareholder becomes part of the company ownership. During the financial crisis the 

shareholder can sell the shares he owns. The shares are sold at the stock exchange markets. Barro, (1990). 

In a business, Investors have to find the best way to price their business that will have the minimum risk in time. 

And because different investments have different turnover over time due to changing of the sales caused by 

customer consumption and investment rate, one will need to have the financial flow throughout the year by 

investing in both of the two portfolios. Singleton, (2003). 

Trade decisions are more concerned with the speed, costs, and risks associated with executing the transaction, 

while investing emphasizes selection of the security. To be able to make a good decision one needs to have a 

good knowledge on the pricing theory and pricing model. There are many models formulated that aims to reduce 

risk and maximize profit by providing a frame work for portfolio selection that have a minimum risk in time and 

among them is the Modern portfolio theory (MPT). It is used in pricing assets so as to have the minimum risk and 

gain the maximum return. Although it is more useful it does not operate in the same way in all the stock markets 
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due to markets difference, and market governing rules. Edwin et al, (1997). 

Since the DSE started its operations there is no research done to be used as a tool for risk minimization and 

finding the optimal portfolio and hence help the investors to invest in different portfolios that eventually leads to 

profit maximization and this is what this study does. 

 

2 Literature review 

Portfolio allocation is independent for each individual investor basing upon several factors, including age, 

investable years before retirement, risk, required necessary return, and current or future goals. The overall 

positioning of a portfolio is important in evaluating the portfolios. A goal in any portfolio is to achieve the 

greatest amount of return while taking the least amount of risk. Also each security has its own deviation from an 

expected return statistically known as standard deviation from the mean in finances it is called risk. The risk of 

an overall portfolio is expected to decrease as the number of securities increase. According to Markowitz it is not 

only about pricing securities, but it is about choosing the most appropriate allocation of securities because 

different securities brings in different concepts  of risk. An investor seeking higher return  he also intrinsically 

take an increased risk because return to risk ratio grows quickly at first with each unit of additional risk 

eventually brings less and less opportunity for the return. This implies that for an investor to benefit more he has 

to get the optimal portfolio that has minimum risk and brings the expected return. Markowitz, (1952) in his paper 

“Portfolio Selection," published in 1952 in the Journal of Finance, he introduced the MPT (Modern Portfolio 

Theory).in this paper Markowitz explain mathematics of diversification 

Markowitz suggested that if we treat single-period returns for various securities as random variables, we can 

assign them expected values, standard deviations and correlations. And we can calculate the expected return and 

volatility of any portfolio constructed with those securities. Out of the entire universe of possible portfolios, we 

are sure that there is ones that will optimally balance risk and return. These comprise what Markowitz called an 

efficient frontier of portfolios. An investor should select a portfolio that lies on the efficient frontier.  

The foundations of MPT resulted to the establishment of a formal risk-return framework for investment 

decision-making. By defining investment risk in quantitative terms, Markowitz gave investors a mathematical 

approach to asset selection and portfolio management by considering the mean and variances of portfolios. 

However, differing to its theoretical reputation, the mean- variance model has not been used extensively in its 

original form to construct a large-scale portfolio. Due to among the reason is that it is computationally difficulty 

and is associated with solving a large-scale quadratic programming problem with a dense covariance matrix. 

Several authors tried to alleviate this difficulty by using various approximation schemes Sharpe, (1967, 1971, 

Stone 1973) in the early years of the history. 

To force the portfolio to the efficient frontier James Tobin, (1958) added a risk-free asset to the analysis and 

hence bringing up the concept of super-efficient portfolio and the capital market line. The capital asset pricing 

model (CAPM) makes strong assumptions that lead to interesting conclusions Harpe, (1964). Not only does the 

market portfolio sit on the efficient frontier, but it is actually Tobin's super-efficient portfolio. Konno, (1988, 

1989), proposed a new portfolio optimization model using piecewise linear risk functions showing that their 

model can achieve the intention of Markowitz by solving a linear program instead of a difficult quadratic 

program and they emphasize on the use of LI risk model that leads to a linear program instead of a quadratic 

program, so that a large-scale optimization problem of more than 1,000 stocks may be solved on a real time basis. 

Various aspects of this phenomenon have been extensively studied in the literature on portfolio selection.  

All these readings show that portfolio optimization is rooted from the Markowitz mean-variance model 

(MPT-model) and all the other models are directly or indirectly based on this model. However it is important to 

note that these models have been tested and used in few developed financial markets like the New York Stock 

Exchange (NYSE), most research papers analysis has been done using yahoo finance data, with some stocks like 

the S & P ‘100, Nikkei, FTSE 100’ appearing in most of the papers, Puelz, (2002), while different Financial 

Markets have different characteristics and their securities behave differently Konno and Yamazaki, (1991). hence 

its effectiveness in other markets is not guaranteed, therefore there is need to examine the applicability of these 

portfolio optimization models before implementing them in the budding stock markets like DSE. 

Due to this, this study aims to develop a model that will be adapted to the Dar es Salaam Stock Exchange market, 

basing on Modern Portfolio Theory. And the contribution of this study will be to explore the relevance and 

applicability of the modern portfolio theory model to the Dar es Salaam Stock Market as far as portfolio 

optimization is concerned. 
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3 Material and Methods 

The data was obtained at the Dar-Es-Salaam Stock exchange market (DSE) offices and there are about 17 

registered stocks namely Tanzania Breweries Limited (TBL) Swissport Tanzania Limited (Swissport), TOL Gases 

Limited (TOL), Tanzania Portland Cement Company Limited (TWIGA),TATEPA LIMITED, Kenya Airways 

Limited (KA), Tanzania Cigaratte Company (TCC), East African Breweries Limited (EABL), Tanga Cement 

Company Limited (SIMBA), Jubilee Holdings Limited (JHL), Dar Es Salaam Community Bank (DCB),CRDB 

Bank PLC (CRDB), National Microfinance Bank (NMB), Kenya Commercial Bank (KCB). Eleven stocks were 

selected to represent the DSE market. And from these eleven stocks the general trend of the DSE market was 

studied.  

The data was collected on 17
th
 of April 2014, includes the closing prices, opening prices, trading dates, market 

capitalization, high and low prices, turnover and company names. The data provided was for nine years from 2006 

to 2014. From the data it was observed that seven companies started selling their stocks in 2006, three companies 

started on 2007, three companies on 2008, one company on 2009, another one on 2011 and the other two 

companies on 2013. Also it was observed that some of the companies have sold their stocks ones, twice or thrice 

which it is difficult to get the real trend for these data. Even though we were provided all these data only the 

company names, closing dates and trading dates was employed in the calculations and its outputs were used in 

plotting the relevant graphs. The Excel 2007 spread sheet was used in calculating the returns by using the formulae 

clossing price  -  previous closing price
,

previous closing price
iR   

Where the 'iR s represent the daily stock returns, and to calculate the monthly stock returns the formulae 

1 

n

i

i

R

monthly returns
n




where n is the total number of traded days in the month was used. 

 Using these monthly returns the log returns was calculated by using the inbuilt function ‘LN’,  the mean, 

standard deviation, maximum and minimum values of both the returns and log returns were calculated by using the 

excel inbuilt functions of; STDEV, MAX, MIN and  AVERAGE 

3.1Model formulation and analysis 

The methodology employed is to adopt the Markowitz model and simulate it with the data obtained from the Dar es 

Salaam stock of exchange market so as to come up with the optimal portfolio through solving the expectations and 

volatility of the portfolios. And upon doing the calculations the following equations was used. 

Expected return:  

According to Mukhopadyyay, (2000), the expected value of the random variable pR is denoted by 

( ) or  or [ ]p p pE R ER R  and is defined as 

( ) ( )                                                                              (3.1) p i i

i

E R w E R

   the return on the portfolio

             the return on asset  

            weighting of the component asset 

p

i

i

where R

R i

w i






 

And the Portfolio variance is found by using the equation  

2 2 2                                                                              (3.2)p i i i j i j ij

i i j i

w w w    


  
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2                                                                                                 (3.3)

where 1 for 

p i j i j ij

i j i

ij

w w

i j

   







 


 

Now from equation (3.1) if we are finding the expected return for two stocks only it can be found by using the 

formulae
 

( ) ( ) ( )

           ( ) (1 ) ( )                                                                           (3.1.1)

p A A B B

A A A B

E R w E R w E R

w E R w E R

 

  
 

Where A means the first stock and B stands for the second stock. also the portfolio variance can be found by using 

the formulae
 

2 2 2 2 2 2                                                                           (3.2.1)p A A B B A B A B ABw w w w        This 

trend will continue up to N where N is the number of securities or bonds in the given portfolio. 

According to Hsu, (1997) the covariance of assets iR  and 
j

R  is defined by the equation 

[ ( )][ ( )]                                                                                     (3.2.2)ij i i j jE R E R R E R     In 

the case of diversification, the investor has to hold combinations of instruments which are not perfectly correlated 

where correlation coefficient is between 1 1.ij    

To get the required expected return for a correct pricing mechanism the asset pricing model (MPT) has to be 

employed. and the CAPM which uses the equation ( ) ( ( ))    (3.4)i f i m fE R R E R R   can be employed 

to derive the theoretical required expected return (i.e. discount rate) for an asset in a market, given the risk-free rate 

available to investors and the risk of the market as a whole and  is used as the measure of assets sensitivity to a 

movement in the overall market premium ( ( ))m fE R R , it is the expected excess return of the  market 

portfolio’s expected return over the risk – free asset. 

The incremental impact on risk and expected return when an additional risky asset say ‘A’ is added to the market 

portfolio ‘B’ follows from the equation (3.1.1) for the two-asset portfolio and these results are used to derive the 

asset-appropriate discount rate. 

The aim of investors is to maximize anticipated or expected profit and hence it follows the normal probability 

theories of predictions and for the investor to have higher probability of getting profit has to invest in the portfolio 

with high return and low risk. 

In the Markowitz mean – variance portfolio theory the rate of return on assets are assumed to be random variables. 

And the goal is to choose the portfolio with optimal weighting factor and which in the Markowitz context is the one 

with acceptable expected baseline.  

Due to the fact that Markowitz follows the principle of random variables in its operations, some statistical concepts 

were used as follows;- 

3.2 Some concepts from elementary statistics 

The following theorems from Feller (1968). 
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Theorem 1:  If you have a number of random variables 1 2,  ,  . . . nR R R  if R is a weighted sum (linear 

combination) of all the 'iR s i.e. 1 1 2 2 . . . n nR a R a R a R    then R is also a random variable 

Theorem 2:  If 1 2,  ,  . . . nR R R are random variables with expectations, then the expectations of their 

weighted sum (linear combination) exists and is the sum of their expectation

1 1 2 2( ) . . . n nE R a ER a ER a ER     

That is 1 1 2 2 1 1 2 2( . . . ) ( ) ( ) . . . ( )  .   .    .            (3.5)n n n nE a R a R a R E a R E a R E a R        

Theorem 3: let x be a random variable with finite expected values and C be any constant, then 

( ) ( )                                                                                                          (3.5.1)E cX cE X  

To define the variance of the weighted sum we have firstly to adopt the definition of the covariance as defined by 

Hsu (1997) that the covariance of  and i jR R is denoted as ( )  or i j ijCov R R  it is defined by 

[[ ][ ]]ij i i j jE R ER R ER    this means the expected value of the deviation  of iR from its mean times 

the deviation of 
jR from its mean results to 

ij and this may be expressed in terms of correlation coefficient  

ij . The covariance between  and i jR R  is equal to their correlation times the standard deviation of i iR

times the standard deviation of 
j jR   in short it can be expressed as ij ij i j     

Theorem 4: If 1 2,  ,  . . . nR R R  are random variables with finite variances 
2 2 2 2

1 2 3, , ,  . . . n     and

1 1 2 2 . . . n nR a R a R a R     then 
2 2

1

1 1 1

( ) 2
n n n

i i j ij

i i i

Var R a a a 
  

   if we denote 
2  as i ii  then 

this equation can be rewritten as 

1 1

( )
n n

i j ij

i i

Var R a a 
 

 for more details about these theorems proofs the 

reader is referred to Mayanja, (2011) for example. 

According to Feller, (1968) If 1 2 3, , ,... nR R R R   are random variables with expectations, then the expectation of 

their weighted sum (linear combination) exists and is the sum of their expectation. 

1 1 2 2( ) ( ) ( ) ... ( ). . . eqn (3.5.2)n nE R a E R a E R a E R     or it can be written as  

1 1 2 2 3 3 1 1 2 2 3 3( ... ) ...n n n nE a R a R a R a R a ER a ER a ER a ER          

Where by 

iR  is the return in the 
thi security, i  is the expected rate of iR , ij is the covariance between iR  and jR ii  
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is the variance of iR  

iX is the percentage of the investors assets which are allocated to the 
thi   

security, while the yield of the portfolio 

as a whole will be found by using the formula 
i i

i

R R X .  

But you have to note that iR are the random variables and iX  are fixed by the investor and are percentages so 

that 1ii
X  . The expectation of R will be ( )

n

i i

i

E R X    and the variance is computed by the 

formulae; 

1 1

( )
n n

ij i j

i j

V R X X
 

  

The minimization of ( )V R  at the given level of ( )E R  for the equation

1 1

( )  
n n

ij i j

i j

V R X X
 

  leads to the 

Markowitz’s mean variance model also known as the modern portfolio theory MPT which has the following 

assumptions 

1. There are n risk assets and there is no risk free asset 

2. Price of all assets are exogenous given  

3. There is a single time period for selling an asset 

4. There are transaction costs and taxes 

5. Markets are liquid for all assets 

6. Markets are infinitely divisible i.e. you can buy any units of a certain given stock 

7. There is full investment i.e. all the stocks are in total operation aiming at providing a return 

8. All portfolios are selected according to the mean- variance criterion          Mayanja (2011). 

3.3 Mean variance analysis 

Mean variance analysis is the core of the MPT. For any two assets the mean of the portfolio is given by 

1

                                                                                                               (3.6)
n

p i i

i

X 


   

where 

i is the mean ( )iR of the i=1,2,3,...n iR    and the variance is given by 

2

1 1

                                                                                                     (3.6.1)
n n

p ij i j

i j

X X 
 

  

p  is the desired level of expected return 

2

p   is the desired level of variance 

Now letting K to denote a covariance matrix so that  

2

1 2 where ( )T T

p X KX X X X     
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For 2n   the model equations becomes 

2

1

1 1 2 2

                                                                                                                (3.6.2)

     =X X

p i i

i

X 

 








 

11 12 12

1 2

21 22 2

( )p

X
X X

X

 


 

  
   

  
 

      2 2 2 2

1 1 1 2 12 21 2 2                                                                              (3.6.3)X X X X       

1,2,3,...,  and  for i i ij i n      are assumed to be known 

2 2

1 2 1 2

1

( ), ( ), ,  and  are known because 1                                                 (3.6.4)
n

i

i

R R X  


  

Now if the weight of the two assets is 2X   then 

From 

1

1
n

i

i

X


  we get 1 1X    and the equation 

2

1

p i i

i

X 


  becomes 

1(1 )  where 0 1p p pR R R          and  

 2 2 2 2

1 1 1 2 12 21 2 2X X X X       becomes  

   
22 2 2 2

1 1 2 21 2 1p              

Hence the model for the two risk assets becomes 

   1 21  for 0 1                                                                              3.6.5pR R R        

   
22 2 2 2

1 1 2 21 2 1  for 0 1                                            (3.6.6)p                 

3.3.1 Solution to the two asset model equation 

Then solving these two equations (3.6.5) and (3.6.6) for different values of  in the interval 1 1  
 

From equation ( 3.3.6 ) if 1 
  

we get
    

22 2 2 2

1 1 2 21 2 1  p            
 
solving for p  we 

get   1 21p     
 
and if

 
0 and 1 

 
respectively we get

 1 2  and  p p    
 

Again substituting the value of
 

0 and =1 
 
in the first equation we get

 

1pR R for
 

0  and
 2  pR R for

 
1 

 
this implies that for

 
0  the portfolio value

  

is  0 1 1P R
 
and for

 
1 

 
the portfolio value is

 
 1 2 2P R

 
for

 
0  means all the investments are 

in 1 stock and for
 

1 
 
means all the investments are in the second stock because

 
1 1   substituting 
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1   into the equation    
22 2 2 2

1 1 2 21 2 1  p            
 

we get    
22 2 2 2

1 1 2 21 2 1  p             after solving this equation we get 

1 2(1 )p       and again when 0  we get the point   0 1 1P R  and when 

1 20 i.e (1- ) 0p       solving for  from this equation we get 1

1 2




 



 and 

1 1
1

1 2 1 2

1p pR R R
 

   

   
     

    
 hence the portfolio value becomes 

1 1
1

1 2 1 2

0, 1 pA R R
 

   

    
           

when plotting in the graph it will be easily seen that the point 1Ap  

corresponds to the equation    1 21p       and we have to note that the value of   1 21    

remain positive until when 1

1 2




 



 and when 1

1 2




 



 the quantity   1 21      becomes 

negative leading to   1 21     and as  approaches to 1, 1 2  which gives the corresponding point 

close to  2 2 2 P R  and the locus will trace out the line 1AP  

Lastly we have to consider the interval 1 1    (this is the case of real data as those that will be obtained at 

DSE). 

The minimum variance point are obtained by solving the equation 

2

0
p







 

    
   

2
2 2 2 2

1 1 2 2

2 2

1 1 2 1 2 2

1 2 1  

         =2 1 2 1 2 2  

p
       

 

        

 
    

 

    

 

But    
2

2 2

1 1 2 1 2 20  2 1 2 1 2 2  = 0 
p

        



       


now solving for  we 

get  

 

2

1 1 2

2 2

1 1 2 22

  


   




 
 and if we substitute the value of  in the equations  3.3.5  And 

(3.3.6)  it provides the minimum variance point  
min minminp ,p pR  hence the solution to the two assets model 

in a mean standard deviation  p pR   can be presented in the plane as below 
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                            Figure 1 

In this diagram we determine the minimum variance so that we can represent the real data because real data have 

1 1    that is in the extremes of the interval it can never be achieved for example the point with 0p 

cannot be achieved because it correspond to the value of 1    

Hence the region CAB defines the strict boundaries for the portfolio and so the inside region is the feasible 

region that can be achieved. 

3.3.2 Conclusion for the 2 asset model analysis 

First as  (weight proportion) varies the locus of  ,p pR traces out a hyperbola curve in the  p pR 

plane. 

Secondly when 1   it is possible to have 0p  for some choices of 
1

1 2




 



however since for real 

data it is not possible to have 1    we can say in general that putting two assets whose returns are negatively 

correlated has a desirable effect of lowering the portfolio risk at a given level of return. The validity of these 

theoretical conclusions are going to be tested with the real data from DSE and its results will be shown 

 

4. Results and Discussion 

The data was sorted so as to arrange them for each stock and from this the log returns of each stock was 

calculated. The range was calculated by using the maximum and minimum values of the log returns, and this 

helped us to ascertain the intervals for the log returns of each stock, using these intervals we determined the 

frequencies of the log returns using the excel in built function 'FREQUENCY'. Using these frequencies the 

cumulative frequencies were calculated using the formula; 

,
 , 100%

 

i
i

frequence f
cumulative frequence cf x

total frequence
  ,and this provides the actual cumulative 

frequencies for the historical data of the stock. Then using the same mean and standard deviation for each of the 

stock we simulated the cumulative frequencies for a normally distributed data set. To produce cumulative 

frequencies that are normally distributed for the given mean and standard deviation of the data set excel's 

'NORMDIST' function was used. We then plotted the actual cumulative frequencies of the historical data and the 

simulated normal distribution frequencies on the same graph, for each stock. The resulting graphs are as shown 

in figures below 
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The TTCL cumulative and simulated cumulative frequency curves  

 

                                                    Figure 2 

The red line represents the cumulative frequencies and the blue line represents the simulated normal distribution of 

the cumulative frequency values. As seen from the graph the simulated normal distribution graph seem to be 

superior to the cumulative frequencies graph. 

The TBL cumulative frequency and the simulated cumulative frequencies graphs 

 

                                      Figure 3 

If we observe between these two graphs for the TTCL and the TBL we can see that the TTCL graph is more 

concentrated to the left of zero and this is because we used the log returns in calculating the intervals for which 

most of them were negative and for the TBL most of them were positive. 

For the TCC Company the cumulative frequency and simulated normal distribution cumulative graphs are as 

below  
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                                      Figure 4 

The cumulative and simulated normal distribution graphs for the TOL stocks 

 

                                           Figure 5 

Also for the TOL and TCC companies we observed that the graphs concentrated more on the left this is caused by 

the fluctuation in the prices causing the average monthly return to be negative. Also we can see that there is 

abruptly rise in graphs which is caused by abrupt increase in prices. 

The TPCC cumulative frequency and simulated normally distributed graphs are as below 

 

                                          Figure 6 

The TTP cumulative frequency graphs as well as the simulated normal distribution graphs. are shown in the figure 

below. 

0

20

40

60

80

100

120

-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

CUMULATIVE FREQUENCY SIMULATED NORMALLY DISTRIBUTED CUMULATIVE FREQUENCIES

P
ER

C
EN

TA
G

E 
C

U
M

U
LA

TI
V

E 
FR

EQ
U

EN
C

Y 
CUMULATIVE FREQUENCY CURVES FOR THE DSE TCC STOCK 

INTERVALS 

0

20

40

60

80

100

120

-0.15 -0.1 -0.05 0 0.05

CUMULATIVE FREQUENCY SIMULATED NORMALLY DISTRIBUTED CUMULATIVE FREQUENCIES

P
ER

C
EN

TA
G

E 
C

U
M

U
LA

TI
V

E 
FR

EQ
U

EN
C

Y 

CUMULATIVE FREQUENCY CURVES FOR THE DSE TOL STOCK 

INTERVAL 

0

20

40

60

80

100

120

-0.01 -0.005 0 0.005 0.01 0.015

CUMULATIVE FREQUENCY SIMULATED NORMALLY DISTRIBUTED CUMULATIVE FREQUENCIES
CUMULATIVE FREQUENCY CURVES FOR THE DSE TPCC STOCKS 

P
ER

C
EN

TA
G

E 
C

U
M

U
LA

TI
V

E 
FR

EQ
U

EN
C

IE
S 

INTERVALS 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.10, 2014 

 

49 

 

 

                                                     Figure 7 

TPCC and TPP companies also behave in the same way as other companies. That is the greater part of the graph is 

concentrated to the left showing that the average monthly returns were negative and it were caused by the change 

in prices. 

 For the CRDB Company stock the graphs for the cumulative frequencies and the simulated normal distribution 

cumulative frequency are also as below 

 

                                               Figure 8 

For DCB stock the graphs for the cumulative frequencies and the simulated normal distribution cumulative 

frequency are also as below 
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                                     Figure 9 

Comparing the CRDB and the DCB stock graphs we can observe that the graph for the CRDB is more concentrated 

to the right of zero showing that there was an increase in prices from time to time and for the DCB the increase was 

just abrupt showing that at one time the prices rises significantly while in most of the time was almost constant. 

For the GOV the graphs for the cumulative frequencies and the simulated normal distribution cumulative 

frequency are also as below 

 

 

                                          Figure 10 

For the NMB the graphs for the cumulative frequencies and the simulated normal distribution cumulative 

frequency are also as below 
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                                 Figure 11   

For the SWISS the graphs for the cumulative frequencies and the simulated normal distribution cumulative 

frequency are also as below 

 

                                       Figure 12 

As we observe from all the graphs it is well noted that the simulated normal distribution graphs are superior to 

the cumulative frequency graphs. Also, it can be noted that there are some deviations from the graphs which can 

be caused by the stock selling’s which are at higher level in some time and at lower level at another time. For 

example for the NMB it was observed that there was a high change in price which can be caused by different 

market conditions, consumer interest, change in consumer’s income, inflation rates and other factors that prevail 

at the market place. Also we can observe that for the GOV stock the prices was almost constant and there was a 

high increase in price and causing the greater change in the nature of the graph. All these factors do show that 

markets are not static and do change according to some factors. To confirm that there was a high deviation in 

some stocks prices we plotted the normal stock values as below.  
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The normal stock values plot 

 

 

                                Figure 13 

 

 

                                         Figure 14 

From these normal plot we observed that both of the two graphs approximate to a straight line with high 

concentration in some parts of the graph showing that the changing in prices was minimum for some months and 

there was a high changer in some of the months but in general conclusion we can see that the high concentration is 

along the center showing that most of the average monthly returns are along the mean. 
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                                  Figure 15 

 

 

 

 

                                  Figure 16 

 

 

 

                                 Figure 17 
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                                  Figure 18 

 

                                   Figure 19 

 

 

 
                               Figure 20 
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                                   Figure 21 

 

 

                                     Figure 22 

Also from these normal plots you can easily see that they are approximately straight lines which do correspond 

to the theoretical conclusions that the graphs of the normal distribution are a straight line with positive slop. Also 

most of the dots are concentrated along the zero x-axis with little variation in the y-axis showing that the average 

monthly returns are near to the mean of the whole stock. This also shows that the extreme deviations of the plots 

of some stocks are due to the fluctuation of the prices. To prove this we plotted the stock log returns graphs for 

each stock for the period the stock was in operation to see how the stock was performing and the resulting graphs 

are as follows. 

 

The DSE stock performance  

 

                                          Figure 23 
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As you can observe there is a month with which its average performance was high and others its performance 

was low and hence resulting to these small, small deviations. 

 

                                Figure 24 

As we can observe for the TTCL and TBL stock, the TTCL has approximately one high deviation and the TBL has 

almost two extreme deviations one is caused by high increase in price. 

 

                                Figure 25 

 

 

                               Figure 26 

As we can observe for the TCC and TBL stock, the TOL has approximately one high deviation showing that there 

was a month with high average return than the normal and the TBL has almost two extreme deviations one is is on 

the positive side showing that there was a month with higher average return compared to others and the other to the 

negative side showing that there was a month with lower average return compared to others, and all these are 

caused by price fluctuations. 
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                                 Figure 27 

 

 

                                 Figure 28   

As we can observe for the TPCC and TBL stock, the TTP has approximately four high deviations showing that 

there was four months with high average return than the normal two months were having high prices and the other 

two were having low prices. The TBL has almost two extreme deviations on the negative side showing that there 

was two months with lower average return compared to others, and all these are caused by price fluctuations. 

      

 
                                  Figure 29 
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                               Figure 30 

As we can observe for the CRDB and DCB stock, the CRDB has approximately three high deviations showing that 

there was two month with high average return than the normal and one month with low average return than the 

normal and the general outlook of the stock seem to be fluctuating more than other stocks. For the TBL has almost 

three extreme deviations one on the negative side showing that there was a month with low average return 

compared to others and others to the negative side showing that there was a month with higher average return 

compared to others, and all these are caused by price fluctuations. 

 

 

                                     Figure 31 

 

                                 Figure 32 

For the GOV and NMB it is found that the GOV stock has one extremely which was caused by high increase in 

price in one month and on the other months the prices are almost constant. On the other hand the NMB stock has 

fluctuating behavior which shows that the prices are not stable they increase in one month and decrease in the other 

causing almost three positive deviation and three negative deviation 
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                              Figure 33 

The DSE SWISS stock is the most fluctuating stock with increase and decrease in prices. 

Generally as well shown from the graphs it is observed that there are some noticeable changes in stock 

performance which results to changes in the normal plots and hence we can confirm that the DSE log returns of 

stocks are normally distributed. Also we can prove this by checking and calculating the skewness and the 

kurtosis effect but according to our case it cannot be a good means because as in Mayanja (2011) these 

parameters do provide answers according to the nature of the data you have used, even for the same dada 

choosing different samples it can provide different values hence if we use these values for our data it cannot 

provide a certain answer for the variations of the stock parameters. 

4. Conclusion and recommendations 

As observed from the graphs it shows that the log returns of the DSE stocks are normally distributed. Also we 

can observe that in every graph from figure 23 to figure 33 there is extremely high deviations, this means that 

every stock has some months with high prices and low prices. These deviations cause the deviation in the 

normality plots. Also we have to note that for the real data like these from DSE deviations are expected. From 

this reason we can comfortably conclude that the log returns of the DSE stocks are intelligibly normally 

distributed. This result corresponds to the literatures that log returns are normally distributed Elton, Graber, 

(1974). 
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